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Abstract: Multispectral (MS) pansharpening is crucial to improve the spatial resolution of MS images.
MS pansharpening has the potential to provide images with high spatial and spectral resolutions.
Pansharpening technique based on deep learning is a topical issue to deal with the distortion of
spatio-spectral information. To improve the preservation of spatio-spectral information, we propose
a novel three-stage detail injection pansharpening network (TDPNet) for remote sensing images.
First, we put forward a dual-branch multiscale feature extraction block, which extracts four scale
details of panchromatic (PAN) images and the difference between duplicated PAN and MS images.
Next, cascade cross-scale fusion (CCSF) employs fine-scale fusion information as prior knowledge
for the coarse-scale fusion to compensate for the lost information during downsampling and retain
high-frequency details. CCSF combines the fine-scale and coarse-scale fusion based on residual
learning and prior information of four scales. Last, we design a multiscale detail compensation
mechanism and a multiscale skip connection block to reconstruct injecting details, which strengthen
spatial details and reduce parameters. Abundant experiments implemented on three satellite data
sets at degraded and full resolutions confirm that TDPNet trades off the spectral information and
spatial details and improves the fidelity of sharper MS images. Both the quantitative and subjective
evaluation results indicate that TDPNet outperforms the compared state-of-the-art approaches in
generating MS images with high spatial resolution.

Keywords: multispectral images; pansharpening; convolutional neural network; cascade cross-scale;
detail compensation mechanism

1. Introduction

Remote sensing images (RSIs) are broadly employed in different aspects, for instance,
obtaining geographic data, obtaining earth resource information, hazard prediction and
analysis, urban investigation, yield estimation and others [1]. However, in these applica-
tions, RSIs with high spatial, spectral or time resolution are usually required [2–4]. The
spatial and spectral resolutions of RSIs constrain each other limited by sensor technol-
ogy, i.e., panchromatic (PAN) images are with high spatial and low spectral resolutions,
multispectral (MS) images are with low spatial and multispectral resolutions (LRMS) and
hyperspectral (HS) images are with low spatial and high spectral resolutions [1,5]. The
PAN images and MS or HS images need to be fused to produce high spatial resolution
MS (HRMS) images or high spatial resolution HS (HRHS) images. This technique is also
called panchromatic sharpening (pansharpening). Pansharpening for MS and PAN im-
ages is studied. Pansharpening methods can be approximately comprised of traditional
approaches and deep learning (DL) methods [1,2,5]. Traditional approaches comprise
the component substitution (CS) approach, multiresolution analysis (MRA) method and
variational optimization (VO) technique [2,5].

Remote Sens. 2022, 14, 1077. https://doi.org/10.3390/rs14051077 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14051077
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs14051077
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14051077?type=check_update&version=2


Remote Sens. 2022, 14, 1077 2 of 26

CS methods first transform the MS images to other coordinate systems, and extract the
spatial detail information. Then, the spatial detail information is substituted for the PAN
image. Eventually, the substituted image is projected to the original coordinate system
by inverse transformation to generate the HRMS image. Various CS methods have been
developed, mainly including intensity-hue-saturation (IHS) [6], adaptive IHS (AIHS) [7],
generalized IHS (GIHS) [8], Gram-Schmidt (GS) [9], GS adaptive (GSA) [1], Brovey [5] and
partial replacement adaptive component substitution (PRACS) [10]. CS methods are simple
and easy to implement, which greatly improve the spatial resolution of MS images. CS
methods have the disadvantage of severe spectrum distortion and oversharpening.

MRA methods first decompose MS images and PAN images into images of different
scales. Then, the corresponding scale images are fused by a fusion technique. Finally,
an HRMS image is generated by an inverse transformation. The decomposition meth-
ods used generally include the discrete wavelet transform (DWT) [11,12], fusion for MS
and PAN images employing the Induction scaling approach (Indusion) [13], generalized
Laplacian pyramid (GLP) transform [14], modulation transfer function-GLP (MTF_GLP)
transform [15], à trous wavelet transform (ATWT) [16], and other spectral and wavelet de-
composition techniques [17–19]. MRA methods retain more spectral information and lessen
the spectrum distortion. However, the spatial information is not rich and the resolution
is lower.

The key to the VO method is to establish an energy function and optimization method [20–23].
Bayesian-based methods [24,25] and sparse representation-based methods [26–29] can also
be classified into this category. Although the VO method can reduce spectral distortion, the
optimization calculation is more complicated.

With the rapid development of DL, various types of convolutional neural networks
(CNN)-based models are increasingly used in pansharpening and closely related tasks [30–32]
of RSIs. Giuseppe et al. [33] proposed a CNN-based pansharpening method (PNN). PNN
consists of only three layers and uses the nonlinear mapping of the CNN to reconstruct the
LRMS image generating the HRMS image. The advantage of the PNN is that it has few
layers and is easy to implement, but it also has the disadvantage of overfitting and limited
expression ability. Wei et al. [34] put forward a deep residual network-based pansharpening
technique (DRPNN). The DRPNN employs residual blocks to improve the fusion ability
and reduce overfitting. Yang et al. [35] put forward a PanNet method based on residual
modules and trained it in the frequency domain. To retain more spectrum information,
add the upsampled MS image to the residual information. The model is trained in the
frequency field to retain more spatial structure information, and the generalization ability
of the network is better. Scarpa et al. [36] proposed a target-adaptive pansharpening means
based on a CNN (TA-PNN). TA-PNN proposes a target-adaptive usage mode to deal with
problems of data mismatch, multisensor data, and insufficient data. Liu et al. [37] designed
a PsGan technique, which contains a generator and discriminator. The generator is a two-
stream fusion structure that generates an HRMS image with MS and PAN images as inputs.
The discriminator is composed of a full CNN to discriminate between the reference image
and the produced HRMS image. Ma et al. [38] proposed a generative adversarial network-
based model for pansharpening (Pan-Gan). Pan-Gan employs a spectral discriminator to
discriminate the spectral information between the fused HRMS image and LRMS image.
The spatial discriminator is employed to discriminate the spatial structure information
between the HRMS and PAN images. Zhao et al. [39] designed an FGF-GAN method.
The FGF-GAN generator uses a fast guided filter to retain details and a spatial attention
module for fusion. FGF-GAN reduces network parameters and training time. Deng
et al. [40] designed a CS/MRA model-based detail injection network (FusionNet). The
injected details are acquired through the deep CNN based on residual learning, and then
the upsampled MS image is added to the output of the detail extraction network. For
FusionNet, the difference between the MS and PAN images (i.e., the duplicated PAN image
of N channels, N is the channels of the MS image) is taken as the input. The multispectral
information is introduced into the detail extraction network to lessen the spectral distortion.
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Wu et al. [41] designed a residual module-based distributed fusion network (RDFNet).
RDFNet extracts multilevel features of MS images and PAN images, respectively. Then the
corresponding level features and the fusion result of the previous step are fused to obtain
the HRMS image. Although the network uses multilevel MS and PAN features as much
as possible, it is affected by the depth of the network and cannot obtain more details and
spectral information. Obviously, although various networks are used for pansharpening of
RSIs and have acquired good results, there is rising space in terms of model complexity,
implementation time, generalization ability, spectrum fidelity, retention of spatial details
and so on.

In this article, we propose a novel three-stage detail injection network for pansharpen-
ing of RSIs by preserving spectral information to reduce spectral distortion and preserving
details to strengthen spatial resolution. The main contributions of the work are as follows.

• A dual-branch multiscale feature extraction block is established to extract four-scale
details of PAN images and the difference between duplicated PAN and MS images.
The details are retained, and the MS image is introduced to preserve the spectrum
information.

• Cascade cross-scale fusion (CCSF) employs fine-scale fusion information as prior
knowledge for the coarse-scale fusion based on residual learning. CCSF combines the
fine-scale and coarse-scale fusion, which compensates for the loss of information and
retains details.

• A multiscale high-frequency detail compensation mechanism and a multiscale skip
connection block are designed to reconstruct the fused details, which strengthen
spatial details and reduce parameters.

• The quantitative evaluation and subjective evaluation of three satellite data sets are
implemented at reduced and full resolutions.

Section 2 represents the data sets, evaluation indicators, implementation settings and
proposed method at full length. Section 3 introduces comparative experiments on three
data sets. Section 4 discusses the experimental results. Section 5 draws conclusions.

2. Materials and Methods
2.1. Data Sets

To prove the performance of the designed pansharpening approach, three data sets
are used for evaluation. The specific information of these data sets is as follows.

Gaofen-1 (GF-1) data set: These data are collected from Guangdong and Yunnan,
China. The MS images have 4 bands. The resolutions of the PAN and MS images are 2 m
and 8 m, respectively, and the radiometric resolution is 10 bits. The reduced resolution data
are produced by Wald’s protocol [42], and the training samples, validation data and testing
data are randomly selected. The number of data pairs in the data set is 21,560, 6160 and
3080, respectively. The number of full resolution testing data is 147.

QuickBird data set: These data are collected from Chengdu, Beijing, Shenyang and
Zhengzhou, China. The MS images have 4 bands. The resolutions of the PAN and MS
images are 0.6 m and 2.4 m, respectively, and the radiometric resolution is 11 bits. The
number of training samples, validation data and testing data pairs is 20,440, 5840 and 2920,
respectively. The number of full resolution testing data is 158.

Gaofen-2 (GF-2) data set: These data are collected from Beijing and Shenyang, China.
The MS images have 4 bands. The resolutions of the PAN and MS images are 1 m and 4 m,
respectively, and the radiometric resolution is 10 bits. The number of training samples,
validation data and testing data pairs is 21,000, 6000 and 3000, respectively. The number of
full resolution testing data is 286.

The sizes of the LMS (the reduced resolution form of the MS image), MS and PL (the
reduced resolution form of the PAN image) images of the training data are 16 × 16 × 4, 64
× 64 × 4 and 64 × 64 × 1, respectively. The sizes of the MS and PAN images of the testing
data at full resolution are 100 × 100 × 4 and 400 × 400 × 1, respectively.
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2.2. Evaluation Indicators

The evaluation of pansharpening performance is performed at reduced and full res-
olutions. Subjective visual evaluation and objective evaluation are implemented on the
experimental results. The objective evaluation indicators used in the reduced resolution
experiment include the universal image quality index (UIQI) [43] extended to 4-band
(Q4) [44], spectral angle mapping (SAM) [44], structural similarity (SSIM) [45], spatial
correlation coefficient (SCC) [44] and erreur relative global adimensionnelle de Synthése
(ERGAS) [44].

UIQI [43] assesses image quality from three sides: correlation, luminance and contrast.
The representation of UIQI is Equation (1).

UIQI(g, f ) =
4σg f · ḡ · f̄(

σ2
g + σ2

f

)[
(ḡ)2 + ( f̄ )2

] (1)

where g and f indicate the ground truth (GT) and pansharpened images, respectively. σg f
means the covariance between g and f images. ḡ and σg are the means and variance of
g. f̄ and σf are the means and variance of f. The optimal value for UIQI is 1, and the
pansharpening result is optimum.

The expression for Q4 [44] is Equation (2).

Q4 =
4
∣∣∣σgz fz

∣∣∣ · |gz| ·
∣∣∣fz

∣∣∣(
σ2

gz + σ2
fz

)(
|gz|2 +

∣∣∣fz

∣∣∣2) (2)

where gz and fz indicate the 4-band GT and pansharpened images, respectively. σgz fz is the
covariance between gz and fz. gz and σgz are the means and variance of gz. fz and σfz are
the means and variance of fz.

SAM [44] is an error indicator, which represents the angle difference of spectral vector
between the GT and pansharpened images. The expression of SAM is Equation (3).

SAM(g, f ) = arccos
(
〈gv, fv〉
‖gv‖2‖ fv‖2

)
(3)

where gv and fv are the spectrum vector of the GT and pansharpened images. SAM
expresses the spectral distortion. When SAM = 0, the pansharpening performance is
the best.

SSIM [45] represents the proximity of structural information between the GT and
pansharpened images. SSIM is shown as Equation (4).

SSIM(g, f ) =

(
2ḡ f̄ + q1

)(
2σg f + q2

)
(

ḡ2 + f̄ 2 + q1
)(

σ2
g + σ2

f + q2

) (4)

where q1 and q2 are constants. When SSIM = 1, the pansharpening result is the best.
SCC [44] represents the correlation of spatial details between the GT and pansharpened

images. Spatial details are acquired through the high-pass filter. When SCC = 1, the
pansharpened and GT images are most relevant.

ERGAS [44] is an error indicator, which shows the global effect of the pansharpened
image. The representation of ERGAS is Equation (5).

ERGAS = 100
RP
RM

√√√√ 1
N

N

∑
b=1

(
RMSE(b)

µ(b)

)2

(5)
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where RP and RM indicate the spatial resolution of PAN and MS images, respectively. N
is the number of bands. RMSE(b) expresses the root mean square error of the bth band
between the GT image and pansharpened image. µ(b) indicates the mean of the bth band.
The smaller the ERGAS, the better the pansharpening result. The optimum value for ERGAS
is 0.

The objective evaluation indicators used in the full resolution experiment include the
quality with no-reference (QNR), Dλ and DS [46].

Dλ denotes the spectrum distortion, the representation is Equation (6).

Dλ = s

√√√√√ 1
N(N − 1)

N

∑
b=1

N

∑
c=1
c 6=b

∣∣∣UIQI(m̃b, m̃c)−UIQI
(

f̂b, f̂c

)∣∣∣s (6)

where m̃b and m̃c are the b-band and c-band low spatial resolution MS images, f̂b and f̂c
are the b-band and c-band pansharpened images, and s is a positive integer to amplify the
difference.

DS denotes the spatial distortion, the expression is Equation (7).

DS = t

√√√√ 1
N

N

∑
b=1
|UIQI

(
f̂b, p

)
−UIQI(m̃b, p̃)|t (7)

where p and p̃ mean the PAN image and degraded version of PAN image, and t is a positive
integer to amplify the difference.

The representation for QNR [46] is shown as Equation (8).

QNR = (1− Dλ)
η(1− DS)

ρ (8)

where η and ρ are constants. When Dλ = 0 and DS = 0 , QNR is the largest and the
pansharpening effect is the best. The optimum value for QNR is 1, and the ideal values for
Dλ and DS are 0.

2.3. Implementation Settings

The implementation of the pansharpening network is the TensorFlow framework and
a workstation containing an NVIDIA Tesla V100 PCIE GPU with 16 GB RAM and Intel
Xeon CPU. The batch size is 32, and the number of iterations is 2.2× 105. We employ the
Adam optimizer [47] to optimize the pansharpening model, with the learning rate α = 10−3,
β1 = 0.9, β2 = 0.999 and ε = 10−8. The channels of input and output of the network can be
set according to the image channels used. The number of output channels of the network
is 4 since the bands of MS and PAN are 4 and 1. To compare the pansharpening effect
fairly, the CNN-based experiments are completed on the GPU, and the CS/MRA-based
experiments are conducted in MATLAB on the CPU.

2.4. Network Structure

We propose a novel three-stage detail injection pansharpening network (TDPNet) for
RSIs. Figure 1 represents the structure of TDPNet. Because of the lack of reference images,
TDPNet is trained on the reduced resolution image. We employ the reduced resolution
images LMS and PL of the MS and PAN images. The ↑LMS image is an upsampled LMS
image, the same size as PL. MS represents the reference image, and H_MS indicates the
generated pansharpening result. Here, m is the ratio of the resolution of the MS and
PAN images. TDPNet includes three stages: a dual-branch multiscale detail extraction
stage, cascade cross-scale detail fusion stage, and reconstruction stage of injecting details.
The dual-branch multiscale detail extraction stage extracts multiscale details from the
PAN image and ↑LMS image generating details of four scales. The first stage consists
of two branches. One branch extracts multiscale details from the PAN image. The other
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branch extracts multiscale features from the difference image between the PN
L image (the

PL image is duplicated N channels, where N is the channels of the LMS image.) and
↑LMS image. The second is a cascade cross-scale detail fusion stage. Cascade cross-
scale fusion is achieved by combining fine-scale and coarse-scale fusion based on residual
learning and prior information of four scales. Cascade cross-scale fusion employs the
fine-scale fusion information as prior knowledge for the coarse-scale fusion to compensate
for the loss of information caused by downsampling and retain details. The third is a
reconstruction stage of injecting details. In this stage, the key information generated in
the second stage is reconstructed. To compensate for the loss of information, we design a
multiscale detail compensation mechanism. In addition, the fusion results generated in
the cascade cross-scale fusion stage are used as the prior knowledge to reconstruct details
(i.e., a multiscale skip connection block). This can strengthen spatial details and reduce
parameters. Finally, the pansharpening result is produced by adding the reconstructed
details to the ↑LMS image.

-
Multiscale 

high-frequency 

detail extraction

Multiscale 

detail extraction

Cascade 

cross-scale 

detail fusion

Injection detail 

reconstruction

Multiscale detail 

compensation 

mechanism

＋

LMS

↑LMS

↑m

H_MS
PL

PL
N

Figure 1. The structure of the three-stage detail injection network for pansharpening.

2.4.1. Dual-Branch Multiscale Detail Extraction Stage

FusionNet [40] introduces the details of the difference between MS and PAN images,
which has better performance than directly obtaining the details from the PAN image.
Inspired by this approach, we propose a dual-branch multiscale detail extraction network.
The composition of the network is shown in Figure 2. The proposed network is trained
using the reduced resolution PL image and LMS image. One branch takes the difference
between the ↑LMS and PN

L images as the input to obtain the high-frequency details of
four scales. The introduction of MS details reduces the spectrum distortion and details
distortion caused by the lack of relevant spectrum information in the PAN image. The
details extracted by this branch are named composite high-frequency details (CHFDs). The
other branch is to acquire the details of four scales of the PL image. In Figure 2, D1–D4
represent the extracted CHFDs of four scales. P1–P4 represent the extracted PAN details of
the four scales.

The conv module in Figure 2 adopts a residual learning block [48], and Figure 3 shows
the structure. t represents the dimension of the input, and n represents the dimension of the
output. In Figure 2, the sizes of the convolution kernels of the four conv modules are 3 × 3
× 32, 3 × 3 × 64, 3 × 3 × 128 and 3 × 3 × 256. The downsampling adopts the maximum
pooling operation, and the sizes of the convolution kernels are 2 × 2 × 64, 2 × 2 × 128 and
2 × 2 × 256. The sizes of the D4 and P4 images are 1/8 of those of the D1 and P1 images.
The expressions for extracting the CHFDs are Equations (9)–(12).

D1 = H
(

PN
L − ↑ LMS

)
+ F

(
PN

L − ↑ LMS, Wd1

)
(9)

H
(

PN
L − ↑ LMS

)
= W ′d1 ∗

(
PN

L − ↑ LMS
)

(10)
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Dj = ϕ
(

H
(

Dj−1
)
+ F

(
Dj−1, Wdj

))
j = 2, 3, 4 (11)

H
(

Dj−1
)
= W ′dj ∗ Dj−1 j = 2, 3, 4 (12)

where Dj (j = 1, 2, 3, 4) shows the CHFDs of the jth scale, LMS and PL are the reduced
resolution images of the MS and PAN images, ↑LMS is an upsampled LMS image, and
PN

L −↑LMS presents the difference between MS and PAN images. H() represents the func-
tion of the direct connection part of the residual module. ∗ is a convolution operation. W ′dj
(j = 1, 2, 3, 4) represents the parameter of the direct connection part, and the convolution
kernel size is 1 × 1, and the numbers are 32, 64, 128 and 256, respectively. F() expresses the
residual part function of the residual module, Wdj (j = 1, 2, 3, 4) represents the parameter
of the residual part, the convolution kernel size is 3 × 3, and the numbers are 32, 64, 128
and 256, respectively. ϕ() indicates the function of the maximum pooling operation.

64×64×32 32×32×64 16×16×128 8×8×256

conv :3×3×32 conv: 3×3×64 conv: 3×3×128

-

LMS

↑m

↑LMS

PL
N

D1 D2 D3 D4

P1 P2 P3 P4

down-sampling

conv: 3×3×256forward

PL

Figure 2. The dual-branch multiscale detail extraction network.

BN

ReLU

convolution

add

1×1

BN

ReLU

convolution

t input

n output

Figure 3. Residual learning block.

The expressions for extracting details from the PL image are Equations (13)–(16).

P1 = H(PL) + F
(

PL, Wp1
)

(13)

H(PL) = W ′p1 ∗ PL (14)

Pj = ϕ
(

H
(

Pj−1
)
+ F

(
Pj−1, Wpj

))
j = 2, 3, 4 (15)

H
(

Pj−1
)
= W ′pj ∗ Pj−1 j = 2, 3, 4 (16)
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where Pj (j = 1, 2, 3, 4) means the PAN detail of the jth scale. W ′pj(j = 1, 2, 3, 4) represents
the parameter of the direct connection part, and the convolution kernel size is 1× 1, and the
numbers are 32, 64, 128 and 256, respectively. Wpj (j = 1, 2, 3, 4) represents the parameter of
the residual part, the convolution kernel size is 3 × 3, and the numbers are 32, 64, 128 and
256, respectively.

2.4.2. Cascade Cross-Scale Detail Fusion Stage

This section describes the second stage of the TDPNet method, i.e., the cascade cross-
scale detail fusion stage. The structure of this stage is shown in Figure 4. In this stage, the
CHFDs and PAN details of four corresponding scales are concatenated, and then they are
fused at the same scale. CCSF employs fine-scale fusion information as prior knowledge
for coarse-scale fusion. CCSF is achieved by combining fine-scale and coarse-scale fusion
based on residual learning and prior information of four scales. The representation of
each content in Figure 4 is the same as the representation in Figure 2. First, the CHFDs
Dj(j = 1, 2, 3, 4) and the PAN details Pj(j = 1, 2, 3, 4) are concatenated and then fused at
the same scale to generate the prior fusion result P_Dj(j = 1, 2, 3, 4). Then, the fine-scale
fusion result P_D1 provides the prior information for coarse-scale fusion. Cross-scale fusion
(P_D1 and P_D2) requires a scale transfer module to convert the fine-scale information into
coarse-scale information. The scale transfer module used is a maxpooling operation, as
shown in the red module of Figure 4. Then P_D1 is downsampled and P_D5 is generated.
The P_D5 and P_D2 are fused, and the fusion result P_D6 provides a priori information for
the fusion of the next scale (i.e., P_D7). In this way, the CCSF of four scales is carried out by
combining the fine-scale and coarse-scale fusion, and finally, the key information P_D8 is
generated.

D1

P1

D2

P2

D3

P3

D4

P4

P_D1

concatenation

P_D5

P_D2

P_D3

P_D4

P_D6

P_D8

P_D7

Figure 4. Structure of the cascade cross-scale detail fusion network.

The expression of the cascade cross-scale detail fusion stage is Equation (17).

P−D8 = C_F
(

P1, · · · , Pn, D1, · · · , Dn, Wc f

)
n = 4 (17)

where P−D8 shows the fused information of the cascade cross-scale detail fusion stage, C_F
indicates the function of the cascade cross-scale detail fusion network, and Wc f means the
parameter.

2.4.3. Injection Detail Reconstruction Stage

This section is the third stage of the proposed TDPNet approach generating injection
detail, i.e., the reconstruction stage of injection detail. The structure is shown in Figure 5.
To compensate for the lost information, we design a multiscale high-frequency detail
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compensation mechanism. In addition, we take the fusion results generated in the cascade
cross-scale fusion stage as a multiscale prior compensation module by multiscale skip
connections. Finally, the pansharpening result is produced by adding the reconstructed
injection detail to the ↑LMS image. This stage consists of three upsampling operations (i.e.,
deconvolution operation) and three convolutions after concatenating operations.

up-sampling

H_MS

I3 I2 I1

＋

P_D1P_D6P_D7

P_D8
I_D

↑LMS

cascade scale fusion results detail compensation mechanism

Figure 5. The structure of the high-frequency details reconstruction network.

As shown in Figure 5, considering that some details will be lost in the downsampling
process, to enhance the injection details generated by reconstruction, the fusion results
of the first scale P_D1, the second scale P_D6 and the third scale P_D7 are introduced,
forming multiscale skip connections. The multiscale skip connections not only reduce
the network parameters but also compensate for the details. To further compensate for
the information lost in the downsampling operations, we also design a multiscale high-
frequency detail compensation mechanism, i.e., I1–I3 in Figure 5. To match the scale of the
reconstructed information, we design a scale transfer block for the compensation details.
Figure 6 describes the structure diagram of the compensation details I1–I3. PL_D means
the reduced form of the PL image. I1 is obtained from the difference between PL and PL_D,
and then two-scale details I2 and I3 are obtained by the downsampling operation. In this
way, the detail compensation mechanism can further compensate for the information lost
in the downsampling of the fusion stage and enhance the reconstruction details.

PL_D

PL -

I1 I2 I3

Figure 6. Structure diagram for obtaining compensated details.

As shown in Figure 5, the result P_D8 of CCSF undergoes a deconvolution operation,
and convolution is performed after concatenating P_D7 and I3, generating a finer scale
image. After three such operations in turn, the final injection detail I_D is generated.
Finally, I_D and ↑LMS images are added to obtain the pansharpening image.

The expression of obtaining the injection detail is Equation (18).

I−D = d(LMS, PL, Θ) (18)

where I−D presents the injection detail, d is the function of the three-stage injection detail
extraction network, and Θ indicates the parameter of the network.

The expression for pansharpening model TDPNet is Equation (19).

H_MS = d(LMS, PL, Θ)+ ↑ LMS (19)
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where H_MS indicates the generated pansharpening result.
The optimization objective of the pansharpening network TDPNet is the loss function,

expressed as Equation (20).

L(Θ) =
1
K

K

∑
i=1
‖ ↑ LMS + d(LMS, PL, Θ)−MS‖2 (20)

where L(Θ) is the loss function, K indicates the number of training data in each iteration,
and MS represents the reference image.

3. Results

To validate the pansharpening ability of the proposed TDPNet approach , the state-of-
the-art CS/MRA-based techniques PRACS [10], Indusion [13] and MTF_GLP [15] and the
CNN-based methods PNN [33], DRPNN [34], PanNet [35], FusionNet [40] and RDFNet [41]
are employed for comparative experiments. The experimental results of reduced resolution,
full resolution and evaluation indices on three data sets are as follows.

3.1. Experimental Results on GF-1 Data Set

This section describes the reduced and full resolution experiments on the GF-1 data
set. Figure 7 shows the experimental results at reduced resolution of various comparison
methods. Figure 7a shows a reduced resolution PAN (LPAN) image, and Figure 7b shows
an upsampled reduced resolution MS image obtained by a polynomial kernel with 23
coefficients (EXP) [49]. The pansharpened results of the PRACS, Indusion, MTF_GLP, PNN,
DRPNN, PanNet, FusionNet, RDFNet and TDPNet approaches are shown in Figure 7c–k,
respectively. Figure 7l shows the reference MS image, i.e., the GT image. To conveniently
observe the differences between various methods, we enlarge the red box area. To observe
the pansharpening performance more conveniently, we also show the average intensity
difference map and the average spectral difference map (calculated according to SAM)
between the pansharpened result and the reference image, as shown in Figures 8 and 9.
We employ color to represent the difference, and the value gradually increases from blue
to yellow. To highlight the difference, the values of the color bar of the average intensity
difference map and the average spectral difference map are 0–0.5 and 0–1, respectively. The
top row and the third row of Figures 8 and 9 represent the difference map of the whole
pansharpened result. The second row and the bottom row of Figures 8 and 9 show an
enlarged view of the corresponding region in the red box of Figure 7. Table 1 shows the
quantitative evaluation indices of the experiment at reduced resolution.

From Figure 7, it is clearly found that the Indusion and MTF_GLP methods exhibit
severe spectral distortion. The pansharpening results of the PRACS, Indusion, MTF_GLP
and PanNet methods are relatively blurred. The pansharpening results of the PNN, DRPNN
and FusionNet are also slightly vague compared to the GT image. RDFNet and the
proposed method TDPNet have better pansharpening results. However, combined with
Figures 8 and 9, we find that the difference between TDPNet and GT is smaller, and the
pansharpening result is better. In Table 1, the objective evaluation indices Q4, UIQI, SCC,
SSIM and SAM of the proposed method are better. Although the ERGAS of the proposed
method ranks second, it is only 0.0006 from the optimal value. The TDPNet is better in
preserving spectrum information and details.
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Figure 7. The experimental results of various compared methods on GF-1 testing data at reduced res-
olution. (a) LPAN. (b) EXP. (c) PRACS. (d) Indusion. (e) MTF_GLP. (f) PNN. (g) DRPNN. (h) PanNet.
(i) FusionNet. (j) RDFNet. (k) TDPNet. (l) Ground Truth.

Figure 8. The average intensity difference map between the generated image and GT on GF-1 testing
data. The top row and the third row represent the difference map of the whole pansharpened result.
The second row and the bottom row show the enlarged view of the corresponding region in the
red box of Figure 7. (a) PRACS. (b) Indusion. (c) MTF_GLP. (d) PNN. (e) DRPNN. (f) PanNet.
(g) FusionNet. (h) RDFNet. (i) TDPNet.
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Figure 9. The average spectral difference map between the fused image and GT on GF-1 testing data.
The top row and the third row represent the difference map of the whole pansharpened result. The
second row and the bottom row show the enlarged view of the corresponding region in the red box
of Figure 7. (a) PRACS. (b) Indusion. (c) MTF_GLP. (d) PNN. (e) DRPNN. (f) PanNet. (g) FusionNet.
(h) RDFNet. (i) TDPNet.

Table 1. Quantitative evaluation of various compared methods on GF-1 testing data at reduced
resolution.

Q4 UIQI SCC SSIM SAM ERGAS

EXP 0.6220 0.6313 0.5894 0.4517 4.8390 3.9460

PRACS 0.6018 0.6175 0.6455 0.4191 4.9552 4.5335

Indusion 0.5938 0.6092 0.5872 0.3738 5.1425 4.4969

MTF_GLP 0.6122 0.6262 0.6433 0.3948 4.7667 4.2926

PNN 0.9396 0.9391 0.9388 0.9420 1.9413 1.5371

DRPNN 0.9160 0.9157 0.9061 0.9218 2.4796 1.8033

PanNet 0.8512 0.8846 0.8594 0.8873 3.6488 2.6688

FusionNet 0.9454 0.9463 0.9477 0.9495 1.7443 1.4278

RDFNet 0.9523 0.9545 0.9526 0.9533 1.5625 1.3292

TDPNet 0.9530 0.9554 0.9536 0.9539 1.5492 1.3298

Ideal value 1 1 1 1 0 0

Figure 10 presents the experimental results at full resolution of each method. Figure 10a
indicates the PAN image at full resolution, Figure 10b means the corresponding upsam-
pled MS image, and the pansharpened results of the PRACS, Indusion, MTF_GLP, PNN,
DRPNN, PanNet, FusionNet, RDFNet and TDPNet approaches are shown in Figure 10c–k,
respectively. Table 2 presents the quantitative evaluation metrics of experimental results at
full resolution. In the quantitative evaluation indices of the tables, black bold formatting
indicates the best result.
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Figure 10. The experimental results of various compared approaches of GF-1 testing image at full
resolution. (a) PAN. (b) EXP. (c) PRACS. (d) Indusion. (e) MTF_GLP. (f) PNN. (g) DRPNN. (h) PanNet.
(i) FusionNet. (j) RDFNet. (k) TDPNet.

Table 2. Quantitative evaluation of various compared approaches on GF-1 testing data at full
resolution.

Dλ DS QNR

EXP 0.0000 0.1775 0.8225

PRACS 0.0958 0.1150 0.8003

Indusion 0.1762 0.1233 0.7223

MTF_GLP 0.2226 0.2293 0.5991

PNN 0.0130 0.1450 0.8438

DRPNN 0.0536 0.1433 0.8109

PanNet 0.0296 0.1479 0.8268

FusionNet 0.0234 0.1570 0.8233

RDFNet 0.0212 0.1467 0.8352

TDPNet 0.0108 0.1432 0.8475

Ideal Value 0 0 1

From Figure 10, we can clearly find that the spectral distortions of PRACS, Indusion
and MTF_GLP are relatively severe and that the MTF_GLP result is relatively fuzzy. Com-
pared with the pansharpening results of other methods, the result of TDPNet is clearer and
retains more spectral information. From Table 2, the objective evaluation indicators indicate
that the DS of TDPNet is not the best; although PRACS and Indusion retain more details,
their spectral distortions are more severe. The proposed method TDPNet has the best
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retention of spectral information, and the value of QNR is also optimal. Comprehensively,
the pansharpening result of TDPNet is better than those of the other approaches.

3.2. Experimental Results on QuickBird Data Set

This section describes the experiment on the QuickBird data set. Figure 11 shows the ex-
perimental outcomes of the compared approaches at reduced resolution. Figures 12 and 13
show the average intensity difference map and the average spectral difference map, respec-
tively. Figure 14 shows the full resolution experimental results of the compared methods.
Table 3 describes the quantitative evaluation indices of the experimental results at reduced
resolution of the compared approaches. Table 4 presents the quantitative evaluation indices
of the full resolution experimental results.

The pansharpening result of the DRPNN method in Figure 11 contain the most severe
spectral distortion. Artifacts appear in the pansharpening result of the Indusion method.
Combined with Figures 12 and 13, the result shows that the proposed method retains
more details while retaining spectral information. As shown in Table 3, the evaluation
indices Q4 and SCC of TDPNet rank second. For Q4, the difference between TDPNet and
RDFNet is very small. The proposed method TDPNet is the best for indicators UIQI, SCC,
SSIM, SAM and ERGAS. The spectral distortion of the PNN and DRPNN in Figure 14 is
severe. The result of the Indusion method exhibits artifacts and is relatively fuzzy. From
Table 4, although the indices Dλ and DS of the proposed method TDPNet are both ranked
second, TDPNet is the best in terms of retaining both spectral information and details
simultaneously.

Figure 11. The experimental results of various compared approaches on QuickBird testing data at
reduced resolution. (a) LPAN. (b) EXP. (c) PRACS. (d) Indusion. (e) MTF_GLP. (f) PNN. (g) DRPNN.
(h) PanNet. (i) FusionNet. (j) RDFNet. (k) TDPNet. (l) Ground Truth.
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Figure 12. The average intensity difference map between the fused MS image and GT on QuickBird
testing data. The top row and the third row represent the difference map of the whole pansharpened
result. The second row and the bottom row show the enlarged view of the corresponding region in
the red box of Figure 11. (a) PRACS. (b) Indusion. (c) MTF_GLP. (d) PNN. (e) DRPNN. (f) PanNet.
(g) FusionNet. (h) RDFNet. (i) TDPNet.

Figure 13. The average spectral difference map between the fused image and GT on QuickBird
testing data. The top row and the third row represent the difference map of the whole pansharpened
result. The second row and the bottom row show the enlarged view of the corresponding region in
the red box of Figure 11. (a) PRACS. (b) Indusion. (c) MTF_GLP. (d) PNN. (e) DRPNN. (f) PanNet.
(g) FusionNet. (h) RDFNet. (i) TDPNet.
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Figure 14. The experimental results of various compared approaches on the QuickBird testing data
at full resolution. (a) PAN. (b) EXP. (c) PRACS. (d) Indusion. (e) MTF_GLP. (f) PNN. (g) DRPNN.
(h) PanNet. (i) FusionNet. (j) RDFNet. (k) TDPNet.

Table 3. Quantitative evaluation of various compared approaches on QuickBird testing data at
reduced resolution.

Q4 UIQI SCC SSIM SAM ERGAS

EXP 0.7327 0.7404 0.6621 0.4304 2.0954 3.1671

PRACS 0.9316 0.9469 0.9142 0.8740 1.7117 1.6558

Indusion 0.8457 0.8516 0.8790 0.7128 2.0692 2.5741

MTF_GLP 0.9280 0.9299 0.9363 0.8428 1.6645 1.7722

PNN 0.8912 0.8933 0.9108 0.7834 1.8165 2.1636

DRPNN 0.6226 0.6744 0.8714 0.7429 3.5481 6.4267

PanNet 0.9331 0.9448 0.8864 0.9482 2.3250 1.8568

FusionNet 0.8356 0.8977 0.8615 0.9166 2.8616 3.1899

RDFNet 0.9352 0.9492 0.8860 0.9468 1.8177 1.6423

TDPNet 0.9344 0.9504 0.9169 0.9523 1.5098 1.6420

Ideal value 1 1 1 1 0 0



Remote Sens. 2022, 14, 1077 17 of 26

Table 4. Quantitative evaluation of various compared approaches on QuickBird testing data at full
resolution.

Dλ DS QNR

EXP 0.0000 0.1660 0.8340

PRACS 0.0349 0.0724 0.8952

Indusion 0.0273 0.1476 0.8291

MTF_GLP 0.0883 0.0657 0.8518

PNN 0.0825 0.1552 0.7751

DRPNN 0.1051 0.1287 0.7797

PanNet 0.0620 0.0144 0.9245

FusionNet 0.0335 0.0496 0.9185

RDFNet 0.0571 0.0212 0.9228

TDPNet 0.0322 0.0212 0.9472

Ideal Value 0 0 1

3.3. Experimental Results on GF-2 Data Set

This section describes the experiment on the GF-2 data set. Figure 15 shows the
experimental results of the compared methods at reduced resolution. The average intensity
difference map and the average spectral difference map are shown in Figures 16 and 17.
Figure 18 shows the full resolution experimental results of the compared methods. The
quantitative evaluation indices of the experimental results at reduced resolution for the
compared methods are shown in Table 5. The quantitative evaluation indices of the full
resolution experimental results of each method are shown in Table 6.

Figure 15. The experimental results of various compared approaches on GF-2 testing data at re-
duced resolution. (a) LPAN. (b) EXP. (c) PRACS. (d) Indusion. (e) MTF_GLP. (f) PNN. (g) DRPNN.
(h) PanNet. (i) FusionNet. (j) RDFNet. (k) TDPNet. (l) Ground Truth.
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Figure 16. The average intensity difference map between the fused MS image and GT on GF-2 testing
data. The top row and the third row represent the difference map of the whole pansharpened result.
The second row and the bottom row show the enlarged view of the corresponding region in the
red box of Figure 15. (a) PRACS. (b) Indusion. (c) MTF_GLP. (d) PNN. (e) DRPNN. (f) PanNet.
(g) FusionNet. (h) RDFNet. (i) TDPNet.

Figure 17. The average spectral difference map between the fused image and GT on GF-2 testing data.
The top row and the third row represent the difference map of the whole pansharpened result. The
second row and the bottom row show the enlarged view of the corresponding region in the red box
of Figure 15. (a) PRACS. (b) Indusion. (c) MTF_GLP. (d) PNN. (e) DRPNN. (f) PanNet. (g) FusionNet.
(h) RDFNet. (i) TDPNet.
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Figure 18. The experimental results of various compared approaches on the GF-2 testing data at
full resolution. (a) PAN. (b) EXP. (c) PRACS. (d) Indusion. (e) MTF_GLP. (f) PNN. (g) DRPNN.
(h) PanNet. (i) FusionNet. (j) RDFNet. (k) TDPNet.

Table 5. Quantitative evaluation of various compared approaches on GF-2 testing data at reduced
resolution.

Q4 UIQI SCC SSIM SAM ERGAS

EXP 0.6697 0.6756 0.5960 0.5150 2.0718 3.6576

PRACS 0.9254 0.9107 0.8843 0.8675 1.5629 1.8503

Indusion 0.8221 0.8293 0.8471 0.7677 1.9478 2.8731

MTF_GLP 0.9125 0.9122 0.9132 0.8710 1.5096 2.0406

PNN 0.9795 0.9820 0.9740 0.9833 0.8900 0.8749

DRPNN 0.9514 0.9758 0.9672 0.9801 1.1417 1.2794

PanNet 0.7047 0.8814 0.8586 0.9036 7.0690 5.8844

FusionNet 0.9696 0.9741 0.9710 0.9799 1.1054 1.0169

RDFNet 0.9807 0.9826 0.9773 0.9838 0.9451 0.8211

TDPNet 0.9835 0.9850 0.9803 0.9856 0.9157 0.7855

Ideal value 1 1 1 1 0 0

The pansharpening results of PRACS and PanNet in Figure 15 exhibit the most severe
spectrum distortion. The pansharpening result of Indusion is blurry. Combined with
Figures 16 and 17, the results show that the PNN, RDFNet and TDPNet methods retain
more spectral information, whereas the TDPNet method retains more details. The objective
indicators in Table 5, except SAM, indicate that the results of TDPNet are optimal. From
the visual effect of Figure 18, the spectral distortion of PanNet is the most severe, and the
results of the PNN and RDFNet methods are blurred. Although the index DS of Indusion
in Table 6 is the best, the spectral distortion is severe. Although the index Dλ of PNN is the
best, more spatial details are lost. Combined with the overall spectral distortion and the
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retention of spatial structure information, the pansharpening performance of the proposed
method TDPNet is better than that of the other approaches.

Table 6. Quantitative evaluation of various compared methods on GF-2 testing data at full resolution.

Dλ DS QNR

EXP 0.0000 0.2558 0.7442

PRACS 0.0692 0.0950 0.8423

Indusion 0.0487 0.0076 0.9441

MTF_GLP 0.0700 0.0493 0.8841

PNN 0.0193 0.1059 0.8768

DRPNN 0.0472 0.0363 0.9182

PanNet 0.0996 0.0784 0.8298

FusionNet 0.0485 0.1037 0.8529

RDFNet 0.0205 0.1232 0.8589

TDPNet 0.0199 0.0123 0.9680

Ideal Value 0 0 1

3.4. Implementation Time

Table 7 shows the implementation time of pansharpening for the compared approaches
at full resolution. The sizes of the MS and PAN images are 100 × 100 × 4 and 400 × 400 ×
1, respectively. Note that the approaches based on CNN are realized on the GPU, and the
approaches based on CS and MRA are realized on the CPU. Although the implementation
time is not the shortest, it is acceptable for the CNN-based method.

Table 7. Implement time (seconds) of pansharpening for compared methods.

GF-1 QuikBird GF-2

PRACS 0.3208 0.3059 0.3100

Indusion 0.1536 0.1307 0.1351

MTF_GLP 0.2389 0.1908 0.2250

PNN 0.0195 0.0195 0.0196

DRPNN 0.1098 0.1028 0.1055

PanNet 0.0386 0.0406 0.0414

FusionNet 0.0483 0.0380 0.0466

RDFNet 0.3850 0.3747 0.4179

TDPNet 0.3484 0.3988 0.4069

4. Discussion

Based on the aforementioned experimental results, it is evidently found that the
proposed TDPNet well trade off the contents of spectral and spatial. This section discusses
the major compositions of TDPNet, the number of iterations and the consumed time in the
training and testing processes.

4.1. Major Compositions of TDPNet

We discuss impacts of compositions of the three stages of the proposed TDPNet on the
pansharpening performance from three main contents. The following discussion is based
on the experimental results of the GF-2 data.
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First, the dual-branch multiscale high-frequency detail extraction stage comprises two
branches to extract the features of PN

L −↑LMS and PL images respectively. Verifying the
effectiveness of features extracted from PN

L −↑LMS image, we compare the performance
of the dual-branch with ↑LMS and PL images (i.e., TDPNet-n-p) with that of the dual-
branch with PN

L −↑LMS and PL images (TDPNet). TDPNet-n-p extracts the four-scale
information from ↑LMS and PL respectively, and the other parts are the same as TDPNet.
The compared results are shown in Figure 19. We clearly observe that the pansharpening
performance of TDPNet is better than that of TDPNet-n-p in terms of preserving spectral
and spatial information.
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Figure 19. The effect of the components of TDPNet on the pansharpening results of the GF-2 data.

Second, we use a basic fusion block (i.e., Figure 20, the contents are the same as that
in Figure 4.) to replace the CCSF in the second stage, and the other parts are the same
as TDPNet, which is called TDPNet-s-f. In Figure 19, it is found that the performance
of TDPNet is significantly better than that of TDPNet-s-f, and cross scale fusion in CCSF
enhances spatial details and spectrum information.

D1 D2
D3

D4

P1 P2
P3

P4

Figure 20. A basic fusion block.

Third, we remove the multiscale high-frequency detail compensation mechanism of
the third stage, and the other parts of TDPNet remain the same, which is termed TDPNet-n-
c. In Figure 19, it is evidently observed that the result of TDPNet is finer than TDPNet-n-c.
From Figure 19, the main parts of the three stages promote the pansharpening performance
of TDPNet, enhancing spatial details and reducing spectral distortion.
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4.2. Iterations and Consumed Time

The number of iterations of all the CNN-based approaches is obtained on the same data
set. The number of iterations and consumed time for each approach achieving the optimal
performance are demonstrated in Figures 21 and 22. Note that the time spent on PanNet
contains the time used to extract high-frequency details. In Figure 22, FusionNet [40] takes
the least time reaching convergence because of the simple composition of it. Although
the times of TDPNet reaching convergence is less, it spend longer time because of the
relatively complex compositions of the network. In Figures 21 and 22, compared with other
CNN-based approaches, the time spent on TDPNet is acceptable. In the next research, we
can further simplify the network structure by employing group convolutions and separable
convolutions and design a lightweight pansharpening network, which takes less time while
achieving the same or higher performance.
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Figure 21. The number of iterations of comparative approaches based on CNN.
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5. Conclusions

To improve the preservation of spatio-spectral information, we proposed a novel three
stages detail injection network for remote sensing images pansharpening to reconstruct
details. A dual-branch multiscale feature extraction block obtains four scale details of
PAN image and the difference between duplicated PAN and MS images, respectively.
This utilizes the abundant spatial details of the PAN images and retains the spectral
information by introducing MS image. CCSF employs the fine-scale fusion information
as prior knowledge for the coarse-scale fusion information compensating for the lost
information during downsampling and retaining high-frequency details. The multiscale
detail compensation mechanism and multiscale skip connection block compensate for the
lost information and reduce parameters during reconstructing injection detail. Extensive
experimental analysis on GF-1, QuickBird and GF-2 data sets both at degraded and full
resolutions testify that TDPNet trades off the spectral information and spatial details and
improves the fidelity of sharper MS images. The quantitative evaluation and subjective
evaluation results indicate that TDPNet has better ability in retaining spectrum information
and spatial details than the other compared approaches. Nevertheless, the implementation
time of proposed TDPNet is not the least.

In the next research, we can further simplify the network structure and design a
lightweight pansharpening network, which takes less time while achieving the same or
higher performance. Besides, designing a lightweight pansharpening network with the
same or better performance has the following advantages: (1) There is less requirement
for the server during training. (2) Fewer parameters. (3) It is more suitable for imple-
menting on devices with limited memory. Our future work also needs to optimize the
network structure and design a lightweight pansharpening network by group convolutions
and separable convolutions to decrease the implementation time and further boost the
pansharpening ability.
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Abbreviations
The following abbreviations are used in this manuscript:

MS multispectral
TDPNet three-stage detail injection pansharpening network
PAN panchromatic
CCSF cascade cross-scale fusion
RSIs Remote sensing images
LRMS low spatial and multispectral resolutions
HS hyperspectral
HRMS high spatial resolution MS
HRHS high spatial resolution HS
pansharpening panchromatic sharpening
DL deep learning
CS component substitution
MRA multiresolution analysis
VO variational optimization
IHS intensity-hue-saturation
AIHS adaptive IHS
GIHS generalized IHS
GS Gram-Schmidt
GSA GS adaptive
PRACS partial replacement adaptive component substitution
DWT discrete wavelet transform
Indusion fusion for MS and PAN images employing the Induction scaling approach
GLP generalized Laplacian pyramid
MTF_GLP modulation transfer function-GLP
ATWT à trous wavelet transform
CNN convolutional neural networks
GF-1 Gaofen-1
GF-2 Gaofen-2
LMS the reduced resolution form of the MS image
PL the reduced resolution form of the PAN image
UIQI universal image quality index
Q4 UIQI extended to 4-band
SCC structural correlation coefficient
SSIM structural similarity
SAM spectral angle mapping
ERGAS erreur relative global adimensionnelle de Synthése
QNR quality with no-reference
GT ground truth
↑ LMS an upsampled LMS image
PN

L duplicated N channels of the PL image
H_MS the generated pansharpening image
CHFDs composite high-frequency details
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