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Abstract: To ensure the integrity of a ground-based augmentation system (GBAS), an ionosphere-
free (Ifree) filtering algorithm with dual-frequency measurements is employed to make the GBAS
free of the first-order ionospheric influence. However, the Ifree algorithm outputs the errors of two
frequencies. The protection level obtained via the traditional Gaussian overbound is overconservative.
This conservatism may cause false alarms and diminish availability. An overbounding framework
based on a Gaussian mixture model (GMM) is proposed to handle samples drawn from Ifree-based
GBAS range errors. The GMM is employed to model the single-frequency errors that concern the
uncertainty estimation. A Monte Carlo simulation is performed to determine the accuracy of the
estimated GMM confidence level obtained by using the general estimation approach. Then, the final
GMM used to overbound the Ifree error distribution is analyzed. Based on the convolution invariance
property, vertical protection levels in the position domain are explicitly derived without introducing
complex numerical calculations. A performance evaluation based on a real-world road test shows
that the Ifree-based vertical protection levels are tightened with a small computational cost.

Keywords: GBAS; overbound; Gaussian mixture model (GMM); dual-frequency

1. Introduction

The global positioning system (GPS), BeiDou navigation satellite system (BDS), Rus-
sian global navigation satellite system (GLONASS) and Galileo navigation satellite system
are the four types of global navigation satellite systems (GNSSs) [1–3]. Based on a dif-
ferential GNSS structure, a ground-based augmentation system (GBAS) can broadcast
differential corrections to improve positioning accuracy and provide integrity, continuity,
and availability for civil aircraft during their approaching and landing phases [4]. Among
these four criteria, integrity is the key performance criterion for measuring the trust placed
in the correctness of the provided navigation information [5]. Integrity refers to the ability
to effectively provide warnings to users when system faults cause risks and jeopardize
user safety.

The ionospheric anomaly is one of the most challenging issues in GBAS develop-
ment [6]. Extreme ionospheric anomalies cause large differential errors, therefore leading
to the loss of integrity. In single-frequency GBASs, authorized users are equipped with
customized monitors to detect ionospheric anomalies [7]. Further, an auto-covariance
estimation of variable samples (ACVES) algorithm can be an outstanding auxiliary to
monitor ionospheric variations and disturbances [8]. However, the detection of severe iono-
spheric anomalies before users are threatened cannot be guaranteed [9]. Therefore, a single-
frequency GBAS cannot provide high-level service under anomalous ionospheric conditions.
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With regard to incoming GNSS signals, a GBAS approach service type (GAST) F based
on multiconstellation and dual-frequency measurements has been proposed to support
high-level precision approach operations [10]. GAST-F employs dual-frequency filtering
algorithms to liberate the associated system from ionospheric anomalies. Two widely used
filtering algorithms, which include the divergence-free (Dfree) and ionosphere-free (Ifree)
filtering algorithms, are considered the primary choices [11]. The Dfree filtering algorithm
utilizes single-frequency code measurements and dual-frequency phase measurements for
smoothing. Despite the removal of the temporal ionospheric gradient, the Dfree filtering
algorithm can provide more accurate performance. In contrast, the Ifree filtering algorithm
uses dual-frequency code and phase measurements to remove all the first-order ionosphere-
related items. The ionospheric anomalies are basically alleviated. A dual-frequency GBAS
adopting the Ifree filtering algorithm is hereafter named an Ifree-based GBAS [9]. A high
level of noise is induced because of the combination of the single-frequency errors, which
is the main shortcoming of the Ifree-based GBAS.

When no fault or anomaly occurs, the GBAS ensures integrity by adopting a quintessen-
tially conservative method named overbounds [12]. The GBAS replaces the distribution of
the input real-world errors with conservative parametric models. Specifically, conservatism
can be guaranteed because the accumulated tail probability of the overbound exceeds that
of the input distribution. This conservatism can be delivered through a linear system to
the output error models. All quantiles of the output errors are larger than those of the true
errors for any integrity risk under fault-free conditions. The quantile corresponding to
the integrity risk is also known as the protection level, which is a crucial test statistic for
ensuring the integrity of the GBAS.

The actual distribution of the experimental GBAS errors presents heavier tails than
those of a Gaussian distribution [13]. A Gaussian distribution whose variance is inflated
to ensure that the tails of the actual errors are covered is named the Gaussian overbound.
The Gaussian distribution is often utilized in augmentation systems [14]. However, the
core of the Gaussian overbound is much larger than that of the actual error distribution.
Therefore, protection levels based on the Gaussian overbound are loose and overconserva-
tive, resulting in a potential decline in system availability [15]. To address this issue, many
complex distribution models have been employed to fit the underlying distributions of
GBAS errors. However, these distributions may introduce an unignorable computational
load to the airborne subsystem of the GBAS. Facilitating the computational process while
maintaining a tight overbound is crucial for the future GBASs.

Protection levels need to be calculated for each epoch. As GAST-F is in its initial
phase, the design of the overbound needs to be revisited to guarantee a better balance
between integrity and availability in a dual-frequency GBAS. Ifree-based errors are a
linear combination of single-frequency errors. The probability density function (PDF) of
Ifree-based errors is the convolution of the two single-frequency error PDFs. Because the
convolution operation is a weighted sum taken after sliding the PDFs of two frequency
errors, the conservative core affects the tight tail parts and causes excessive amplification of
the protection levels. If the Gaussian overbound is utilized, the Ifree filtering algorithm
increases the protection levels by 2.6 or more when receiving measurements on the L1 and
L5 signals of GPS [9]. Consequently, the Ifree-based protection level is too large to attain
high availability. The achieved availability in the fault-free hypothesis may be reduced
by over 80%, thereby restricting the practical application of GAST-F [16]. Nevertheless,
little attention has been paid to this issue. A tight overbound resulting in a tight protection
level is beneficial for enabling high availability. It is desirable to establish a framework for
overbounding Ifree-based errors in a compact manner.

In this paper, a framework for overbounding Ifree-based errors is proposed. Basically,
the errors of each frequency are overbounded. To accurately characterize heavy-tailed
errors, a Gaussian mixture model (GMM) is utilized to overbound the single-frequency
errors. GMMs have been used in the GNSS community [17], as they have the potential
to alleviate the performance degradation caused by the conflicts between the Gaussian
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hypothesis and heavy-tailed distributions. To tighten the overbound, the GMM overbound
is redesigned based on the uncertainty estimation to reduce its conservatism; this technique
has not yet been considered. Therefore, to determine whether the parameter uncertainty
estimation of the GMM is accurate, the confidence interval estimation accuracy is evaluated
through theoretical analyses and simulation experiments. An overbound for Ifree-based
errors is established by combining two single-frequency overbounds. Then, both the single-
frequency and Ifree-based protection levels are derived by using the GMM overbound;
this step is expected to optimize the system availability without significantly increasing
the computational load. Therefore, tightened protection levels are likely to be calculated
without inducing much additional computational cost.

This paper is organized as follows. Section 2 analyzes the succinct background concern-
ing GBAS overbounding for single-frequency GBASs, with a focus on GMM overbounds.
Section 3 outlines the details of the proposed overbounding method for dual-frequency
GBASs, followed by derivations of the protection levels. Subsequently, our road-test setup
is introduced in Section 4, and the experimental results are shown. A discussion follows in
Section 5. Finally, the conclusions and contributions, as well as future work, are presented
in Section 6.

2. Background
2.1. Previous Work on Single-Frequency Overbounds

For single-frequency augmentation systems, several excellent studies on the over-
bound of the independent errors include the CDF overbound [14,15,18], paired over-
bound [19,20], position-domain monitor [21–23] and two-step overbound [24]. Among
all these approaches, the CDF overbound is the only one that is adopted in the standard
GBAS. It is suitable for the ideal case in which zero-mean, unimodal, and symmetric errors
are present. Such strict requirement shape requirements are the premise of well-behaved
overbounds. The CDF overbound is defined as in [18].

FOB(x) ≤ F(x) ∀x ≤ 0
FOB(x) > F(x) ∀x > 0

(1)

where x is a random variable. F(x) is the underlying but unknown CDF of the random
variable x. FOB(x) is the overbounding CDF.

The offline-online CDF overbounding framework includes the establishment of a
range error distribution model (REDM), the establishment of a range error overbounding
model (REOM) and the calculation of the protection level. More details can be found in [15].
The first two steps are completed offline in the range domain of the ground subsystem by
broadcasting conservative parameters that are valid for all satellites. Real-time processing
is not required in either step. The last step is performed online in the airborne subsystem to
calculate time-varying protection levels, which requires a high degree of timeliness.

Due to its simplicity and convolution invariance, an REOM in the form of a Gaussian
distribution, namely, a Gaussian overbound, is recommended as a practical implementa-
tion. The specific implementation, including a Gaussian overbound utilizing a Gaussian-
core exponential-tail (GCET) distribution and extreme value theory (EVT), can be found
in [14,25]. Nevertheless, in the Gaussian distribution, only a standard derivation parameter
can be adjusted. To ensure that the tails are overbounded, the standard derivation needs
to be inflated. Inflation always makes the core larger than that of the actual distribution,
leading to a loose overbound. A Gaussian overbound simply overbounds the underly-
ing distribution to a certain probability and masks the underlying trend of the REDM.
Countermeasures are adopted to guarantee a tighter overbound by using non-Gaussian
overbounds that make the REOM less conservative. Non-Gaussian methods lead to tight
overbounds, revealing the trend of the entire underlying distribution. At present, instances
of such approaches include the stable overbound [26] and the Gaussian-Pareto overbound
(GPO) [27]. Unfortunately, these two methods have defects in their mathematical properties.
A main shortcoming of the stable overbound is its infinite second order [28]. The estimates
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of this overbound have the potential to diverge as the sample size increases. A major
disadvantage of the GPO lies in the numerical calculation during the projection process,
which cannot meet the requirements of real-time processing.

From the above analysis, two issues need to be solved. On the one hand, the existing
overbounding frameworks are based on single-frequency errors, and no dual-frequency
overbounding framework is available. On the other hand, the overconservatism caused by
Gaussian overbounds and the mathematical defects caused by non-Gaussian approaches
need to be remedied. This work is primarily motivated by rigorously modeling heavy-
tailed dual-frequency GBAS error distributions and rapidly calculating protection levels. A
GMM is then analyzed in the next section.

2.2. GMM and GMM Overbounding Method

A GMM (ω-contaminated) is a linear mixture of single Gaussian functions. It is fre-
quently used to model second-order non-Gaussian physical systems, such as video models and
financial transactions [28,29]. The one-dimensional PDF of a GMM, pθ, is given in [17].

pθ(y) =
K

∑
k=1

ωk ϕ(y; µk, σk) (2)

where K is the number of Gaussian components. ϕ represents the Gaussian PDF. ωk is the
kth weight coefficient satisfying the constraint that ∑k ωk = 1. µk is the mean, and σk is the
standard deviation. θ is the full set of θk with θk = (µk, σk, ωk).

The GMM has some excellent properties. First, GBAS range errors are mixtures of
various error sources. Additionally, GBAS range errors are always pooled in an eleva-
tion bin to collect more samples, which aggravates this property. Therefore, a mixture
distribution can be used to model GBAS range errors [30]. Second, a GMM with a small
number of Gaussian components is sufficient for capturing the non-Gaussian heavy-tailed
distributions. A multicomponent GMM can even approach any nonnegative integrable
distributions [29]. Third, a GMM is preserved under convolution, implying that the PDF of
a linear combination of two independent GMMs still agrees with a GMM [31]. This signifi-
cantly reduces the computational load required to calculate the protection levels. Finally, a
GMM has a second-order moment, which guarantees the convergence of growing samples.

Among all the methods for conducting the point estimation, the expectation maxi-
mization (EM) algorithm is generally accepted [32]. Furthermore. Louis proposed a classic
method to conduct interval estimation, and the covariance matrix I0 is given as in [33].

I0 =

(
− ∂2 log p(θ|Y )

∂θ2

)−1

=

(
−
∫

∂2 log p(θ|Y, Z )

∂θ2 p(Z|θ, Y )dZ−Var
(

∂p(θ|Y, Z )

∂θ

))−1

(3)

where Z is a latent variable that draws from categories with coefficients, and Y is a complete-
data variable showing the origin of the samples. Var is the variance. According to the
central limit theorem, the estimation error obeys an asymptotically Gaussian distribution.
The 1 − α confidence interval of each parameter of θ can be expressed as in [27].

Confidence Interval =
[
θ̂ − z1− α

2

√
I0,θ , θ̂ + z1− α

2

√
I0,θ

]
(4)

where θ̂ represents the point estimation. z1− α
2

represents the z value of the 1-α confidence
interval in the standard normal distribution model. I0,θ represents the diagonal matrix
element corresponding to the parameter θ in I0.

Extensive studies have been conducted to apply GMMs in augmentation systems.
Shively first used a two-component GMM to establish the GBAS REDM [30]. A Gaussian
distribution whose variance was set as the larger variance of two Gaussian components
was adopted as the REOM. However, the uncertainty caused by the weight coefficient
was ignored. Additionally, applying a single Gaussian distribution to overbound a GMM
always offsets the advantages of this accurate model. Zhong proposed an algorithm
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based on the unsupervised learning method to conduct real-time estimation of the GMM
REDM [34]. Lee proposed a position-domain monitor to overbound position errors based
on a GMM [21]. Unfortunately, all possible satellite geometries need to be considered at the
same time, leading to a large computational load. Osechas proposed a direct GMM-based
position-domain overbound by directly inspecting error data rather than mapping the
errors [35]. However, each satellite channel cannot be monitored even if enough satellites
are available [36]. Blanch proposed a GMM overbound based on measurement residuals
and a Bayesian approach for a satellite-based augmentation system (SBAS) [37]. However,
the complexity of the formulas limits its application, as noted by the authors. Perea
introduced a GMM into advanced receiver autonomous integrity monitoring (ARAIM) [38].
Close attention was paid to accommodating the necessary information in the current
ARAIM format.

In conclusion, the uncertainty of the weight coefficient has not been considered in the
existing overbounds. The convolution invariance of GMMs themselves is always ignored.
Therefore, we study the performance improvement that a GMM can achieve in terms of
overbounding GBAS errors. Our study encompasses the redesign of a GMM overbound
particularly for an Ifree-based GBAS.

3. Materials and Methods

In this section, a framework for overbounding Ifree-based GBAS errors based on a
GMM is proposed. It has the potential to overbound the Ifree-based errors more tightly. A
diagram of the proposed framework is given first, followed by the details needed to obtain
a closed-form redesigned GMM overbound for reducing conservativeness.

3.1. Overall Framework of the Ifree-Based GBAS Error Overbounding

The Ifree filtering algorithm completely detaches the first-order ionospheric effect
by taking Ifree combinations of GNSS measurements from two frequencies [9]. Figure 1
presents a typical Ifree filter.
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The input of the Ifree filtering algorithm is written as

ρI f ree = ρ f 1 −
1
ζ

(
ρ f 1 − ρ f 2

)
(5)

φI f ree = φ f 1 −
1
ζ

(
φ f 1 − φ f 2

)
(6)

where ρ is the range measurement. φ is the carrier-phase measurement. ζ is calculated as
ζ = 1− f 2

1 / f 2
2 . A low-pass filter is employed to attenuate the high-frequency noise in the

input measurements. The filtered output is given by

_
ρ I f ree = R +

(
ε1 −

1
ζ
(ε1 − ε2)

)
+

1
ζ

IFB (7)

where R represents all common terms in the code and carrier phase measurements, includ-
ing the true distances between the satellites and users, the satellite and receiver clock biases
and the tropospheric delay. ε denotes the filtered errors, including the multipath errors
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and thermal noise. IFB is the interfrequency bias. Since Ifree-based errors are formed by
the combination of two frequencies, they are destined to be larger than single-frequency
errors. One can directly estimate the overbounds based on the filtered Ifree-based measure-
ments. However, this method is not adopted in this study. Instead, an equivalent schematic
diagram of an Ifree filter and an overbounding framework is given in Figure 2.
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The diagram of the Ifree filtering algorithm in Figure 1 can be transformed into the
diagram in Figure 2a since Ifree filtering is a linear system. By using the homogeneity prop-
erty and additivity property, an Ifree-based GBAS can be decomposed into two subsystems,
where the measurements are combined after passing through the same low-pass Hatch
filter. Based on the equivalent Ifree filtering algorithm, the overall overbounding process is
shown in Figure 2b. The REDM and REOM can be established by using the errors of each
frequency. Then, the REOM of the Ifree-based GBAS can be obtained by linearly convolving
two single-frequency REOMs. The corresponding protection levels can be calculated. An
assumption that the Ifree-based overbound is based on the error models of the individual
contributions derived from the measurements for two frequencies is adopted. Namely,
the overbound is not derived from the direct estimation of the final Ifree-based errors.
During sample collection, if the measurements of one frequency are interfered with, the
measurements of the other frequency can still be received and modeled. This framework
makes full use of the collected samples. Specifically, provided that the measurements can
be received continuously, for the Gaussian overbound, the overbounding results of the
direct estimation process and the framework in Figure 2b share the same value.
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3.2. Single-Frequency REDM Establishment

When the elevation is small, the error presents a heavy tail. Due to the CDF overbound
requirement that the location parameter µ must be zero, a two-component GMM REDM is
established and given by

p(y) = ω1 ϕ(y; 0, σ1) + ω2 ϕ(y; 0, σ2) (8)

where ω1 + ω2 = 1. There are three reasons for choosing this 2-component GMM. First,
the model minimizes the number of components while providing sufficient flexibility. One
component can describe the core, and the other can describe the tails. Both the tight core
and the heavy tails can be thoroughly considered [37]. Second, a multicomponent model
can be overbounded by a two-component model. Finally, the model can avoid overfitting
and nonconvergence in practice. The developed algorithm can be used to estimate the
model parameter values.

For high elevations where the heavy tail is absent, the error distribution tends to be a
Gaussian distribution [27]. At this point, the EM algorithm fails to converge, so a simple
Gaussian overbound may be preferred.

3.3. Single-Frequency REOM Establishment

To construct an REOM, it is indispensable to replace the current parameter values in
the REDM with bounds. By increasing or decreasing the parameter values, the REDM with
parameters estimated by the EM algorithm can then be overbounded. Provided that σ1 is
much greater than σ2, the structure of the overbounding model is:

pOB(y) = (ω1 + ∆ω)ϕ(y; 0, σ1 + ∆σ1) + (ω2 − ∆ω)ϕ(y; 0, σ2 + ∆σ2) (9)

where ∆θ = (∆ω, ∆σ1, ∆σ2) represents the modified value of the parameter θ. As the
modified parameters increase, the overbound gradually becomes conservative.

Before calculating the overbounding model via the Louis algorithm, inspired by the
existing results [39–41], one needs to verify whether the coverage probability equals the
nominal confidence level. Theoretically, considering the possible error sources, uncertainty
and model error qualification are crucial. The uncertainty comes mainly from a small
sample size. The empirical distribution function converges to the underlying CDF with the
full probability if the sample size is sufficiently large. However, the empirical distribution
of limited samples may not be exactly the same as the underlying distribution in practice.
The model error arises mainly because the number of components is restricted. Although
the GMM can approximate a real model with an increase in the number of components,
it is restrained in practical application environments. Accordingly, Equation (8) is an
approximate estimate of the sample data rather than an accurate estimate.

To verify the above statements, data from heavy-tailed distributions are simulated
including four-group GMMs from [30,34,37,38] and four typical non-GMMs, i.e., Normal-
inverse gamma (NIG) [22], GCET [14], GPO [27] and stable distributions [26]. To better
show the disparity between the GMMs and non-GMMs, the samples are classified [36].
If the samples follow a GMM, the group is specified as a correct parametric model. The
fitted distribution can approach the underlying distribution. No model error is observed;
only an estimation uncertainty is present. The chosen parameters of the correct parametric
model are shown in Table 1. The other type of model that disobeys a GMM is called a
false parametric model. In this case, both model errors and uncertainties exist. The correct
parametric model is considered as a reference. Namely, if the estimation of the correct
model is accurate while that of the false model is inaccurate, the existence of model errors
is verified. The chosen parameters of the false parametric model are shown in Table 2.
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Table 1. Distributions and parameters of the correct parametric model for testing.

Parameters
Group

1 2 3 4

ω1 0.85 0.95 0.975 0.50
σ1 1.82 0.97 1.50 1.50
σ2 0.75 0.11 0.30 0.50

Table 2. Distributions and parameters of the false parametric model for testing.

Distribution Parameters

NIG α = 0.65 σ = 0.65 β = 0 µ = 0
GCET σ = 0.8, El = 1.57
GPO γ = 0.03 σ = 0.82

Stable α = 1.95 σ = 0.9 β = 0 µ = 0

In addition, the true value of the GMM estimation must be determined. For the correct
parametric model, the true value, also called the parent parameter, can be determined
directly according to the underlying distribution. For a false parametric model, the under-
lying distribution is no longer a GMM. The optimal value calculated by minimizing the
absolute cost function is selected to substitute for the parent parameter [40].

(
ωopt, σ1,opt, σ2,opt

)
= argmin

ω,σ1,σ2

∞∫
−∞

|F(z; ω, σ1, σ2)− G(z)|dz (10)

where G(z) represents the underlying distribution of the samples. F(z; ω, σ1, σ2) represents
the CDF of the GMM. More importantly, these parameters do not perfectly agree with
the underlying distribution. They only present a benchmark for analyzing the existence
of model errors. Additionally, obvious outliers need to be ruled out because they can be
considered faults and detected by customized monitors in a GBAS. A total of 1000 Monte
Carlo (MC) experiments are carried out after selecting the distribution and parameters. The
results are then analyzed.

Figure 3 shows the MC simulation procedure. The top loop determines the model
type. For each class of models, 2500 independent samples are generated. The mean values
and standard deviations of each parameter estimation in the MC simulation are obtained.
The nominal confidence level is 95%. Then the coverage probability, namely the probability
of the true value falling into the stipulated confidence level, is determined. Finally, the
sample type is replaced and the process is repeated until all simulations are accomplished.

Table 3 shows the absolute bias of the MC tests for the correct parametric model.
The differences between the values estimated by the EM parameters and the parent value
are small. The asymptotic variances of the weighted coefficient and standard deviation
estimators closely agree with these calculated by the MC simulation. All coverage prob-
abilities fluctuate slightly around 95%, which shows that the confidence level estimation
is accurate when the fitted function can fully approach the underlying function. Table 4
shows the statistics of the MC tests with the false parametric model. It is apparent that
bias values increase obviously and that the coverage probability of each parameter value
is lower than the nominal value of 95%. Compared with the correct parametric model
results, the statistical value of the experimental data disagrees with the calculated value
derived from the analytical formula. This disagreement emphasizes the influence of the
model errors on the estimation accuracy. The results indicate that the model errors and the
estimation uncertainty should both be considered if the samples cannot be guaranteed to
come from a GMM.
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Table 3. Correct parametric model results.

Group 1 2 3 4

Absolute value bias
ω1 0.001 <0.001 <0.001 <0.001
σ1 0.005 0.004 0.004 0.002
σ2 0.002 0.001 <0.001 <0.001

Absolute variance bias
ω1 0.002 0.001 <0.001 0.001
σ1 <0.001 0.001 0.002 0.003
σ2 <0.001 <0.001 0.001 0.002

Coverage probability
ω1 95.6% 94.2% 95.1% 96.2%
σ1 94.6% 95.5% 95.1% 94.4%
σ2 94.2% 95.5% 95.7% 95.9%

Table 4. False parametric model results.

Group 1 2 3 4

Absolute value bias
ω1 0.047 0.028 0.011 0.002
σ1 0.136 0.281 0.176 0.151
σ2 0.032 0.013 0.028 0.004

Absolute variance bias
ω1 0.010 0.001 <0.001 <0.001
σ1 0.023 0.020 0.148 0.134
σ2 0.006 <0.001 0.006 <0.001

Coverage probability
ω1 55.6% 97.8% 82.7% 81.6%
σ1 53.6% 61.7% 59.6% 68.6%
σ2 57.5% 86.2% 86.3% 84.4%

To ensure that the estimation results are accurate, the coverage probability must be
improved. Thus, an additional bias is required to fuse the uncertainties and model errors.
Considering that the parameters fluctuate greatly with the properties of the underlying
distribution, a nonparametric bootstrapping method is used [15]. Bootstrapping generates
many randomly drop-back resampled datasets from the original set. For each resampled
data set, a GMM is fitted to perform the parameter estimation process. The additional
bias is adjusted and checked for each bootstrap sample to determine whether the coverage
probability approaches the nominal value. Table 5 shows the sample values that need
to be compensated.
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Table 5. Additive bias values to be compensated.

Parameters
Distribution

NIG GCET GPO Stable

∆ω1 0.094 0 0.021 0.011
∆σ1 0.276 0.088 0.271 0.281
∆σ2 0.059 0.005 0.030 0.007

When both errors and uncertainties are considered, the PDF of the final single-
frequency overbounding distribution is given by

pOB(y) = (ω + ∆ωerror)φ(y; 0, σ1 + ∆σ1,error) + (1−ω− ∆ωerror)φ(y; 0, σ2 + ∆σ2,error) (11)

where ∆θerror = (∆ωerror, ∆σ1error, ∆σ2error) represents the summary of the impacts of model
errors and statistical uncertainty. Figure 4 shows the CDFs of the overbounds with and
without additive bias, providing that the distribution of the samples obeys the NIG dis-
tribution. The y-axis is scaled by the standard Gaussian distribution to explicitly show
tails. After adding the additive bias, the function better overbounds the distribution of
simulated samples.
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In conclusion, compared with the existing single-frequency GMM overbounds in
Section 3.2, the proposed GMM fully considers the uncertainties of all parameters, including
the weighted coefficient and both variances. A non-Gaussian overbound is redesigned by
using a novel form that is preserved under convolution. This is the original contribution
of this study, and it can be extrapolated to solve analogous overbounding problems in
single-frequency SBASs, ARAIM systems and integrated navigation systems [25,42].

3.4. Ifree-Based REOM Establishment

The REOM for an Ifree-based GBAS is established in this section. It is crucial to
note that convolution is required to obtain Ifree-based overbounds. If a single-frequency
overbound does not possess closure under convolution, the results of the corresponding
numerical calculation do not obey any explicit distribution. Consequently, the overbound-
ing information cannot be broadcast by limited parameters through the signal channel. The
mathematical properties of the overbounding distribution are required.

To overbound Ifree-based errors, the overbounding model for the distribution of each
frequency is shown as follows:

pOB,i(y) = ωi ,1 ϕ(y; 0, σi ,1) + ωi ,2 ϕ(y; 0, σi ,2) (12)
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where i = 1 and 2 represent different frequencies. Other parameters have the same meanings
as those in (9). Assuming that the errors of the Ifree code measurements are independent,
the overbounding property is still maintained after the convolution process [43]. Because a
GMM is preserved under convolution, the PDF of the Ifree-based overbound is as follows:

pOB ,I f ree(y)

= ω1,1ω2,1 ϕ

(
y; 0,

√(
1− 1

ζ

)2
σ2

1,1 +
(

1− 1
ζ

)2
σ2

2,1

)
+ ω1,1ω2,2 ϕ

(
y; 0,

√(
1− 1

ζ

)2
σ2

1,1 +
(

1
ζ

)2
σ2

2,2

)

+ω1,2ω2,1 ϕ

(
y; 0,

√(
1
ζ

)2
σ2

1,2 +
(

1− 1
ζ

)2
σ2

2,1

)
+ ω1,2ω2,2 ϕ

(
y; 0,

√(
1
ζ

)2
σ2

2,1 +
(

1
ζ

)2
σ2

2,2

)
= ω1 ϕ(y; 0, σ1) + ω2 ϕ(y; 0, σ2) + ω3 ϕ(y; 0, σ3) + ω4 ϕ(y; 0, σ4)

(13)

According to Equation (13), the PDF of the Ifree errors is a 4-component GMM. If
the overbound is directly established from Ifree-filtered errors, the overbound is a two-
component GMM that provides less accuracy and flexibility. Notably, a four-component
GMM yields a better illustration of the trend of the filtered errors. In conclusion, Ifree-based
overbounds are established and their protection levels can be obtained as described in the
overbounding framework. In other scenarios where similar linearity exists, Equation (13)
can be applied to address corresponding overbounding approaches.

3.5. Ifree-Based Protection Level Calculation Utilizing GMM Overbounds

GBAS protection levels are used in the position domain to ensure the integrity, while
the parameters of the error distribution characteristics are broadcast in the range domain.
Therefore, it is indispensable to project the overbound to the protection levels to ensure
integrity. Since the vertical errors are greater than the lateral errors, the vertical protection
level (VPL) is taken as an example.

The position error Ev is a linear combination of the range errors of all utilized satellites,
which is given in [34].

Ev =
N

∑
k=1

S3,kEk (14)

where S3,k is the kth of the vertical-position row element of the projection matrix S, whose
derivation is provided in [12]. N represents the number of visible satellites. Ek is the
kth error of the corresponding satellites covering all range error sources, including noise,
multipath errors, tropospheric errors and so on. Consequently, the PDF of the position
errors is determined by those of the GBAS range errors.

Only the uncertainties from the ground multipath errors and the thermal noise of
Ifree-based errors are considered in (13). Namely, the original GMM overbound only covers
the uncertainties from multipath errors and thermal noise. Additional uncertainties derived
from airborne errors, tropospheric errors and IFB need to be taken into account. Gaussian
models developed by [44,45] are utilized rather than a remodeling of these errors. Then,
a final GMM overbound can be obtained by convolving the Gaussian distributions with
(13) to cover all the potential errors. Due to convolution invariance, the final overbound
can be calculated rapidly and directly. In the final GMM overbound, the weight coefficient
remains the same and the variance is the sum of the original variance and the variance of
the dditional errors.

Then, the PDF of the position-error overbound is provided by N successive convolution
integrals as follows:

pOB,v(z) =
1

N
∏

n=1
S3,n

∫ ∞

−∞
· · ·
∫ ∞

−∞
pOB,1

(
z− ε2
S3,1

)
pOB ,2

(
ε2 − ε3

S3,2

)
. . . pOB,N

(
εN

S3,N

)
dε2 . . . dεN (15)

where pOB,i is the PDF of the ith overbound from the ith visible satellite. For overbounds
that cannot be preserved under convolution, Equation (15) must be computed numerically,
which is overwhelmingly complicated for an airborne facility. Fortunately, the GMM
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satisfies convolution invariance. Thus, calculating Equation (15) using the GMM overbound
requires a computational load similar to that of the Gaussian method. The closed-form PDF
of the Ifree-based bound in the position domain is shown as follows

pGMMOB,v(z) =
N

∑
i=1

4

∑
ki=1

. . .
4

∑
k1=1

ωi,ki
. . . ω1,ki

ϕ
(

z, 0,
√

S2
3,iσ

2
n,kn

+ . . . + S2
3,1σ2

1,k1

)
(16)

where ki represents the kth component corresponding to the ith visible satellite. ωi,ki

represents the weight coefficient. σ2
n,kn

represents the corresponding variance. Ignoring the
vertical difference caused by the filtering time [44], the final VPL can be calculated as

VPL = F−1
GMMOB,v(PIR) (17)

where PIR is the allocated integrity risk, FGMMOB,v is the integral of (16), and F−1 is
the inverse function of F. Although additional computations may be required to solve
Equation (17), the cost is much less than that of numerical convolution.

Due to its low level of freedom and conservative core, the Ifree filtering algorithm
increases Gaussian overbounds by 2.6 or more when receiving L1 and L5 GPS signals. The
same situations apply to Ifree-based GBAS when receiving B1C and B2a BDS signals. The
VPLs are too conservative, implying a high probability of exceeding prescribed alarm alerts.
Then, a false alert is triggered, and availability is lost. Conversely, for GMM overbounds,
although some items with large variances exist in FGMMOB,v, the corresponding coefficients
are quite small and far lower than the integrity risk, thus having little impact on the final
VPLs. Therefore, it can be foreseen that the Ifree-based VPLs based on a GMM are not as
conservative as those based on the Gaussian method.

However, the number of components in Equation (16) increases exponentially. If this
condition is left untreated, obtaining the quantiles of the multicomponent GMM may even
require more computations than numerical convolution. This significantly increases the
computational load required to solve Equation (17). One available way to obtain a high
speed is to control the number of components without introducing additional integrity risk.
A GMM with more components can be overbounded by fewer components. A simple proof
is as follows. A larger variance indicates a heavier tail [36]. Provided that the variance of a
given component is not the largest, one can increase this variance to the largest value and
merge the items with the same variance while retaining the core parts. The net effect is a
reduction in the number of components. Thus, components with similar variances can be
merged upward to reduce the number of components and the computational complexity.
Note that if the number of merged components is too small, the conservatism is increased
significantly. For the sake of balance, empirical advice suggests reducing the number
of components to 10. This may make the results slightly conservative, while the cost
is feasible.

4. Results

Real-world BDS data from a GBAS are implemented to test the performance of the
developed overbounds. This experiment is conducted at the Dongying Airport, where the
GBAS prototypes are developed by Beihang University and Tianjin 712 Communication &
Broadcasting Co., Ltd. in Tianjin, China [46]. A top view of the whole airport is shown in
Figure 5a, and the configuration of the experimental setup is shown in Figure 5b. The red
circles are the four reference stations and the blue rectangles are the very high frequency
data broadcast (VDB) antennas. All four reference stations are equipped with the same an-
tenna, and their positions are precisely calibrated. The BDS signals received by the reference
stations are B1I and B3I signals, with carrier frequencies of 1561.098 and 1268.520 MHz,
respectively [47]. These two types of signals are used to simulate the Ifree-based GBAS.
Although these signals are not specified for a future BDS GAST-F, the results can highlight
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the expected performance level when the B1C and B2a signals become available [48]. In
this case, ζ is calculated as 0.339. The filtering time is set as 100 s.
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The GMM overbound is compared with two Gaussian overbounds, including the
conservative REDM based on the GCET model and the accurate REDM based on the EVT
model [14,25]. Regardless of the utilized REDM, VPLs based on the Gaussian overbound of
the Ifree-based GBAS are approximately 2.5 times larger than those of the single-frequency
GBAS. If the Gaussian inflation factor is still large, the VPLs can be extremely conservative.
The confidence level of the overbound is set as 0.95.

The offline data were collected from 10 November 2019, to 19 January 2020, in the
real environment described above. The data processing steps included data collection
and grouping, which were performed by following the procedures presented in [20]. The
range errors collected from the prototype were binned at intervals of 5◦. Due to the limited
amount of data, the errors of different frequencies were mixed as suggested by [49]. This
strategy works under the implicit assumption that the errors of both frequencies share the
same distribution.

For a quantitative range domain overbounding performance comparison, the sum of
difference (SUMD) is introduced [11]. It can describe the differences between the underlying
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distribution and the overbounds. Our study normalizes the SUMD to eliminate the effects
of sample size. The average SUMD, i.e.,

_________
SUMD , is given as

_________
SUMD =

1
Nbin

Nbin

∑
i=1
|FOB(xi)− F(xi)| (18)

where Nbin represents the total number of sample points in an elevation bin. A smaller
_________
SUMD indicates a tighter overbound. Without loss of generality, an elevation bin from 15◦

to 20◦ demonstrates the capability of the GMM to characterize the heavy tails in Table 6
and Figure 6. The parameters of the GMM overbound correspond to Equation (13), and
Gaussian overbound are characterized by the parameter σ. The y-axis in Figure 6 is scaled
by the standard Gaussian distribution to highlight the tails. The results show that the GMM
method provides a closer overbound to the sample distribution than that of the Gaussian
method in both the core and tail parts. Therefore, the improved GMM overbound can
better represent the trend of the original distribution than the Gaussian methods.

Table 6. Distribution parameters of different overbounds at elevation bins from 15◦ to 20◦.

Distribution Parameters
_________
SUMD

GMM

ω1 = 0.0027 σ1 = 2.98

0.0141
ω2 = 0.0493 σ2 = 2.60
ω3 = 0.0493 σ3 = 2.00
ω4 = 0.8987 σ4 = 1.37

EVT-Gaussian [14] σ = 2.2855 0.0835
GCET-Gaussian [25] σ = 2.8308 0.1110
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To assess the performance of the VPLs based on the proposed overbound in the real
environment, a road test was carried out near the GBAS station on 25 January 2021. A
receiver deployed in a land vehicle that collects the BDS data at a frequency of 0.5 Hz
is assumed to be the dynamic user. The location of the GBAS station and the reference
trajectory of the vehicle are illustrated in Figure 7. The experiment was repeated three
times along this trajectory. To prevent the influence of nonline-of-sight signals, only seven
satellites whose visibilities remained unchanged during the overall process were selected.
These satellites included four GEO satellites (C01, C02, C03 and C04) and three IGSO
satellites (C06, C09 and C10) [47]. In addition, the test vehicle was furnished with a receiver
as the user receiver, along with another receiver in the lab as the base station to conduct
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real-time kinematic (RTK) positioning. The RTK solutions minus the Ifree position results
are assumed to be the actual errors for the entire road test.
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The VPLs are calculated by using the road test data. An integrity risk at 10−9 is taken
as an example. Figure 8 shows the errors against the VPLs calculated by different methods.
Figure 8 is divided by a diagonal line, at which position errors equal the VPLs. No error
exceeds the VPLs since all points are above the diagonal line in this test. The integrity
appears to be preserved. In addition, the position errors in the urban environment are larger
than those in the aviation environment [50]. The GMM overbound does not introduce an
integrity risk under adverse conditions. The statistical results of the VPLs are summarized
in Table 7. One important result is that the GMM VPLs are smaller than the Gaussian VPLs.
Compared with the Gaussian VPL whose REDM is EVT, the GMM VPLs reduce the mean
value by approximately 19%, maximum value by approximately 13% and dispersion by
approximately 8%. Lower VPLs lead to more availability. Gaussian VPLs are more likely to
fail to perform a navigation operation due to conservatism.
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Table 7. Statistics of observed VPLs (in meters).

Distribution Mean Maximum Standard Derivation

GMM 26.74 31.29 1.49
EVT-Gaussian 32.83 36.01 1.62

GCET-Gaussian 43.03 47.39 2.25

5. Discussion
5.1. VPLs versus Alarm Limits

We have shown that our proposed overbounds can achieve excellent performance
in characterizing the error distributions in the range domain and tightening the VPLs
in position domain. Although the GMM VPLs are smaller than the Gaussian VPLs, it is
apparent that they far exceed the 10-m alarm limits [16]. This is mainly because the position
errors are relatively large. The following three measurements can make an Ifree-based
GBAS feasible. First, as more errors become available, the distribution of GBAS errors can
be precisely characterized [27]. The accuracy of the error distribution estimation for each
frequency can be increased. Second, it is preferable to employ the B1C and B2a signals
for the BDS GAST-F [47]. The frequency difference between the two signals is smaller
than that between the B1I and B3I signals. This means that those introduced by the B1C
and B2a signals are smaller than those of the B1I and B3I signals. Finally, considering the
outstanding performance of the current BDS-3 constellation and future multiconstellation
satellites [51], the overall satellite geometry can be improved. The position errors can be
reduced. If these conditions can be met, the position accuracy will be enhanced. Therefore,
the availability of the Ifree-based GBASs can be enhanced in association with a tighter
GMM overbound.

5.2. Computational Load

Theoretically, any convolution-invariant distribution does not result in much addi-
tional computational load. Thus, this type of overbound performs much more rapidly
than an overbound that requires numerical convolution. However, the calculation of the
quantiles of non-Gaussian distribution are inevitably more resource-consuming than simple
Gaussian distributions. Obtaining quantiles of the integrity risk in the position domain as
Equation (17) may introduce the computational load. Thus, the times required to calculate
the VPLs with different overbounding methods including the traditional Gaussian, the
GMM, the stable [26] and the GPO distributions [27], are compared. As a reference, the
calculation time is normalized by the time of the Gaussian distribution. The calculation
software is OCTAVE, and the accuracy is 0.005 m, as suggested by [12]. Table 8 summa-
rizes the relative times taken by different overbounds compared with that of the Gaussian
overbound. It can be seen that GMM overbounds are approximately 60 times slower than
the Gaussian summations. It is also interesting to see that the calculation time required for
the GMM VPLs is much smaller than the stable overbound which also has convolution
invariance. This means that the complexity of solving the quantile of the GMM lies between
those of the simple Gaussian distribution and the complex stable distribution. All methods
are much faster than the GPO method that leverages numerical calculation. Considering
the contribution of the proposed method to the accurate overbound, it is worth the slightly
extra computational load to attain tighter VPLs. In conclusion, the GMM is an appealing
method for overbounding GBAS range errors.

Table 8. Average computational time to calculate the VPLs with different overbounding methods. The
times are the relative times compared with that of the Gaussian overbound. A lower time indicates
less computational load.

Distribution GMM Stable GPO

Relative time 64 423 ≈60,000
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5.3. Limitation

The proposed method possesses some possible limitations. First, the additive bias
determination in Equation (11) is highly empirical and depends on the properties of the
underlying distribution. For each set of samples, the additive bias estimation requires
a high computational cost. Hence, bootstrapping is not suitable if the user chooses to
determine the REOM in real time. The second limitation concerns the limited VDB capacity
in broadcasting the integrity information with the multiparameter in navigation messages
when using a BDS-3 GBAS [52]. The current messaging method allows users to compute
the variance of each range error every time, which means that only one parameter needs to
be broadcast. However, for the GMM overbound, the user needs the information broadcast
by the GBAS ground-subsystem station with three parameters. A minor modification to
the current message content is needed, which requires high VDB capacity. This limitation
is even more pronounced if the user chooses to make these parameters vary with the
satellite [37]. The last issue concerns the frequency correlation. Our work is based on the
assumption that the errors of different frequencies are independent, whereas range errors
appear to show positive statistical correlations [43]. Namely, the positive correlation of
errors between different frequencies reduces the uncertainty of the final error after Ifree
filtering, which makes the protection levels loose. This correlation is an inevitable challenge
for the future application of Ifree-based GBASs.

6. Conclusions and Perspectives

Ifree filtering can effectively mitigate the ionospheric anomalies of a GBAS, but it
amplifies the noise and thus affects availability. An overbounding framework for Ifree-
based GBAS ranging errors based on a GMM is proposed to boost availability. A two-
component GMM model is established to fit single-frequency, heavy-tailed errors. It is
found that the general uncertainty estimation method is inaccurate by using an MC test. A
non-parametric bootstrap is utilized to compensate for this inaccuracy. Then, an accurate
GMM overbound for the Ifree-based GBASs is established. Closed-form VPLs are derived
without introducing much computational cost. A road test shows that the proposed GMM
overbound tightens the VPLs without introducing much computational load relative to
other non-Gaussian overbounds. Overall, the GMM overbound approach is an encouraging
alternative for calculating tighter position error bounds. The contributions of our work can
be summarized as follows.

• Our work proposes an overbounding framework for a dual-frequency GBAS.
• Our work redesigns a novel form of the GMM overbound to rigorously characterize

heavy-tailed distributions. To determine whether the GMM parameter estimation
approach is accurate, our work evaluates its point estimation accuracy and confidence
interval estimation accuracy.

• To calculate the protection levels, our work derives Ifree-based protection levels by
using the GMM overbound, which optimizes the availability without significantly
increasing the computational load.

Future work will be carried out to make GMM overbounds more useful for the
GBAS community. First, multipath errors have advanced degrees of statistical correlation
between frequencies. How to characterize these correlations constitutes part of our future
work. Second, the performance of a real flight test in varying aviation environments
needs to be evaluated. Finally, the proposed overbound is only suitable for cases that
have linear relationships. Future work will involve studying the cases in which potential
nonlinearity exists.
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Abbreviations
The following symbols and abbreviations are used in the manuscript:
ACEVS Auto-covariance estimation of variable samples
ARAIM Advanced receiver autonomous integrity monitoring
BDS Beidou navigation satellite system
CDF Cumulative distribution function
D-free Divergence-free
E All potential errors
EM Expectation-Maximization
EVT Extreme value theory
GAST GBAS approach service type
GBAS Ground-based augmentation system
GCET Gaussian-core exponential-tail
GLONASS Russian global navigation satellite system
GMM Gaussian mixture model
GNSS Global navigation satellite system
GPO Gaussian-pareto overbound
GPS Global positioning system
IFB Inter-frequency bias
I-free Ionosphere-free
NIG Normal-inverse gamma distribution
PDF Probability density function
R All common terms in code and carrier phase measurements
REDM Range error distribution model
REOM Range error overbounding model
RTK Real-time kinematic
S Projection matrix
SBAS Satellite-based augmentation system
SUMD Sum of difference
Var Variance of the variable
VDB Very high frequency data broadcast
VPL Vertical protection level
ϕ PDF of Gaussian distribution
ζ A parameter calculated as ζ = 1− f 2

1 / f 2
2

ε Noise and multipath
ρ Range measurement
φ Carrier-phase measurement
θ GMM parameter set including the weight coefficient ω and the standard deviation σ
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