
����������
�������

Citation: El Oufir, M.K.; Chokmani,

K.; El Alem, A.; Bernier, M. Using

Ensemble-Based Systems with

Near-Infrared Hyperspectral Data to

Estimate Seasonal Snowpack Density.

Remote Sens. 2022, 14, 1089. https://

doi.org/10.3390/rs14051089

Academic Editor: Raquel De Los

Reyes

Received: 31 December 2021

Accepted: 21 February 2022

Published: 23 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Using Ensemble-Based Systems with Near-Infrared
Hyperspectral Data to Estimate Seasonal Snowpack Density
Mohamed Karim El Oufir * , Karem Chokmani , Anas El Alem and Monique Bernier

INRS-Institut National de la Recherche Scientifique (INRS), Québec, QC G1K 9A9, Canada;
karem.chokmani@ete.inrs.ca (K.C.); anas.el_alem@ete.inrs.ca (A.E.A.); monique.bernier@ete.inrs.ca (M.B.)
* Correspondence: mohamed_karim.el_oufir@ete.inrs.ca; Tel.: +1-418-264-1950

Abstract: Estimating the seasonal density of the snowpack has many financial and environmental
benefits. Rapid assessment and daily monitoring of its evolution are therefore key to effective
prevention. Traditionally, the physical characteristics of snow are measured directly in the field,
which involves high costs and personnel mobilization. Hyperspectral imaging is a reliable and
efficient technique to study and evaluate this physical property. The spectral reflectance of snow is
partly defined by changes in its physical properties, particularly in the Near infrared (NIR) part of the
spectrum. Recently, a hybrid snow density estimation model allowing retrieval of density from NIR
hyperspectral data was developed, based on an a priori classification of snow samples. However, in
order to obtain optimal density estimates with the Hybrid model (HM), the sources of classification
and estimation error must be controlled. Following the same principle as the HM, an Ensemble-based
system (EBS) was developed. This model reduces the number of misclassification errors produced by
the HM. The general concept of EBS algorithms is based on the principle that obtaining more opinions
before making a decision is part of human nature, especially when economic and environmental
benefits are at stake. This approach has helped to reduce the risk of classification and estimation
errors and to develop more robust density results. One hundred and fourteen snow samples collected
during three winters (2018–2020) were used to calibrate and validate the EBS. The performance of
the EBS was validated using an independent database and the results were satisfactory (R2 = 0.90,
RMSE = 44.45 kg m−3, BIAS = 3.87 kg m−3 and NASH = 0.89).

Keywords: hyperspectral; near-infrared; density; snowpack; Gaussian quadrature; ensemble-based system

1. Introduction

The measurement and modelling of the physical characteristics of snow, particularly its
density, is important for financial and environmental purposes, as this property is essential
when estimating the water equivalent of snow, predicting avalanche risk [1] and it is often
used to observe and understand the evolution of seasonal snowpacks [2,3]. The physical
characteristics of natural snow can vary vertically and horizontally in the snowpack [4,5].
Daily monitoring and advances in measurement techniques for these features are key
elements in controlling and reducing the risks related to measurement uncertainties [6], but
they requires a significant effort in measuring and collecting samples in the field to ensure
the accuracy of the measurements. It has also been shown that standard sampling methods,
based on fixed sampling points, insufficiently cover large areas and the resulting temporal
resolution is deficient [6–8]. High resolution measurement techniques based on remote
sensing can be used to validate and improve current physical measurement operations.

Due to its ability to provide information over a wide range of wavelengths, Near
infrared (NIR) hyperspectral technology is a promising tool to estimate the physical proper-
ties of snow [9,10]. This innovative technique provides useful information on the physical
and chemical components of a scanned sample [11–13], which can be used for modelling
purposes. Indeed, the NIR spectral range has been tested in the laboratory and in the field
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in several works aimed at estimating the physical properties of snow [4,14–17]. This is
made possible by relating the observed optical changes in the NIR spectral reflectance
at specific wavelengths to the physical transformation processes of snow [9,16,18,19]. A
review of scientific literature has shown that few works have been dedicated to estimating
snow density from optical data. Nonetheless, Gergely, et al. [18] demonstrated that snow
density values can be estimated in a cold laboratory using NIR transmittance measurements
if the size and shape of the snow grains are known in advance. Varade [10] developed a
new approach to estimate snow moisture and density using the infrared bands available
with most spectral sensors. Their method based on using the NIR band led them to develop
the Normalized difference snow index (NDSI), called PIR-NDSI space.

Recently, a Hybrid model (HM) based on NIR spectral data was developed to estimate
snow density [19]. Density estimation using the HM is carried out in two steps: (1) The
snow samples are classified into one of three snow classes (Weakly to moderately metamor-
phosed (WMM), Moderately to highly metamorphosed (MHM) and Highly to very highly
metamorphosed (HVM)) and (2) specific estimators corresponding to the selected snow
classes are used to estimate the density. When using this model, the selection of the final
estimator is critical because the selection of a wrong estimator could lead to the over- or
underestimation of density. Moreover, classification algorithms, such as the one used to
develop the HM (classification and regression tree), are known to be local and unstable [20].
This instability significantly affects model reliability when used to estimate the density
of snow.

In such complex modelling contexts, many authors suggest that the use of an Ensemble-
based system (EBS) could lead to more stable and robust results [21–27]. Two conditions are
necessary to build a stable and robust EBS: (1) reaching a high diversity between individual
elements (either classifiers, estimators, or both) and (2) applying effective rules to combine
individual elements in a way that good decisions are amplified and bad decisions are
cancelled [28].

To achieve the desired diversity, EBSs are composed of thousands of different elements,
which can be problematic when using remote sensing data. Researchers are often faced
with a delicate situation: either reduce the number of features in the EBS which could
reduce the solution space or develop a robust EBS with a very long running time. The
Gaussian quadrature formula (GQF) could provide an interesting solution to this problem.
This method, which is frequently used in uncertainty propagation analysis [29], transforms
the problem of a sample with a very large number of solutions (which require laborious
integral calculations) into a weighted sum of optimal solutions through simple and accurate
numerical solution techniques [30].

The objective of our work is to develop an EBS on the foundation of the previously
described HM and GQF to estimate the seasonal density of the snowpack using high-
resolution NIR hyperspectral data. The EBS was evaluated by independent validation data
and its performance was assessed using four statistical evaluation indices (R2, Root mean
square error (RMSE), BIAS, and Nash-criterion (NASH)).

2. Materials and Methods
2.1. In Situ Measurements for the Calibration and Validation Database

To achieve the objectives of this study, the calibration and validation databases were
composed of two types of data: optical data (spectral reflectance) measured with a proximal
acquisition station, and physical data (grain size, grain type, and density) sampled with a
snow corer. For all acquisitions, the same equipment and sampling technique was used
throughout the study. The study site was located at the INRS’s (National Institute of Scien-
tific Research) Technology Park in the City of Quebec (46◦47′43.22′ ′N and −71◦18′10′ ′W;
Figure 1). The area selected for this study is approximately 20 m2, located in an open sector
of the experimental site.
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The portable rectangular snow corer was designed and built by the INRS’s remote 
sensing team and is shown in Figure 2. It is used to recover the vertical stratigraphy of the 
snowpack which allows measuring of the physical and optical properties of the recovered 
profile. The dimensions of the corer make it possible to recover the entire vertical profile 
of the snowpack because of its simple operating principle. The corer is made up of two 
parts, the inner part is made of metal and the outer part of plastic, with a triangular saw-
tooth cutting tip. The device is simply inserted into the snow at the required depth. A 
trench is then made to access the lower part of the corer and a plate is placed under to 
prevent the snow from falling. The corer is then tilted horizontally and transported to the 
measurement station. At this point, the handle is pulled and the inner part containing the 
snow is carefully removed. The snow is only minimally disturbed during the sampling 
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Figure 2. Snow core sampler. 

Figure 1. Geographical location of the sampling area.

The portable rectangular snow corer was designed and built by the INRS’s remote
sensing team and is shown in Figure 2. It is used to recover the vertical stratigraphy
of the snowpack which allows measuring of the physical and optical properties of the
recovered profile. The dimensions of the corer make it possible to recover the entire vertical
profile of the snowpack because of its simple operating principle. The corer is made up of
two parts, the inner part is made of metal and the outer part of plastic, with a triangular
saw-tooth cutting tip. The device is simply inserted into the snow at the required depth.
A trench is then made to access the lower part of the corer and a plate is placed under to
prevent the snow from falling. The corer is then tilted horizontally and transported to the
measurement station. At this point, the handle is pulled and the inner part containing the
snow is carefully removed. The snow is only minimally disturbed during the sampling
process, resulting in accurate measurements.
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The proximal acquisition station used in this work consists of a RESONON PIKA
NIR line-scanning hyperspectral camera that allows for the measurement of NIR spectral
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reflectance at several wavelengths between 900 and 1700 nm, with a spectral resolution of
5.5 nm and 148 spectral bands. The reflectance was calculated by measuring the radiance
reflected from the snow surface and from a reference target. The latter has near-Lambertian
reflection properties when viewed from the nadir. The station is also equipped with a
halogen lighting system, mounting tower, linear translation stage for rapid image acquisi-
tion, data acquisition software (Spectronon Pro (Resonon Inc., Bozeman, MT, USA)) and
proximal acquisition lenses, as shown in Figure 3.
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Figure 3. NIR spectral reflectance acquisition device for the vertical profile of snow samples from the
company RESONON (Resonon Inc., Bozeman, MT, USA).

Once the snow profile has been recovered, the core drill is then placed horizontally
on the moving platform in relation to the camera’s field of view (nadir) to record a high
spectral resolution image, which is then analyzed with Spectronon Pro software. This
image is used to validate the identification of snow layers already measured in the field
and to analyze the spectral response of each identified layer. The speed of the platform
was selected to achieve equal spatial resolution of the vertical and horizontal axes to avoid
distortion of the image size and to fit the predetermined exposure time of the camera.

In situ sampling of the physical properties of snow is carried out by treating the
recovered snow profile as a succession of layers. Each visually homogeneous layer is
carefully removed from the sampler and the size and type of snow grains are measured
using a millimeter grid and a 10×magnifying glass. The sample is then classified according
to the International Classification of Seasonal Snow on the Ground [31]. Finally, the
isolated layer was weighed to determine its density based on its mass and volume. To
ensure consistency in the analysis, all observations and measurements were made by the
same person.

2.2. Algorithm Development
2.2.1. The Hybrid Model

The HM developed by El Oufir, [19] to estimate seasonal snowpack density from
hyperspectral data is composed of a classifier and three estimators, each specific to a
given snow class (WMM, MHM, and HVM). The HM classifier was trained using the
Classification and regression tree (CART) method [32]. Once trained, it was possible to
divide the calibration database into the three specific classes mentioned above, based on the
reflectance value of the samples at wavelengths 1024 nm and 1161 nm [19]. The classifier
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was then used to calibrate the three specific estimators of the HM (Figure 4) using a stepwise
multivariate regression. Density estimation using the HM is performed in two steps:

v Classification of the snow samples into one of the three snow classes using the classifier
of the HM;

v Estimation of each class’s density using the corresponding specific estimator [19].

Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 19 
 

 

Classification and regression tree (CART) method [32]. Once trained, it was possible to 
divide the calibration database into the three specific classes mentioned above, based on 
the reflectance value of the samples at wavelengths 1024 nm and 1161 nm [19]. The clas-
sifier was then used to calibrate the three specific estimators of the HM (Figure 4) using a 
stepwise multivariate regression. Density estimation using the HM is performed in two 
steps: 
 Classification of the snow samples into one of the three snow classes using the clas-

sifier of the HM; 
 Estimation of each class’s density using the corresponding specific estimator [19]. 

 
Figure 4. Density class determination using the hybrid model. The light blue, the marine blue, and 
the dark blue dots indicate the WMM, MHM, and HVM classes, respectively, and represent the 
calibration database used to calibrate the corresponding estimators. The grey lines are the two dis-
crimination thresholds used based on wavelengths V1 (1161 nm) and V2 (1024 nm). 

2.2.2. Development of the Ensemble-Based System 
In order to optimize density estimates using the HM, the sources of uncertainty in 

classification and estimation must be controlled. For this purpose, we have developed a 
mixed EBS comprising both classifiers and ensemble-based estimators. 
 Parameterization of classifiers based on ensembles 

The classification thresholds of the HM proposed by the CART algorithm are opti-
mal, but not unique. A simple change in the training database leads to changes in the 
decision hierarchy. An effective way to control this error is to quantify the threshold un-
certainties of the classifiers and to take them into account when estimating the density. 
Quantifying classifier uncertainty is possible using the bagging algorithm [33] (n-sam-
pling with replacement; nbagg was set to 25,000), which is one of the most commonly used 
algorithms to build EBSs [28]. It consists of randomly removing a part of the calibration 
database and to compute a new classifier using the remaining data using the CART algo-
rithm. The result of each iteration is the calculation of a threshold. The end of this step is 
marked by the development of two random vectors (v1) and (v2) composed of “n = 25,000” 
classifiers. The appearance of the thresholds composing the random vectors made it pos-
sible to determine a threshold probability distribution for each of the discrimination var-
iables of the HM classifier. This probability is characterized by a mean (μ) and a variance 
(σ). These two statistical moments are subsequently used to develop the ensemble-based 
classifier consisting of a nominal (N), lower (L) and upper (U) threshold. Based on these 
statistical moments, it was possible to quantify the classification uncertainty by using the 
following equations: 

Figure 4. Density class determination using the hybrid model. The light blue, the marine blue,
and the dark blue dots indicate the WMM, MHM, and HVM classes, respectively, and represent
the calibration database used to calibrate the corresponding estimators. The grey lines are the two
discrimination thresholds used based on wavelengths V1 (1161 nm) and V2 (1024 nm).

2.2.2. Development of the Ensemble-Based System

In order to optimize density estimates using the HM, the sources of uncertainty in
classification and estimation must be controlled. For this purpose, we have developed a
mixed EBS comprising both classifiers and ensemble-based estimators.

â Parameterization of classifiers based on ensembles

The classification thresholds of the HM proposed by the CART algorithm are optimal,
but not unique. A simple change in the training database leads to changes in the decision
hierarchy. An effective way to control this error is to quantify the threshold uncertainties
of the classifiers and to take them into account when estimating the density. Quantifying
classifier uncertainty is possible using the bagging algorithm [33] (n-sampling with replace-
ment; nbagg was set to 25,000), which is one of the most commonly used algorithms to
build EBSs [28]. It consists of randomly removing a part of the calibration database and to
compute a new classifier using the remaining data using the CART algorithm. The result
of each iteration is the calculation of a threshold. The end of this step is marked by the
development of two random vectors (v1) and (v2) composed of “n = 25,000” classifiers. The
appearance of the thresholds composing the random vectors made it possible to determine
a threshold probability distribution for each of the discrimination variables of the HM
classifier. This probability is characterized by a mean (µ) and a variance (σ). These two sta-
tistical moments are subsequently used to develop the ensemble-based classifier consisting
of a nominal (N), lower (L) and upper (U) threshold. Based on these statistical moments, it
was possible to quantify the classification uncertainty by using the following equations:

Mean : µf(v)=
∫

V
·f(v).·P(v)·dv (1)
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Variance : σf(v) =
∫

V
·(f(v)− µ)2.·P(v)·dv (2)

where v is the random vector belonging to V, which represents the space of the input
variables of the model, f(v) is the output of the model and P(v) is the conditional distribution
of the input variables.

Normally, all classification decisions made by the ensemble-based classifier should
be retained and the most frequent decision is considered the correct one [28]. This process
minimizes the risk of snow sample misclassification. However, taking into account each
output of ensemble-based classifiers to make a decision for each processed sample will
surely require a huge processing time. Tørvi and Hertzberg [30] proposed an approach
based on the GQF, which converts the probabilistic integrals (Equations (1) and (2)) into
weighted summations (Equations (3) and (4)), which are functions of the original distribu-
tion’s optimal n-thresholds (nOT). Each Optimal threshold (OT) is weighted according to
its occurrence in the random vector (Table 1), fixed at three in our study. Table 1 summa-
rizes the abscissa and weights related to each OT as proposed in the work of Tørvi and
Hertzberg [30], where the mathematical details of the GQF demonstration and its validation
can also be found. Thus, Equations (1) and (2) take the following forms:

Mean : µ= ∑nOT
i=1 ωi × f (zi) (3)

Variance : σ = ∑nOT
i=1 ωi × f (zi − µ)2 (4)

OTi = µ+
√
σ× Zi (5)

where µ and σ are respectively the empirical mean and variance of the standardized random
vector f(z). Zi and ωi are respectively the abscissa and weight related to each optimal
threshold (OTi; (i = 1: nOT)), nOT = 3.

Table 1. Abscissa and weight of the optimal thresholds.

Optimal Threshold (OT) Abscissa (Zi) Weight (ωi)

1 0 1
2 −1, +1 1

2 , 1
2

3 −
√

3, 0,+
√

3 1
6 , 2

3 , 1
6

â Parameterization of estimators based on ensembles

Due to the complexity of the phenomenon to be modelled, the average of several
density estimates will reduce the risk of using a single estimation function. Based on
this principle and on the results of the ensemble classifier, it is possible to develop an
ensemble estimator. Indeed, by means of the different thresholds calculated, it is possible
to divide the calibration database into several sub-databases, allowing the calibration of
15 specific estimators, called “experts” in ensemble estimation [28]. Three subgroups of
the WMM snow class, composed of the samples with the highest values (OTV1L, OTV1N,
and OTV1U), nine subgroups of the MHM snow class, composed of samples in the middle
range, and three subgroups of snow class HVM, composed of samples with the lowest
values (OTV2L, OTV2N, and OTV2U; Figure 5). On the other hand, it has been shown
that estimators based on multivariate regression improve the accuracy of the estimation.
Expert calibration was therefore carried out using a stepwise regression. One of the great
advantages of these experts is that they are not only specific to the class to be modelled, but
also to the transition zones from one class to another, which are often problematic to model.
This step marks the development of the ensemble-based estimator. Using this scheme,
Equations (3) and (4) take the following form:

µ =∑P
i=1ωi × Est

OTV1↑i
+∑nOT−P

i=1 ωi ×
(

∑k
j=0ωi ×

(
Est

OTV1↓i ,OTV2↑j

)
+ ∑k

j=0ωi ×
(

Est
OTV2↓j ,OTV1↓i

) )
; j = 0 for k = 0 (6)
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σ = ∑P
i=1

(
ωi × Est

OTV1↑i
− µ

)
2 +∑nOT−P

i=1 ωi ×
(

∑k
j=0ωi ×

(
Est

OTV1↓i ,OTV2↑j
− µ

)2

+ ∑k
j=0ωi ×

(
Est

OTV2↓j ,OTV1↓i
− µ

)2
)

; j = 0 for k = 0

(7)
where i and j respectively indicate OTV1 and OTV2 (i = 1: nOT and j = 1: nOT; and where
1 refers to Lower (L), 2 refers to Nominal (N), and 3 refers to the Upper threshold (U);
Figure 5);ωi andωj are the weights associated with each particular optimal threshold for
V1 and V2 (ω1 =ω3 = 1

6 andω2 = 2
3 ; Table 1); V1 and V2 are the discrimination variables

computed by the CART method; OTV1i and OTV2j are the optimal thresholds calculated by
the GQF for V1 and V2 (Equations (3) and (4)); Est

OTV1↑i
is the set of estimators (nOT) trained

by the subgroups of the WMM snow class; Est
OTV1↓i ,OTV2↑j

is the set of estimators (n2
OT)

trained by the subgroups of the MHM snow class; Est
OTV2↓j ,OTV1↓i

is the set of estimators

(nOT) trained by the subgroups of the snow class HVM; and k and p are the indices of the
OT related to V1 and V2, respectively (k ≤ nOT and p ≤ nOT). More details are available in
Appendix A.

2.3. Accuracy Assessment

Twenty-five percent of the data was systematically selected from the initial database
before proceeding to the EBS calibration (every fourth value was selected and set aside
starting with low density values). This technique is called systematic split validation.
The remaining data were used to calibrate the models by combining an ensemble-based
classifier using CART with a multivariate stepwise regression based on fifteen specific
estimators. The two models developed were subjected to a robustness test using the k-fold
cross-validation method with 1K iterations. The latter is an iterative method (1K times) of
random sampling by discount (50% of the data used for calibration and 50% for testing).
The k-fold cross-validation approach is summarized in the flow chart in Figure 6.

The four statistical indices (Equations (8)–(11)) used to assess the EBS are: coefficient
of determination (R2), BIAS, Root mean square error (RMSE), and Nash–Sutcliffe efficiency
(NASH). The NASH criterion assesses performance based on the estimated values and the
mean of the in situ measurements. A negative NASH value indicates that the mean of the
measurements is more accurate than the model estimates; a NASH value of 1.0 means that
the model is perfect [34]. The mathematical equations for the statistical indices used are
as follows:

R2 =

 ∑n
i=1
(
Mi −M

)(
Es− Es

)√
∑n

i=1
(
Mi −M

)2
√

∑n
i=1
(
Esi − Es

)2

2

(8)

RMSE =

√√√√ 1
n

n

∑
i=1

(
Esi −Mi

Mi

)2
(9)

BIAS =
1
n

n

∑
i=1

(
Esi −Mi

Mi

)
(10)

NASH = 1−
∑n

i=1

(
Esi−Mi

Mi

)2

∑n
i=1

(
Mi−M

M

)2 (11)

where: n is the size of the dataset, M and Es are the measured and estimated density values
and M and Es are the measured and estimated means.
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Figure 5. The two-dimensional GQF scheme using variables V1 and V2 and its application to calibrate
the EBS. The black, red, and blue lines represent the optimal thresholds (lower, nominal, and upper,
respectively) for V1 (OTV1L = 0.632, OT1N = 0.648 and OTV1U = 0.664) and V2 (OTV2L = 0.468,
OTV2N = 0.480 and OTV2U = 0.492). k (1–3) and p (1–3) are the indices of the optimal thresholds
associated with V1 and V2. The light blue, marine blue, and dark blue points represent the data used
for training (WMM, MHM, and HVM, respectively) to calibrate the specific estimators. At the top
right is the flow chart of the simplified EBS operational mode. The light blue, marine blue, and dark
blue boxes designate the areas with WMM, MHM, and HVM classes, respectively. The overlapping
areas in light and dark grey indicate the transitions between low-moderate and moderate-high
densities, respectively. The terms of the equations are detailed in Equation (6). A detailed flow chart
is presented in Appendix B.
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3. Results and Discussion
3.1. Analysis of In Situ Snow Data

Twenty-four snow cores were collected from 19 January to 27 March 2018, from
10 January to 3 April 2019 and from 29 January to 9 March 2020. A total of 114 homogeneous
layer samples were collected. In situ snow sample values are grouped by grain size, grain
type, and density in Table 2, which highlights their variability [15]. On the basis of these
three physical characteristics, each snow layer was associated to one of three snow classes
(WMM, MHM, and VHM) based on the classification of Pahaut [35] and the International
Classification of Seasonal Snow on the Ground of Fierz [31].

Table 2. Distribution of snow density as a function of snow grain type and size (field data: 2018, 2019
and 2020 [15].

Snow Class Type of Grain Grain Size (mm) Number of Samples
(N) Density (kg m−3)

WMM
(

+
λ

)
<1 mm 19 100–250

MHM
(

�
•

)
1–2 mm 59 150–400

HVM
(

ˆ
O

)
>2 mm 36 350–650

3.2. Estimator Calibration

By combining the results of the ensemble-based classifiers and estimators, it was
possible to achieve a good level of diversity for both parameters since the final snow
density estimate is based on at least three classifiers and three estimators (depending on
the snow class to be modelled; Equation (6)). The dataset was separated into 15 subgroups,
allowing training of 15 specific ensemble-based estimators. Calibration characteristics for
the specific estimators are shown in Table 3. The correlation between spectral indices and
in situ density measurements ranged from modest (R2 = 0.77 for specific estimators 13 and
14) to high (R2 = 0.97 for estimator 3). It is important to note that the specific estimators
designed to estimate the three snow classes (WMM, MHM and HVM) were trained using
linear functions.

It is known that the spectral reflectance of the snow cover results from the effect of
different parameters, such as the metamorphism, grain size, grain shape, liquid water
content, contamination, snow depth, etc. [36–38]. Indeed, the natural aging process of
snow significantly affects the size, shape and cohesion of snow grains [39], which in turn
influences reflectance. The specific estimators were analyzed to identify the wavelengths
sensitive to each snow class, which were then used to estimate snow cover density using
spectral data. Negi, et al. [40] showed that for changes in liquid water content, grain size
and aging (metamorphism) of snow, the greatest spectral variations are observed between
980 and 1160 nm. Eppanapelli [41] suggested that the spectral reflectance of snow in the
NIR is inversely proportional to the liquid water content in snow by using the normalized
difference water index (NDWI) at 980 nm and 1310 nm. Gallet [16] used the NIR spectrum
to determine the size of snow grains. They found that the 1310 nm wavelength, which
corresponds to the central section of the NIR spectrum, is sensitive to small snow grains
(low to medium density) and that the 1550 nm wavelength, which corresponds to the
higher section of the NIR spectrum, is sensitive to large snow grains (denser).
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Table 3. Calibration equations for each specific estimator. R2 is the coefficient of determination of
the multivariate regressions; Samp is the size of the training dataset of each estimator; Expvar is
the explanatory variable; U, N, and L are the Upper, Nominal and Lower thresholds; the arrow (↑)
indicates an estimator trained with data superior to the threshold; and the downward arrow (↓)
indicates an estimator trained with data inferior the threshold; the colors light blue, marine blue,
and dark blue refer to the experts used to calculate the snow density of the WMM, MHM and HVM
classes, respectively.

Snow Class Estimator ID Specific
Estimator

Calibration
Equation R2 Samp Expvar (nm)

WMM
1 EstTV1↑L

−1119.75 × SISUB
(1,282,941) − 167.59 0.91 17 1282–941

2 EstTV1↑N

−877.36 × SISUB
(1,452,968) − 433.25 0.95 15 1452–968

3 EstTV1↑U

−967.69 × SISUB
(1,666,935) − 425.24 0.97 13 1666–935

MHM

4 EstTV1↓U,TV2↑U

−1491.40 × SINOR
(1,600,946) − 951.09 0.83 45 1600–946

5 EstTV1↓U,TV2↑N

−1491.40 × SINOR
(1,600,946) − 951.09 0.83 45 1600–946

6 EstTV1↓U,TV2↑L

−1432.65 × SINOR
(1,617,946) − 880.87 0.84 48 1617–946

7 EstTV1↓N,TV2↑U

−1397.68 × SINOR
(1,617,941) − 854.96 0.80 43 1617–941

8 EstTV1↓N,TV2↑N

−1397.68 × SINOR
(1,617,941) − 854.96 0.80 43 1617–941

9 EstTV1↓N,TV2↑L

−1427.73 × SINOR
(1,617,941) − 877.38 0.82 46 1617–941

10 EstTV1↓L,TV2↑U

−1480.06 × SINOR
(1,600,946) − 940.11 0.80 41 1600–946

11 EstTV1↓L,TV2↑N

−1480.06 × SINOR
(1,600,946) − 940.11 0.80 41 1600–946

12 EstTV1↓L,TV2↑L

−1419.73 × SINOR
(1,617,946) − 868.75 0.82 44 1617–946

HVM
13 EstTV2↓U

−26,859.26 ×
SINOR (979,974) +

82.90
0.77 28 979–974

14 EstTV2↓N

−26,859.26 ×
SINOR (979,974) +

82.90
0.77 28 979–974

15 EstTV2↓L

−1378.90 × SISUB
(14,411,122) +

1207.81
0.86 22 1441–1122

Our results support the works cited above. Because of snow grain aging (high meta-
morphosis) and the high liquid water content of the HVM snow class, the shorter wave-
lengths of the NIR spectrum (979 nm and 974 nm) were the most sensitive wavelengths.
We found that the reflectance of short wavelengths of the NIR spectrum is highly correlated
with snow grain aging and liquid water content, and this is consistent with the works of
Negi, Singh, Kulkarni and Semwal [40]. However, for specific estimator 15 (Table 3), which
represents the transition class from high to moderate densities, wavelengths corresponding
to the medium and long wavelengths of the NIR spectrum (1122 nm and 1441 nm) were
the most sensitive. The wavelengths sensitive to the snow classes of low and medium
density (WMM and MHM), were a mixture of short (968 nm, 946 nm, and 941 nm), medium
(1172 nm), and long (1452 nm, 1617 nm and 1589 nm) wavelengths. This result was some-
what expected as both the WMM and MHM snow classes are composed of low, medium,
and high-density snow blends, representing the different physical characteristics of the
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aging snow in terms of metamorphosis, liquid water content, and snow grain size and
shape.

3.3. Evaluation and Validation of the Ensemble-Based System

Validation results obtained with the independent database demonstrate the potential
of the EBS as an effective approach for estimating seasonal snowpack density. The per-
formance of the EBS and the HM are compared in Figure 6. The EBS had a coefficient of
determination of 0.90, which indicates that it explains up to 90% of the variance in the data.
The NASH index indicates that the model is robust with an 89% success rate. The NASH is
in fact a more robust statistical index than R2, as it compares the estimates to the mean of
the observed measurements and is therefore not influenced by extreme values. An RMSE
of 44.45 kg m−3 for such a range of densities is a very acceptable error. The slightly positive
BIAS indicates that the EBS tends to overestimate the snow density. The robustness of
the EBS was also confirmed by the scatterplot of the in situ measurements against their
estimates (Figure 7), where all points are well distributed with respect to the 1:1 line. In
summary, the EBS performs similarly to the HM.

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 19 
 

 

robustness of the EBS was also confirmed by the scatterplot of the in situ measurements 
against their estimates (Figure 7), where all points are well distributed with respect to the 
1:1 line. In summary, the EBS performs similarly to the HM. 

It is important to note that for both the HM and EBS models (Figure 7a and b, respec-
tively) we use the same independent database. The general conceptualization of the HM 
is based on a local classifier and a single specific estimator to calculate the density. In 
contrast, the EBS is based on a more general and stable classifier, and a combination of 
several specific estimator outputs driven by different NIR spectral regions (short, me-
dium, and long wavelengths). Indeed, HM modelling is carried out in two steps: (1) clas-
sification of the snow samples and (2) estimation of the density of the classified snow 
samples using the corresponding specific estimator. Any misclassification error could lead 
to the selection of the wrong specific estimator, and consequently to an over- or underes-
timation of the density. An important advantage of the EBS is that the classification errors 
inherent to the HM are reduced and controlled. It is important to note that it is the way in 
which snow density is estimated with EBS that makes it more robust. Indeed, EBS model-
ling is based on the results of several experts trained with different spectral regions, hence 
their diversity. Thus, for each estimate, if all the experts converge toward the same density 
values using different spectral regions, this increases the estimation accuracy. On the other 
hand, even if one of the experts estimates the density incorrectly, averaging its result with 
those of the other experts allows controlling and minimizing of this error. In fact, according 
to Polikar [28], the averaging may or may not beat the performance of the best classifier 
in the ensemble, but it certainly reduces the overall risk of making a particularly poor 
selection.  

 

Figure 7. Snow density estimated by the two models (a) EBS and (b) HM compared to the in situ 
measurements for the independent database. 

3.4. Reliability Test 
The two developed approaches have undergone a robustness test using the k-fold 

cross-validation method with 1K iterations. The objective of this test is to quantify the 
stability and reliability of the two approaches to provide a good estimate of snow density 
using the bagging technique. The latter is an iterative (1K times) random sampling method 
by discounting (50% of the data used for calibration and 50% for testing). As expected, the 
EBS showed great flexibility in providing quality estimates of snow density compared to 
the HM. The histogram spreads (NASH and RMSE) of the EBS are less wide than those of 
the HM (Figure 8). This behavior reflects the high robustness and reliability of the EBS 
(stdNASH = 0.18 and stdRMSE = 15.04 kg m−3 versus stdNASH = 0.02 and stdRMSE = 4.27 kg m−3 for 
the HM and EBS, respectively). Furthermore, the boxplot results support the histogram 
results. The boxplots (NASH and MSE) for the MBME are narrower with less data falling 

a) b) 

Figure 7. Snow density estimated by the two models (a) EBS and (b) HM compared to the in situ
measurements for the independent database.

It is important to note that for both the HM and EBS models (Figure 7a and b, re-
spectively) we use the same independent database. The general conceptualization of the
HM is based on a local classifier and a single specific estimator to calculate the density. In
contrast, the EBS is based on a more general and stable classifier, and a combination of
several specific estimator outputs driven by different NIR spectral regions (short, medium,
and long wavelengths). Indeed, HM modelling is carried out in two steps: (1) classification
of the snow samples and (2) estimation of the density of the classified snow samples using
the corresponding specific estimator. Any misclassification error could lead to the selection
of the wrong specific estimator, and consequently to an over- or underestimation of the
density. An important advantage of the EBS is that the classification errors inherent to
the HM are reduced and controlled. It is important to note that it is the way in which
snow density is estimated with EBS that makes it more robust. Indeed, EBS modelling is
based on the results of several experts trained with different spectral regions, hence their
diversity. Thus, for each estimate, if all the experts converge toward the same density values
using different spectral regions, this increases the estimation accuracy. On the other hand,
even if one of the experts estimates the density incorrectly, averaging its result with those
of the other experts allows controlling and minimizing of this error. In fact, according to
Polikar [28], the averaging may or may not beat the performance of the best classifier in the
ensemble, but it certainly reduces the overall risk of making a particularly poor selection.
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3.4. Reliability Test

The two developed approaches have undergone a robustness test using the k-fold
cross-validation method with 1K iterations. The objective of this test is to quantify the
stability and reliability of the two approaches to provide a good estimate of snow den-
sity using the bagging technique. The latter is an iterative (1K times) random sampling
method by discounting (50% of the data used for calibration and 50% for testing). As
expected, the EBS showed great flexibility in providing quality estimates of snow density
compared to the HM. The histogram spreads (NASH and RMSE) of the EBS are less wide
than those of the HM (Figure 8). This behavior reflects the high robustness and reliabil-
ity of the EBS (stdNASH = 0.18 and stdRMSE = 15.04 kg m−3 versus stdNASH = 0.02 and
stdRMSE = 4.27 kg m−3 for the HM and EBS, respectively). Furthermore, the boxplot results
support the histogram results. The boxplots (NASH and MSE) for the MBME are narrower
with less data falling outside the normal (boxplot) which means that the values, whether
NASH or RMSE, belong to the same population, in other words, the EBS estimates for the
1K iterations do not vary much. This is in contrast to the HM results, where we notice more
values that fall outside the boxplot and therefore reflect the non-robust nature of the HM
(Figure 9).
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Figure 9. Boxplots representing the distribution of estimated snow density values expressed in
(a) NASH and (b) RMSE, according to the two models EBS and HM.

The EBS is based on a more general classifier and a combination of several specific
estimator outputs driven by different NIR spectral regions (short, medium, and long). This
conceptualization mitigates any potential misclassification error, unlike that of the MH,
leading to the selection of a wrong specific estimator, and consequently to an overestimation
or underestimation of the density. On the other hand, since the EBS outputs are based on a
set of experts, it is also possible to associate a confidence interval for each estimate, which is
neither the case for the HM nor for the standard models.

4. Conclusions

In this paper, we proposed to use an EBS to estimate the seasonal snowpack density.
We used NIR hyperspectral data (900–1700 nm) at a spectral resolution of 5.5 nm. The
EBS was developed to control and attenuate the uncertainties associated with the HM.
To enhance the reliability of our approach, we created a set of classifiers and estimators.
Several innovative aspects were developed in this approach: (1) the use of in situ physical
and optical data collected weekly for three winters (2018–2020); (2) the use of an EBS
for classification and regression purposes in a proximal remote sensing application, and
(3) the use of GQF for runtime optimization. The combination of these points led to the
development of a robust method capable of estimating seasonal snowpack density and
monitoring its continuous evolution.

The validation technique used to assess the performance of our approach was based
on the use of an independent database. The results of the validation with the independent
database were satisfactory, with NASH = 0.89 and R2 = 0.90, despite some relatively low-
density values (90–120 kg m−3). However, the validation process showcased that the EBS
underestimated density values. Since this is a systematic error, it could be corrected during
the modelling process.

This work can be a real step forward in identifying and monitoring the different
processes that lead to the continuous evolution and regular control of seasonal snow
accumulations. Indeed, such a prospect opens the way for the future implementation
of multispectral or hyperspectral PIR systems, capable of measuring the density of the
vertical stratigraphy of a wide variety of snowpacks (low and high elevation open and
closed environments, coastal and continental conditions, mountains, etc.) at high vertical
resolution and large scale of snowpack densities, without the need to dig snow pits. The
system can also be used for a variety of scientific studies ranging from simple comparative
analysis to more in-depth statistical investigations.

The proposed method allows retrieval of robust and accurate density estimates due
to the very fine spectral resolution of the NIR hyperspectral sensor. However, the EBS
approach is not limited to the NIR spectrum and could be applied to data from any other
optical sensor, as high spectral resolution sensors become increasingly available. This new
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modelling approach could be of great help to water managers in northern regions, by
optimizing snow water equivalent estimation. Another application would be to support re-
searchers in their works aimed at understanding the spatio-temporal dynamics of seasonal
snowpack’s and their metamorphic evolution. The results of the EBS are comparable to
those of the HM, but its robustness and accuracy could motivate its preferred use. Another
interesting feature is that our system can be easily customized by the addition of other
components and classifiers.
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Appendix A

An example of the subgroup selection used to calibrate the specific estimators for the
brown point case in Figure A1. The arrows represent the direction of selection for each
optimal threshold used.

The example presented here illustrates the steps taken to select the subgroups used
to calibrate the submodels involved in estimating the density under a given physical
metamorphosis condition. For example, if we take the case of the brown point on the graph
below, p and k will be equal to 3. Thus, Equations (6) and (7) will take the following forms:
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TV1↓N ;TV2↑L
− µ

)2

+ 1
6 ×

(
Est

TV1↓L ;TV2↑L
− µ

)2
)

+ 2
3 ×

(
1
6 ×

(
Est

TV1↓U ;TV2↑N
− µ

)2

+ 2
3 ×

(
Est

TV1↓N ;TV2↑N
− µ

)2

+ 1
6 ×

(
Est

TV1↓L ;TV2↑N
− µ

)2
) (A2)

where µ is the weighted average of the density estimate and σ is its variance and Est
TV2↓U

(Figure A1a) is the expert calibrated with the subgroup of the training data set where
the spectral index is below the upper optimal threshold of V2. Estimators Est

TV1↓U;TV2↑L
(Figure A1b), Est

TV1↓N;TV2↑L
(Figure A1c) and Est

TV1↓L;TV2↑L
(Figure A1d) are the experts cal-

ibrated with the subgroups of training databases where the spectral indices are both
above the lower optimal thresholds for V2 and below the lower, nominal, and upper opti-
mal thresholds for Est

TV1↓U;TV2↑N
(Figure A1e), Est

TV1↓N;TV2↑N
(Figure A1f), and Est

TV1↓L;TV2↑N
(Figure A1g) are the experts calibrated with the subgroups of training databases where the
spectral indices are both above the nominal optimal thresholds for V2 and below the lower,
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nominal, and upper optimal thresholds for V1. This combination of experts is not unique,
as it varies according to the snow classes to be modelled (p and k).
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The example presented here illustrates the steps taken to select the subgroups used 
to calibrate the submodels involved in estimating the density under a given physical met-
amorphosis condition. For example, if we take the case of the brown point on the graph 
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where μ is the weighted average of the density estimate and σ is its variance and Est୘୚ଶ౑↓  
(Figure A1a) is the expert calibrated with the subgroup of the training data set where the 
spectral index is below the upper optimal threshold of V2. Estimators Est୘୚ଵ౑↓ ;୘୚ଶ↑ై  (Fig-
ure A1b), Est୘୚ଵ↓ొ ;୘୚ଶ↑ై  (Figure A1c) and Est୘୚ଵ↓ై ;୘୚ଶ↑ై  (Figure A1d) are the experts cali-
brated with the subgroups of training databases where the spectral indices are both above 
the lower optimal thresholds for V2 and below the lower, nominal, and upper optimal 
thresholds for Est୘୚ଵ౑↓ ;୘୚ଶ↑ొ  (Figure A1e), Est୘୚ଵ↓ొ ;୘୚ଶ↑ొ  (Figure A1f), and Est୘୚ଵ↓ై ;୘୚ଶ↑ొ  
(Figure A1g) are the experts calibrated with the subgroups of training databases where the 
spectral indices are both above the nominal optimal thresholds for V2 and below the 
lower, nominal, and upper optimal thresholds for V1. This combination of experts is not 
unique, as it varies according to the snow classes to be modelled (p and k). 
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Figure A2. Flow chart of the developed algorithm for density estimation (Samp is the number of
samples; OTV1 and OTV2 refer to the optimal thresholds of V1 and V2 and Est are the specific
estimators as described in Table 3).



Remote Sens. 2022, 14, 1089 18 of 19

References
1. Schweizer, J.; Bruce Jamieson, J.; Schneebeli, M. Snow avalanche formation. Rev. Geophys. 2003, 41, 4. [CrossRef]
2. Gray, D.; Landine, P. An energy-budget snowmelt model for the Canadian Prairies. Can. J. Earth Sci. 1988, 25, 1292–1303.

[CrossRef]
3. McKay, G.; Blackwell, S. Plains snowpack water equivalent from climatological records. In Proceedings of the 29th Annual

Western Snow Conference, Spokane, WA, USA, 11–13 April 1961; pp. 2–43.
4. Matzl, M.; Schneebeli, M. Measuring specific surface area of snow by near-infrared photography. J. Glaciol. 2006, 52, 558–564.

[CrossRef]
5. Pielmeier, C.; Schneebeli, M. Stratigraphy and changes in hardness of snow measured by hand, ramsonde and snow micro

penetrometer: A comparison with planar sections. Cold Reg. Sci. Technol. 2003, 37, 393–405. [CrossRef]
6. Kinar, N.; Pomeroy, J. Measurement of the physical properties of the snowpack. Rev. Geophys. 2015, 53, 481–544. [CrossRef]
7. Berisford, D.F.; Molotch, N.P.; Durand, M.T.; Painter, T.H. Portable spectral profiler probe for rapid snow grain size stratigraphy.

Cold Reg. Sci. Technol. 2013, 85, 183–190. [CrossRef]
8. Zuanon, N. IceCube, a portable and reliable instruments for snow specific surface area measurement in the field. In Proceedings

of the International Snow Science Workshop, Grenoble-Chamonix, Mont-Blance, France, 7–11 October 2013; pp. 1020–1023.
9. Domine, F.; Salvatori, R.; Legagneux, L.; Salzano, R.; Fily, M.; Casacchia, R. Correlation between the specific surface area and the

short wave infrared (SWIR) reflectance of snow. Cold Reg. Sci. Technol. 2006, 46, 60–68. [CrossRef]
10. Varade, D.; Maurya, A.K.; Sure, A.; Dikshit, O. Supervised classification of snow cover using hyperspectral imagery. In Proceed-

ings of the 2017 International Conference on Emerging Trends in Computing and Communication Technologies (ICETCCT),
Dehradun, India, 17–18 November 2017; pp. 1–7.

11. ElMasry, G.; Sun, D.-W.; Allen, P. Near-infrared hyperspectral imaging for predicting colour, pH and tenderness of fresh beef.
J. Food Eng. 2012, 110, 127–140. [CrossRef]

12. Lorente, D.; Aleixos, N.; Gómez-Sanchis, J.; Cubero, S.; García-Navarrete, O.L.; Blasco, J. Recent advances and applications of
hyperspectral imaging for fruit and vegetable quality assessment. Food Bioprocess Technol. 2012, 5, 1121–1142. [CrossRef]

13. Lu, G.; Fei, B. Medical hyperspectral imaging: A review. J. Biomed. Opt. 2014, 19, 010901. [CrossRef]
14. Donahue, C.; Skiles, S.M.; Hammonds, K. In situ effective snow grain size mapping using a compact hyperspectral imager.

J. Glaciol. 2021, 67, 49–57. [CrossRef]
15. El Oufir, M.K.; Chokmani, K.; El Alem, A.; Agili, H.; Bernier, M. Seasonal Snowpack Classification Based on Physical Properties

Using Near-Infrared Proximal Hyperspectral Data. Sensors 2021, 21, 5259. [CrossRef]
16. Gallet, J.-C.; Domine, F.; Zender, C.; Picard, G. Measurement of the specific surface area of snow using infrared reflectance in an

integrating sphere at 1310 and 1550 nm. Cryosphere 2009, 3, 167–182. [CrossRef]
17. Painter, T.H.; Molotch, N.P.; Cassidy, M.; Flanner, M.; Steffen, K. Contact spectroscopy for determination of stratigraphy of snow

optical grain size. J. Glaciol. 2007, 53, 121–127. [CrossRef]
18. Eppanapelli, L.K.; Lintzen, N.; Casselgren, J.; Wåhlin, J. Estimation of Liquid Water Content of Snow Surface by Spectral

Reflectance. J. Cold Reg. Eng. 2018, 32, 05018001. [CrossRef]
19. Negi, H.; Singh, S.; Kulkarni, A.; Semwal, B. Field-based spectral reflectance measurements of seasonal snow cover in the Indian

Himalaya. Int. J. Remote Sens. 2010, 31, 2393–2417. [CrossRef]
20. Gergely, M.; Schneebeli, M.; Roth, K. First experiments to determine snow density from diffuse near-infrared transmittance. Cold

Reg. Sci. Technol. 2010, 64, 81–86. [CrossRef]
21. El Oufir, M.K.; Chokmani, K.; El Alem, A.; Bernier, M. Estimating Snowpack Density from Near-Infrared Spectral Reflectance

Using a Hybrid Model. Remote Sens. 2021, 13, 4089. [CrossRef]
22. Alpak, F.O.; Vink, J.C.; Gao, G.; Mo, W. Techniques for effective simulation, optimization, and uncertainty quantification of the

in-situ upgrading process. J. Unconv. Oil Gas Resour. 2013, 3, 1–14. [CrossRef]
23. Chan, J.C.-W.; Paelinckx, D. Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band

selection for ecotope mapping using airborne hyperspectral imagery. Remote Sens. Environ. 2008, 112, 2999–3011. [CrossRef]
24. Hansen, L.K.; Salamon, P. Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12, 993–1001. [CrossRef]
25. Ismail, R.; Mutanga, O. A comparison of regression tree ensembles: Predicting Sirex noctilio induced water stress in Pinus patula

forests of KwaZulu-Natal, South Africa. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, S45–S51. [CrossRef]
26. Jacobs, R.A.; Jordan, M.I.; Nowlan, S.J.; Hinton, G.E. Adaptive mixtures of local experts. Neural Comput. 1991, 3, 79–87. [CrossRef]
27. Jordan, M.I.; Jacobs, R.A. Hierarchical mixtures of experts and the EM algorithm. Neural Comput. 1994, 6, 181–214. [CrossRef]
28. Oza, N.C.; Tumer, K. Classifier ensembles: Select real-world applications. Inf. Fusion 2008, 9, 4–20. [CrossRef]
29. Wang, S.-j.; Mathew, A.; Chen, Y.; Xi, L.-f.; Ma, L.; Lee, J. Empirical analysis of support vector machine ensemble classifiers. Expert

Syst. Appl. 2009, 36, 6466–6476. [CrossRef]
30. Polikar, R. Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 2006, 6, 21–45. [CrossRef]
31. Kelly, K.; Krzysztofowicz, R. A bivariate meta-Gaussian density for use in hydrology. Stoch. Hydrol. Hydraul. 1997, 11, 17–31.

[CrossRef]
32. Tørvi, H.; Hertzberg, T. Estimation of uncertainty in dynamic simulation results. Comput. Chem. Eng. 1997, 21, S181–S185.

[CrossRef]

http://doi.org/10.1029/2002RG000123
http://doi.org/10.1139/e88-124
http://doi.org/10.3189/172756506781828412
http://doi.org/10.1016/S0165-232X(03)00079-X
http://doi.org/10.1002/2015RG000481
http://doi.org/10.1016/j.coldregions.2012.09.007
http://doi.org/10.1016/j.coldregions.2006.06.002
http://doi.org/10.1016/j.jfoodeng.2011.11.028
http://doi.org/10.1007/s11947-011-0725-1
http://doi.org/10.1117/1.JBO.19.1.010901
http://doi.org/10.1017/jog.2020.68
http://doi.org/10.3390/s21165259
http://doi.org/10.5194/tc-3-167-2009
http://doi.org/10.3189/172756507781833947
http://doi.org/10.1061/(ASCE)CR.1943-5495.0000158
http://doi.org/10.1080/01431160903002417
http://doi.org/10.1016/j.coldregions.2010.06.005
http://doi.org/10.3390/rs13204089
http://doi.org/10.1016/j.juogr.2013.09.001
http://doi.org/10.1016/j.rse.2008.02.011
http://doi.org/10.1109/34.58871
http://doi.org/10.1016/j.jag.2009.09.004
http://doi.org/10.1162/neco.1991.3.1.79
http://doi.org/10.1162/neco.1994.6.2.181
http://doi.org/10.1016/j.inffus.2007.07.002
http://doi.org/10.1016/j.eswa.2008.07.041
http://doi.org/10.1109/MCAS.2006.1688199
http://doi.org/10.1007/BF02428423
http://doi.org/10.1016/S0098-1354(97)87499-6


Remote Sens. 2022, 14, 1089 19 of 19

33. Fierz, C.; Armstrong, R.L.; Durand, Y.; Etchevers, P.; Greene, E.; McClung, D.M.; Nishimura, K.; Satyawali, P.K.; Sokratov, S.A.
The International Classification for Seasonal Snow on the Ground; UNESCO/IHP: Paris, France, 2009; Volume 25.

34. Breiman, L.; Friedman, J.; Olshen, R.; Stone, C. Classification and Regression Trees; Springer: Monterey, CA, USA; Wadsworth, OH,
USA, 1984.

35. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
36. Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10,

282–290. [CrossRef]
37. Pahaut, E. Les Cristaux de Neige et Leurs Métamorphoses; Direction de la Météorologie Nationale: Sarcenas, France, 1975.
38. Dozier, J. Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote Sens. Environ. 1989, 28, 9–22.

[CrossRef]
39. Warren, S.G. Optical properties of snow. Rev. Geophys. 1982, 20, 67–89. [CrossRef]
40. Wiscombe, W.J. Improved Mie scattering algorithms. Appl. Opt. 1980, 19, 1505–1509. [CrossRef] [PubMed]
41. Colbeck, S. An overview of seasonal snow metamorphism. Rev. Geophys. 1982, 20, 45–61. [CrossRef]

http://doi.org/10.1007/BF00058655
http://doi.org/10.1016/0022-1694(70)90255-6
http://doi.org/10.1016/0034-4257(89)90101-6
http://doi.org/10.1029/RG020i001p00067
http://doi.org/10.1364/AO.19.001505
http://www.ncbi.nlm.nih.gov/pubmed/20221065
http://doi.org/10.1029/RG020i001p00045

	Introduction 
	Materials and Methods 
	In Situ Measurements for the Calibration and Validation Database 
	Algorithm Development 
	The Hybrid Model 
	Development of the Ensemble-Based System 

	Accuracy Assessment 

	Results and Discussion 
	Analysis of In Situ Snow Data 
	Estimator Calibration 
	Evaluation and Validation of the Ensemble-Based System 
	Reliability Test 

	Conclusions 
	Appendix A
	Appendix B
	References

