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Abstract

:

Forest is the largest vegetation carbon pool in the global terrestrial ecosystem. The spatial distribution and change of forest biomass are of importance to reveal the surface spatial variation and driving factors, to analyze and evaluate forest productivity, and to evaluate ecological function of forest. In this study, broad-leaved forests located in a typical state nature reserve in northern subtropics were selected as the study area. Based on ground survey data and high-resolution remote sensing images, three machine learning models were used to identify the best remote sensing quantitative inversion model of forest biomass. The biomass of broad-leaved forest with 30-m resolution in the study area from 1998 to 2016 was estimated by using the best model about every two years. With the estimated biomass, multiple leading factors to cause biomass temporal change were then identified from dozens of remote sensing factors by investigating their nonlinear correlations. Our results showed that the artificial neural network (ANN) model was the best (R2 = 0.8742) among the three, and its accuracy was also much higher than that of the traditional linear or nonlinear models. The mean biomass of the broad-leaved forest in the study area from 1998 to 2016 ranged from 90 to 145 Mg ha−1, showing an obvious temporal variation. Instead of biomass, biomass change (BC) was studied further in this research. Significant correlations were found between BC in broad-leaved forest and three climate factors, including average daily maximum surface temperature, maximum precipitation, and maximum mean temperature. It was also found that BC has a strong correlation with the biomass at the previous time (i.e., two years ago). Those quantitative correlations were used to construct a linear model of BC with high accuracy (R2 = 0.8873), providing a new way to estimate the biomass change of two years later based on the observations of current biomass and the three climate factors.






Keywords:


broad-leaf forest; forest biomass; machine learning; remote sensing retrieval; climatic factors












1. Introduction


Forest biomass is a fundamental characteristic factor for evaluating forest ecosystems, as well as one of the important variables for quantifying the structure and function of forest ecosystems [1,2]. Forest biomass accounts for about 85% of global terrestrial vegetation biomass, which is the energy base and source of nutrients for the operation of the entire forest ecosystem [3,4]. Based on forest biomass estimation, many studies have been conducted on forest ecosystem productivity, terrestrial ecosystem carbon cycling, and global climate change [5]. Exploring the response of long-term climate factors to forest biomass changes can help to understand the impact of climate change on forest stand growth. In-depth quantitative analysis of key factors will provide not only a basis for establishing forest biomass prediction models, but also a scientific basis for the evaluation and prediction of forest ecosystem evolution and carbon cycle effects under future climates [6].



Traditional biomass estimation methods include the clear-cutting method [7,8,9], standard wood method [10,11], and regression method [12,13]. Although the traditional methods to estimate biomass are comparatively accurate, there are some disadvantages, such as time-consuming, low efficiency, and greater damage to ecological environment. Remote sensing technology could quickly, accurately, and nondestructively estimate forest biomass at large scales, especially for some areas where ground measurements are difficult to obtain, leading to the unique advantages of remote sensing estimation of biomass. Remote sensing parameter conversion is a common method for forest biomass estimation, in which an inversion model of forest biomass can be constructed by combining parameters extracted from remote sensing images with observational samples of biomass [14,15]. LiDAR is the most advanced technology currently used for aboveground-biomass (AGB) prediction. Due to the high cost and small detection range of LiDAR, the free and effective images from Landsat series of satellites are selected as remote sensing data sources for long-term biomass studies [16,17]. With the rapid development in the field of artificial intelligence, it has become common to construct forest biomass models by machine learning methods, and then combine them with remote sensing data to estimate the biomass of a certain area [18]. As typical methods in machine learning, artificial neural network (ANN), support vector machine (SVM), and random forest (RF) models are more accurate than traditional linear regression models [19]. When ANN is applied to the remote sensing estimation of forest biomass, its input variables are the pixel gray value and vegetation index in the relevant bands of remote sensing data, and its output variable is the forest biomass in the geographic locations corresponding to the image pixels. Then, the model is trained by using limited sample/survey data. The advantage of ANN is that it can effectively represent the complex nonlinear relationship of multiple variables. If the training data are representative enough, ANN can achieve high estimation accuracy [20,21]. In areas with higher biomass, the ANN model is more accurate than SVM and multivariate linear regression [22]. In the inversion of biomass, ANN can be used to improve the range of biomass estimation with the least spectral and texture variables [23].



Based on accurate estimation of forest biomass, studying dynamic biomass changes can reveal the change of forest biomass timely and accurately, which can help to strengthen forest management and predict its variation. Through remote sensing biomass modeling, researchers can estimate the biomass of their study area in different periods and analyze the causes and trends of biomass changes. In the dynamic study of biomass, researchers carefully analyzed anthropogenic factors, climatic factors, environmental factors, and land use type changes that affect the dynamic change of resources [24]. In the general method of biomass dynamic change research, firstly, an inversion model based on machine learning is often selected. The time series of spectral indices and topographic factors are processed by radiation normalization. Annual raster data of forest biomass during a study period are obtained using the prediction model of machine learning. Finally, the biomass at each pixel of the remote sensing image is extracted, and the dynamic change analysis of biomass is conducted [25]. Currently, it is a hot topic to estimate the spatial and temporal dynamics of forest biomass. The remote sensing images of Landsat satellite have been widely used in the study of dynamic changes in tropical and subtropical forest biomass [17]. In temperate and subtropical regions, broad-leaved forest is the most typical forest type, and the study of broad-leaved forest biomass change has important implications for climate change [26]. Forest biomass has been studied frequently from the continental scale to a single forest park or forest farm. The timescales of those studies are mainly 15–40 years, and their temporal resolutions are mainly 5 and 10 years. However, there are no published studies with finer temporal resolutions (e.g., 2 years) on greater time scales (e.g., 20 years) [27,28,29,30,31,32].



Since the 1940s, the study of the relationship between climate and forest biomass has become a hot topic. Many scholars have found that climate factors are significantly related to forest biomass. Climate factors affect the spatial distribution of forest biomass, among which temperature and precipitation are important climatic driving factors. The study of the distribution characteristics of forest biomass along temperature gradient showed that total biomass was significantly positively correlated with minimum temperature [33]. As the impact of temperature on forest biomass is consistent at different biogeographic scales and climatic gradients, the annual average temperature may be an effective indicator to reflect the impact of climate change on ground biomass [34]. When researchers summarized a large amount of tropical forest biomass data, they found that there was a certain linear relationship between annual average precipitation and forest biomass, and the R2 of the fitted estimation equation reached 0.55. Their further analysis showed that there was a significant linear relationship between forest biomass and annual average temperature, which could affect the change of species biomass [35]. At the continental scale, by studying the climate factors and soil factors affecting forest biomass, it was found that the model accuracy with the participation of climate factors, such as annual average precipitation and temperature, was higher than that with soil factors, and its R2 reached 0.47 [36]. Climate factors such as temperature and precipitation also drive the net primary production (NPP) closely related to biomass. Rainfall, temperature, and evapotranspiration can affect the growth, development, and metabolism of forests, thereby promoting the accumulation of forest biomass [37]. That is to say, climate affects biomass by influencing the rate of biomass accumulation (i.e., NPP), and vegetation NPP increases with annual average temperature. In the analysis of the climate driving forces of NPP in the Yellow River Basin of China, it was concluded that the average correlation coefficients of vegetation NPP with monthly mean temperature and monthly precipitation are 0.57 and 0.56, respectively [38]. In general cases, there is a positive correlation between forest NPP and precipitation [39]. In a study of tropical forest aboveground biomass mapping, it was also found that temperature and precipitation are important variables of forest aboveground biomass prediction models [40]. Climate factors are important factors to cause dynamic changes of forest biomass. Generally, climate factors and human disturbance have been considered in forest biomass studies [41,42,43,44]. However, no research has been reported to improve the prediction accuracy of biomass models by adding the biomass of the previous period as an additional factor to the dynamic model of forest biomass change, and no research has been conducted to model and analyze the temporal changes of forest biomass.



In this study, we used the survey data of 2019 and WorldView-2 images in combination with the three machine learning algorithms (i.e., RF, SVM, and ANN) to establish a model for AGB estimation of broad-leaved forest. By filling in some abovementioned research gaps, the specific scientific objectives of this study are (1) to estimate the AGB at satellite image pixel grids in 2019; (2) to identify the best model from RF, SVM, and ANN; (3) to model and estimate the biomass change of broadleaf forest from 1998 to 2016 with two-year resolution; (4) to analyze the temporal change of broad-leaved forest biomass in the natural reserve of northern subtropics and quantitatively reveal the key climate factors affecting forest biomass change; (5) to provide a scientific basis for evaluating the stability of forest ecosystems in subtropics.




2. Data and Methodology


2.1. Overview of the Study Area


Tianma National Nature Reserve is in Jinzhai County, Anhui Province (31°10′–31°20′N, 115°20′–115°50′E), and it is in the hinterland of Dabie Mountain in the ecotone of Hubei, Henan, and Anhui Provinces (Figure 1). The reserve is a transition area from the northern edge of the subtropical zone to the warm temperate zone in Eastern China. The reserve preserves a relatively complete area of natural broad-leaved forests in the north subtropical zone of China. Its vertical distribution of vegetation is clear. The conservation areas of the reserve are the north subtropical evergreen and deciduous broad-leaved forest. The broad-leaved forest in this study is the natural secondary oak deciduous broad-leaved forest. Its forest stands are mostly middle-aged forest and near-mature forest. The Regulations of the People’s Republic of China on Nature Reserves stipulates that forestry production and management activities shall not be carried out in nature reserves, forest cutting is strictly prohibited, and protection priority and natural restoration are emphasized. This reserve covers an area of 28,930 hectares, consisting of Tiantangzhai Town and Mazongling Area, Wanshadang Area, Kangwangzhai Area, and Jiufengjian Area. The reserve belongs to the northern subtropical humid monsoon climate zone, which is characterized by four distinct seasons, mild climate, varying spring temperature, abundant rainfall, significant plum rains, and concentrated summer rains. Its average annual temperature is 13.5 °C, annual rainfall is 1400–1600 mm, annual sunshine hours are 2225.5 h, and average altitude is 900 m. The area of broad-leaved forest reaches 35% of the entire reserve, and the major broad-leaved tree species include Quercus serrata Murray var. brevipetiolata (A.DC.) Nakai, Castanea seguinii Dode, Cyclobalanopsis glauca (Thunb.) Oerst., Quercus acutissima Carruth., Carya cathayensis Sarg., Emmenopterys henryi Oliv., Toona sinensis, Paulownia fortunei (seem.) Hemsl., Platycarya strobilacea Sieb. et Zucc., Celtis sinensis Pers., Liquidambar formosana Hance, and Pistacia chinensis Bunge.




2.2. Data


2.2.1. Sample Plot Data


The biomass sampling survey was conducted from 23 July to 31 July 2019. Typical sampling methods were used to establish broad-leaf forest plots of different ages and stand conditions to comprehensively investigate the forest resources in the study area. All sample plots were 20 m × 20 m, and all the living trees in the plots with a diameter at breast height more than 5 cm were measured. Differential GPS (DGPS) was used to determine the geographic locations of the sample plots. The calculation method of forest biomass, proposed by Li and Lei [45], is the most widely used method for calculating of mixed broad-leaved forest biomass. Its specific formula is


  W = 0.044   (  D 2  H )   0.9169   + 0.023   (  D 2  H )   0.7115   + 0.0104   (  D 2  H )   0.9994   + 0.0188   (  D 2  H )   0.8024    



(1)




where W (Mg ha−1) is the forest biomass, D (cm) is the breast diameter, and H (m) is the tree height. Finally, estimated biomass data and its location of 35 sample plots were obtained, and they were used to establish a forest biomass model by machine learning.




2.2.2. Satellite Images


WorldView-2 satellite images are used in this study for remote sensing quantitative model construction of broad-leaved forest biomass in conjunction with the abovementioned forest survey data. They were taken on 23 June 2019, with a spatial resolution of 0.46 m panchromatic image and 1.85 m multispectral image, and they were used to determine the key input variables of machine learning model derived from satellite data. The remote sensing data used to retrieve the temporal and spatial distribution of forest biomass are ten scenes of Landsat series satellite image from 1998 to 2016 (http://www.gscloud.cn/ accessed on 1 March 2021), whose detailed image parameters are shown in Table A1. The time interval of two adjacent images is about 2 years, ensuring that the cloud amount of each image in the study area is less than 1% to meet the requirements of further data analysis. Radiation correction of remote sensing data was performed using ENVI5.3 to obtain irradiance data, and the FLAASH module of MODTRAN4+ radiative transfer model was used to perform atmospheric correction of irradiance data to obtain remote sensing reflectance images.




2.2.3. Meteorological Data


The meteorological data used in this study are from a weather database for the public (http://data.sheshiyuanyi.com/WeatherData/ accessed on 5 March 2021), and its dataset is the record of China’s general ground meteorological observatory, including temperature, precipitation, humidity, sunshine duration, ground temperature, and evaporation. Considering that there is no weather station inside the study area, it is impossible to obtain its local meteorological data directly. Therefore, this study uses the data of two nearby weather stations (Huoshan station and Gushi station, Figure 1). Most of the data come from Huoshan station. However, there are missing records for limited time at Huoshan station, so those records from Gushi station are used in 2015. All weather data records include 44 statistical factors such as monthly maximum temperature, monthly minimum temperature, monthly precipitation, and solar radiation (Table 1). After postprocessing these weather data, the meteorological factors of 24 months before the imaging time of each Landsat image are used for further analysis and to model forest biomass change.





2.3. Remote Sensing Classification of Forest Types


After remote sensing image preprocessing, ENVI5.3 software was used to monitor and classify the ten images from 1998 to 2016. The land use types of Tianma Nature Reserve were categorized into four forest types: broad-leaved forest, coniferous forest, coniferous and broad-leaved mixed forest, and nonforest land. Random forest method, maximum likelihood method, and Marxist distance method were selected to classify forest types. Kappa coefficient (i.e., an index to measure the accuracy of classification) and validation data were used to test the accuracy [15,46]. After classification, majority/minority processing was carried out to obtain the remote sensing classification results of forest types in the reserve.




2.4. Selection of Biomass Remote Sensing Estimation Factors


In order to obtain as many comprehensive remote sensing factors related to forest biomass as possible, this study initially screened 36 candidate factors from vegetation index, topography factor, and texture factor. These factors are B532_contrast, B532_correlation, B532_dissimilarity, B532_entropy, B532_homogeneity, B532_mean, B532_secondary moment, B532_variance, B3_contrast, B3_dissimilarity, B3_entropy, B3_homogeneity, B3_mean, B3_secondary moment, B3_variance, B4_dissimilarity, B4_entropy, B4_homogeneity, B4_mean, B4_secondary moment, B4_variance, B5_contrast, B5_correlation, B5_dissimilarity, B5_entropy, B5_homogeneity, B5_mean, B5_secondary moment, B5_variance, Slope, DVI, EVI, MSAVI, RVI, SAVI, and NDVI. The descriptions of these factors are shown in Table 2. B532 refers to the combination of Landsat band 5, 3, and 2. B3, B4, and B5 refer to bands 3, 4, and 5, respectively. Vegetation index and texture information are obtained by using corresponding band information in ENVI5.3, and slope factor is extracted from 30-m DEM data in ArcGIS10.2.




2.5. Identify Core Factors from Candidates


In general, there is redundant information among the above 36 possibly related factors, because some of them are derived from the same sources (e.g., NIR1, Red). It is necessary to identify some core factors as the inputs to machine learning models, so that computation loads can be reduced, and important features can be extracted easily.



The idea to identify the core factors is to try to eliminate some factors which have high correlation with other factors. Instead of using Pearson correlation coefficient, which can only measure linear relationship, nonlinear correlation coefficient (NCC) [47] was used to estimate the relationship between two factors.



Given 1005 random selected samples of the 36 factors from the same noncloudy WorldView-2 scene of the reserve on 23 June 2019, NCCs were estimated between any two factors among those 36 factors. After removing the factors with high NCC (i.e., NCC > 0.6), 19 remaining factors were selected as the core factors with no or low correlation to each other. These 19 core factors are list in Table 3, and they are used as input variables of the machines learning models in this study.




2.6. Machine Learning Algorithm


In this study, three machine learning algorithms of random forests (RF), support vector machine (SVM), and artificial neural network (ANN) are selected as candidates to construct a suitable forest biomass retrieve model.



2.6.1. RF


The RF algorithm is a machine learning algorithm proposed by Breiman [48]. Firstly, bootstrap samples are used to extract K samples with the same sample size from the original training set. Then, a decision tree model is established for each sample to obtain K classification results. Finally, each record is voted on according to the K classification results to determine its final classification [48]. This algorithm is the extension of the traditional decision tree algorithm by combining multiple decision trees to improve prediction accuracy [49].



In the regression analysis of biomass estimation by RF, there are two key parameters: ntree and mtry. Ntree is the number of decision trees that are resampled using bootstrap. Mtry is the number of random features, i.e., the number of input variables, whose size is usually one third of the number of input variables. However, mtry needs to be optimized to achieve an optimal model [50].




2.6.2. SVM


SVM is a supervised learning algorithm. In forest applications, it was mainly used for forest classification and then developed into the inversion and regression of forest biomass. For SVM, data are points in an N-dimensional space, and the purpose is to find the best N-1 hyperplanes to segment the points in the N-dimensional space. The key problems of SVM are kernel function selection and parameter combination optimization. The commonly used kernel functions are linear kernel function, polynomial kernel function, and Gaussian kernel function. The advantage of SVM is that it is supported by mathematical theory and has strong interpretability. For a given training sample D = {(   x 1   ,   y 1  )  , (   x 2   ,   y 2   ), …… (   x i   ,   y i   ) …… (   x n   ,   y n   )}, generally, linear regression models attempt to obtain a prediction function f(x) by learning to minimize the sum of squared errors (SSE) between the observed and predicted values of dependent variable. However, one drawback of minimizing SSE is that the parameter estimation of the model will be affected by some points far away from the overall trend of the data. To avoid this issue, SVM is implemented by assuming that the model can tolerate deviations of at most ε (ε > 0) between the observed and predicted. Those points with absolute values of residuals less than ε will not contribute to the SVM, while those with greater than ε will contribute to the model in a linear proportion, such that large outliers will only have a limited effect on SVM, as there is no squared residual involved [51,52].




2.6.3. ANN


ANN started in the 1940s and is one of the earliest machine learning methods, working by imitating human brain neural network to process and memorize information [53]. ANN is a multilayer feedforward neural network with forward propagation of information and backward propagation of error. Information is first processed layer by layer from input layer through hidden ones. Output results in output layer are compared with the expected values. When the error between the output results and the expected values is greater than a predetermined value, backward propagation is performed. Then, network weights and thresholds are adjusted by the prediction error, and the network is transferred back to the forward propagation. This process is repeated until the error is less than the predetermined value, so that the output values and the predicted ones are close enough [54,55].





2.7. Construction of Remote Sensing Quantitative Model of Broad-Leaved Forest Biomass and Model Accuracy Assessment


Using the 35 samples (from Section 2.2.1) with their corresponding 19 core factors (from Section 2.5), three machine models (i.e., RF, SVM, and ANN) were trained to compare their performances, so that the best one can be selected as the best prediction model in this study. All data (including factors and biomass) were rescaled onto [–1,1], so that they are all dimensionless variables at the same scale. Then, 70%/15%/15% (i.e., 25/5/5) samples were randomly selected as the training/testing/validation samples. Because the number of 35 samples is not a large amount, it is not a wise way to use many hidden layers and hidden nodes in ANN. Fifteen hidden nodes and up to three hidden layers were used to identify the best ANN structure in this study. After comparison, three hidden layers with 8 × 5 × 2 nodes were chosen as the best ANN structure.



Cross validation is a method that can be used to estimate the performance of machine learning algorithms, and its variance is smaller than the segmentation variance of a single training test set. In this study, determination coefficient (R2) and root mean square error (RMSE) are used to evaluate the accuracy.


   R 2  =         ∑   i = 1  N  (  x i  −  x ¯  )    y i  −  y ¯       2      ∑   i = 1  N    (  x i  −  x ¯  )  2    ∑   i = 1  N    (  y i  −  y ¯  )  2     



(2)






  R M S E =    1 N    ∑   i = 1  N    (  y i  −  x i  )  2     



(3)




where    x i     is the ith observed value,    y i    is the ith model estimated value, N is the size of x and y,   x ¯   is the average value of x, and   y ¯   is the average value of y.




2.8. Analysis on Broad-Leaved Forest Biomass Dynamic Change Driving Forces


In order to identify the major driving factors of biomass change in terms of climate, the 44 climate factors in Table 1 were used to estimate their Pearson correlation coefficients with the mean biomass change (BC), which is the difference of mean biomass (MB) of the entire reserve over two adjacent observational times (i.e., about two years). In particular, BCi = MBi – MBi−1. We can determine some driving forces of broad-leaved forest biomass dynamic change based on p values.





3. Results and Analysis


3.1. Remote Sensing Classification Results of Forest Types in Tianma National Nature Reserve


The Kappa coefficients for remote sensing classification of forest types in random forest method, maximum likelihood method, and Marxist distance method were 0.97, 0.92, and 0.80, respectively. Therefore, the random forest method with the greatest Kappa coefficient was chosen to classify the remote sensing images of the study area in this study, and its classification results are shown in Figure 2.




3.2. Construction of Remote Sensing Quantitative Model of Broad-Leaved Forest Biomass


The results of the three models (RF, SVM, and ANN) are list in Table 4, which indicates that ANN has the best performance, with high R2 and low RMSE. Thus, ANN with 8 × 5 × 2 structure was chosen as the best machine learning model to retrieve broad-leaved forest biomass in this study. Please note that both SVM and ANN models were from the Statistics and Machine Learning Toolbox of Matlab R2019b, and RF model was from “randomForest” package of R language.




3.3. Spatial Distribution of Broad-Leaved Forest Biomass in the Reserve


After applying the ANN model to 19 core factors (from Section 2.5) derived from the ten Landsat images from 1998 to 2016, the biomass data of effective pixels of broad-leaved forest were obtained in Tiantangzhai Town and Mazongling area, Wanshadang area, Kangwangzhai area, and Jiufengjian area. The numbers of effective pixels of each image are shown in Table A2. Because the position and number of effective pixels in each image are different, only the averaged biomass within a region can be analyzed meaningfully. Therefore, the mean biomasses of each area and the entire nature reserve were calculated, and results are shown in Figure 3.



As a result, the mean biomass of the broad-leaved forest in the entire nature reserve was between 90–145 Mg ha−1 from 1998 to 2016, and the temporal change characteristic was clear. It showed a change characteristic of “decreasing–increasing–decreasing–increasing–decreasing”, and it reached the lowest value of only 92.9 Mg ha−1 in 2006. The characteristic of mean biomass change in each area is consistent with the entire nature reserve. From the results, it is not clear what causes the time variation of biomass, thus it will be studied in the next section.



In addition, the results of the spatial dynamic distribution of broad-leaved forest biomass in each area and the entire reserve are shown in Figure 4.




3.4. Analysis on Broad-Leaved Forest Biomass Dynamic Change Driving Forces in the Reserve


Based on P values, only four significant climate factors (p < 0.05) were identified (Table 5); besides, the correlation between BC and its previous MB (PMB) was also calculated (i.e., the correlation between BCi and MBi−1), and its result shows that it is also a significant factor (Table 5).



Based on the four significant identified climate factors in Table 5, a regression model of biomass change was constructed. However, very high correlation was noticed between total daily maximum surface temperature (TmaxT) and average daily maximum surface temperature (Tmax) (CC = 0.9998, P = 1.87 × 10−13), so TmaxT can be removed from the modeling. The linear regression model based on climate factors becomes


  BC = − 282.8201 + 7.2221 × T  max −    0.2269 × P  max +    2.9199 × Tavg  



(4)




where Pmax is max precipitation, Tavg is max mean temperature, regression’s corresponding R2 = 0.8063, CC = 0.8979 (P = 0.001). After the coefficients of Tmax, Pmax, and Tavg are transformed into standardized coefficients, their corresponding standardized coefficients are 0.5177, –0.5384, and 0.0799, respectively. It indicates that, when only climate factors are considered in modeling BC, Tavg is less important, while Tmax and Pmax are equally important. Considering that the mean biomass of the previous time (i.e., PMB) was significantly related to BC (see Table 5), PMB is then added as an additional variable to the above regression. The updated linear regression model then becomes


  BC = − 31.6973 + 5.1720 × T  max −    0.2225 × P  max −    0.8564 × T  avg − 0.5260  × P MB  



(5)







This updated regression is with R2 = 0.8873, CC = 0.9420 (P = 1.4656 × 10−4). This updated regression is more accurate than the previous one, implying that PMB plays a very import role in modeling BC. After transforming the coefficients of Tmax, Pmax, Tavg, and PMB into standardized coefficients, their standardized coefficients are 0.3707, −0.5279, –0.0234, and –0.3727, respectively. It implies that Tavg is still relatively insignificant, but Tmax, Pmax, and PMB are significant, although Pmax and PMB have negative impact on BC.



In addition, it is noticeable that the negative correlation between mean BC and maximum precipitation becomes more significant as the study area is closer to the climate observatory, which is shown in Figure 5. It implies that higher negative correlation could be observed if more accurate precipitation observations can be provided in the study area.





4. Discussion


Forests cover about one third of the land surface; there are many studies on forest aboveground biomass, and most of them have focused on tropical and subtropical regions [56]. This study area is located in the transition region from the northern edge of the subtropical zone to the warm temperate zone. Its results can provide not only evidence for the response of climate factors to forest biomass changes in a single-temperature zone, but also a basis for further research on the response mechanism of climate factors to forest biomass changes in different temperature zones. At large scales, how to accurately predict forest biomass and explore the dominant factors of forest biomass changes in spatiotemporal space is always a hot topic and difficult problem in forest ecology research [46]. In addition to climate factors, forest age, human disturbance, forest management activities, and other factors can affect, more or less, the change of forest biomass in previous studies [34,57,58,59,60]. These factors are easy to analyze for even-aged forests with complete data storage and small time gradient. However, for the Tianma Nature Reserve, broad-leaved forest is its secondary major natural forest. With the natural growth and renewal of trees, forest age is hard to accurately know. In-depth analysis of the dominant factors of forest biomass changes in spatial and temporal scales could be started by integrating forest parameters, climate factors, land use, management activities, and other factors. In this study, we compared three machine learning algorithms (i.e., RF, SVM, ANN), constructing the biomass estimation model of broad-leaved forest by using ground survey data and high-resolution remote sensing images. The accuracy of the model reaches R2 = 0.8742, which is much higher than that of the traditional linear or nonlinear model [61]. Compared with other areas in China, for example, Wu et al. obtained the inversion results of forest aboveground biomass (R2 = 0.9, RMSE = 16.9 Mg ha−1) by using random forest algorithm [62]. Li et al. built a broad-leaved forest biomass estimation model based on XGBoost machine learning algorithm with R2 = 0.8, RMSE = 19.25 Mg ha−1 [63]. Luo et al. constructed a broad-leaved forest biomass estimation model with model accuracy R2 = 0.73 and RMSE = 24.67 Mg ha−1, respectively [64]. Compared with other regions in the world, the optimal model R2 constructed by some researchers in Congo was 0.86, and RMSE was 10.22 Mg ha−1 [65]. Pablito et al. used SVM algorithm to obtain the estimation model of forest biomass in northwestern Mexico, with an accuracy of R2 = 0.8 [66]. In general, the model accuracy obtained in this study is on the same level as previous and latest models. By randomly selecting more than 1000 broad-leaved forest pixel points in the study area to screen remote sensing modeling factors, its data volume for training is larger than that of the traditional ground survey. This provides a new method for remote sensing estimation of forest biomass in the areas lacking ground survey data in some historical satellite images. This study starts from the establishment year of Tianma National Nature Reserve, with a timespan of about 20 years. It uses about two years as time interval, which is finer than a span of 5 years or 10 years in current literature, so that it can detect the details of forest biomass changes on a smaller timescale.



On the other hand, previous literature mostly focused on the construction of biomass model. This study aims to find the variation of biomass changes more accurately, so biomass change instead of biomass is modeled directly. The model results showed that the regressions correspond with R2 = 0.8063 and CC = 0.8979 (P = 0.001). Considering that the mean biomass of the previous time (i.e., PMB) was significantly related to BC, PMB is added as an additional variable to improve the above regression. The resulting updated linear regression model showed better results, with R2 = 0.8873 and CC = 0.9420 (P = 1.4656 × 10−4).



Our results imply that temperature has significantly positive correlation with forest biomass, which is consistent with most studies [67,68]. When the precipitation is sufficient or excessive in the growing season, the absorption and accumulation of aerobic minerals in the tree root will be reduced. Additionally, the precipitation is significantly negatively correlated with the radial growth of trees [69,70]. It was noted that when the average annual precipitation is greater than 900 mm, tree growth decreases with increasing annual precipitation [71]. The annual precipitation of Tianma Nature Reserve is 1400–1600 mm, and the rainfall is abundant. Such annual precipitation has negative correlation with forest growth, thereby affecting the reduction of forest biomass in the reserve. It can also confirm the conclusion in this study that the maximum precipitation is negatively correlated with the variation of biomass in the model.



In China, the north subtropical region mainly includes Anhui, Jiangsu, Zhejiang, Hubei, Jiangxi, Hunan, and the southern part of Henan Province. In the study of comparing the estimation model algorithms of aboveground forest biomass in subtropical China, researchers took Zhejiang Province as the research area, and the biomass predicted by ANN model was from 19.1 to 187.1 Mg ha−1, and the average biomass was 88.4 Mg ha−1 [72]. In the process of taking the forest biomass of Yushan National Forest Park in Jiangsu Province as the research object, the aboveground biomass data of the broad-leaved forest sample plot investigated ranged from 32.03 Mg ha−1 to 219.67 Mg ha−1, and the average biomass was 96.76 Mg ha−1. The minimum value predicted by the model was 8.79 Mg ha−1 and the maximum was 206.79 Mg ha−1 [73]. In the northwest of Hunan province, the minimum and maximum aboveground biomass of the surveyed broad-leaved forest plots were 9.42 Mg ha−1 and 223.35 Mg ha−1, respectively. The predicted biomass was mostly <30 or >150 Mg ha−1 [74]. Xiangjiang River is located in the subtropical monsoon humid climate zone, and the entire basin passes through Hunan and Jiangxi Province. Their results showed that the aboveground biomass of broadleaf forest predicted ranged from 4.93 to 189.30 Mg ha−1 [75]. Therefore, our results that predicted biomass of broad-leaved forest biomass ranged from <60 to >160 Mg ha−1 are reasonable. At present, the broad-leaved forest in this study is still in the early and middle stages of natural succession and has not reached the stage of zonal top community. Due to the lack of necessary forest management measures, the growth of natural secondary broad-leaved forest in mountainous areas is relatively slow. However, the biomass per unit area of tree layer would increase with the increase of age and growth of stand, and the AGB per unit area will also increase with the increase of age and growth of stand with the succession progress.




5. Conclusions


In this study, we applied the forest ground survey data of 2019 to calculated surveyed AGB for broad-leaved forest following the study from Li and Lei [46]. As high-resolution remote sensing images could reflect the position of ground objects and predicted biomass accurately, we extracted 36 candidate factors from WorldView-2 satellite images of 2019 and DEM, and 19 factors were selected as the core factors with no or low correlation to each other. By comparing three machine learning algorithms (i.e., RF, SVM, and ANN), ANN was identified as the best method of remote sensing biomass model for broad-leaved forest with R2 = 0.8742 and RMSE = 0.1531. This method was further carried out to estimate broad-leaved forest biomass from 1998 to 2016 using ten Landsat series historical remote sensing images. The results showed that the mean biomass of broad-leaved forest in the reserve was between 90–145 (Mg ha−1) from 1998 to 2016.



It is known that biomass is a cumulative value at a specific time. In order to reflect the driving factors of biomass change more scientifically and accurately, BC with two-year resolution was introduced as the dependent variable. Four significant climate factors (i.e., TmaxT, Tmax, Pmax, and Tavg) were identified from 44 candidate factors through regression analysis. A linear regression model excluding TmaxT was constructed because of the very high correlation between TmaxT and Tmax. Furthermore, the linear regression model was with higher accuracy (R2 = 0.8873, CC = 0.9420 (P = 1.4656 × 10−4)) when PMB was introduced. It implied that Tavg was relatively insignificant, but Tmax, Pmax, and PMB were significant, although Pmax and PMB had negative impact on BC.



Those approaches in this study are useful for improving the national estimation of carbon storage within aboveground biomass of broad-leaved forest and will improve the capacity to report carbon storage at Tianma National Nature Reserve, forest areas of the same forest type, and elsewhere. The research results can provide reference for other forest types. More importantly, our approaches and results can be used to evaluate the proportion and role in subtropics for forest ecosystem.
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Table A1. Information of remote sensing images in study area from 1998 to 2016.






Table A1. Information of remote sensing images in study area from 1998 to 2016.





	Landsat Image ID
	Imaging Date
	Sensor Type
	Code Number
	Line Number
	Data Level
	Spatial Resolution





	LT51220381998036BJC00
	5 February 1998
	TM
	122
	38
	L1T
	30



	LT51220382000042BJC00
	11 February 2000
	TM
	122
	38
	L1T
	30



	LT51220382001364BJC00
	30 December 2001
	TM
	122
	38
	L1T
	30



	LT51220382004021BJC00
	21 January 2004
	TM
	122
	38
	L1T
	30



	LT51220382006106BJC02
	16 April 2006
	TM
	122
	38
	L1T
	30



	LT51220382008096BJC01
	5 April 2008
	TM
	122
	38
	L1T
	30



	LT51220382010085BKT00
	26 March 2010
	TM
	122
	38
	L1T
	30



	LT51220382011088BJC00
	29 March 2011
	TM
	122
	38
	L1T
	30



	LC81220382014064LGN01
	5 March 2014
	ETM+
	122
	38
	L1T
	15



	LC81220382016038LGN00
	7 February 2016
	ETM+
	122
	38
	L1T
	15










[image: Table] 





Table A2. Counts of valid pixels for different scenes in four different regions of the reserve.






Table A2. Counts of valid pixels for different scenes in four different regions of the reserve.





	Date of Scene
	Region 1
	Region 2
	Region 3
	Region 4





	5 February 1998
	89,155
	3076
	7789
	4753



	11 February 2000
	60,929
	2005
	8929
	5487



	30 December 2001
	125,408
	1388
	4568
	3179



	21 January 2004
	62,406
	631
	6057
	452



	16 April 2006
	62,418
	631
	6057
	452



	5 April 2008
	77,351
	582
	7773
	2239



	26 March 2010
	82,955
	522
	7139
	5484



	29 March 2011
	71,156
	491
	6582
	5504



	5 March 2014
	93,162
	545
	7093
	6271



	7 February 2016
	67,801
	1273
	7452
	6632
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Figure 1. Location of the study area. 






Figure 1. Location of the study area.



[image: Remotesensing 14 01066 g001]







[image: Remotesensing 14 01066 g002 550] 





Figure 2. Land use classifications of the Tianma Nature Reserve using random forest method from 1998 to 2016. 
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Figure 3. Mean biomass (Mg ha−1) in Tianma Nature Reserve from 1998 to 2016 with two-year interval, including mean biomass in each area and entire reserve. 
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Figure 4. Spatial distribution of broad-leaved forest biomass about every two years from 1998 to 2016. This study categorizes broad-leaved forest biomass into 7 classes: <60 Mg ha−1, 60–80 Mg ha−1, 80–100 Mg ha−1, 100–120 Mg ha−1, 120–140 Mg ha−1, 140–160 Mg ha−1, and >160 Mg ha−1. 
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Figure 5. Correlation coefficient between two-year biomass change and max precipitation for each area. 
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Table 1. All available meteorological factors in the study area. A total of 44 factors were used in this study, including temperature, precipitation, humidity, sunshine duration, and evaporation.
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	Number
	Meteorological

Factor
	Number
	Meteorological

Factor
	Number
	Meteorological

Factor





	1
	Total mean surface temperature (°C)
	16
	Min precipitation (mm)
	31
	Max sunshine hours (h)



	2
	Average mean surface temperature (°C)
	17
	Total mean temperatures (°C)
	32
	Min sunshine hours (h)



	3
	Max mean surface temperature (°C)
	18
	Average mean temperatures (°C)
	33
	Total mean relative humidity (%)



	4
	Min mean surface temperature (°C)
	19
	Max mean temperatures (°C)
	34
	Average mean relative humidity (%)



	5
	Total daily maximum surface temperature (°C)
	20
	Min mean temperatures (°C)
	35
	Max mean relative humidity (%)



	6
	Average daily maximum surface temperature (°C)
	21
	Total daily maximum temperature (°C)
	36
	Min mean relative humidity (%)



	7
	Max daily maximum surface temperature (°C)
	22
	Average daily maximum temperature (°C)
	37
	Total minimum relative humidity (%)



	8
	Min daily maximum surface temperature (°C)
	23
	Max daily maximum temperature (°C)
	38
	Average minimum relative humidity (%)



	9
	Total daily minimum surface temperature (°C)
	24
	Min daily maximum temperature (°C)
	39
	Max minimum relative humidity (%)



	10
	Average daily minimum surface temperature (°C)
	25
	Total daily minimum temperature (°C)
	40
	Min minimum relative humidity (%)



	11
	Max daily minimum surface temperature (°C)
	26
	Average daily minimum temperature (°C)
	41
	Total evaporation (mm)



	12
	Min daily minimum surface temperature (°C)
	27
	Max daily minimum temperature (°C)
	42
	Average evaporation (mm)



	13
	Total precipitation (mm)
	28
	Min daily minimum temperature (°C)
	43
	Average evaporation (mm)



	14
	Average precipitation (mm)
	29
	Total sunshine hours (h)
	44
	Min evaporation (mm)



	15
	Max precipitation (mm)
	30
	Average sunshine hours (h)
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Table 2. Biomass modeling factors of broad-leaved forest in Tianma Nature Reserve. There are three types: spectral index, textural parameter, and topographic parameter.
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Type

	
Factor

	
Description






	
Spectral indices

	
NDVI

	
     N I R 1 − R e d   /   N I R 1 + R e d     




	
RVI

	
NIR1/Red




	
EVI

	
  2.5   N I R 1 − R e d   / ( N I R 1 + 6 N I R 1 − 7.5 B l u e + 1  )




	
DVI

	
   N I R 1 − R e d   




	
SAVI

	
   1.5   N I R 1 − R e d   /   N I R 1 + R e d + 0.5     




	
MSAVI

	
    1 2      2 N I R 1 + 1   −     ( 2 N I R 1 + 1 )  2  − 8 ( N I R 1 − R e d )       




	
Textural Parameters

	
Entropy

	
      ∑   i , j = 0   N − 1    i  P  i , j     − l n  P  i , j       




	
Secondary Moment

	
      ∑   i , j = 0   N − 1    i P i  j 2    




	
Dissimilarity

	
      ∑   i , j = 0   N − 1    i  P  i j     i − j     




	
Mean

	
      ∑   i , j = 0   N − 1    i  P  i , j     




	
Homogeneity

	
      ∑   i , j = 0   N − 1    i    P  i j     1 +     i − j    2      




	
Correlation

	
      ∑   i , j = 0   N − 1    i P i j       i − M E     J − M E       V  A i  V  A j          




	
Contrast

	
      ∑   i , j = 0   N − 1    i  P  i j       i − j    2    




	
Variance

	
      ∑   i , j = 0   N − 1     P  i j       i − M E    2    




	
Textural Parameters

	
Slope

	
Slope (◦)
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Table 3. Nineteen core factors were selected from 36 candidate factors using nonlinear correlation coefficient method.
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	Serial

Number
	Factor
	Serial

Number
	Factor
	Serial

Number
	Factor
	Serial

Number
	Factor





	1
	B532_contrast
	6
	B532_variance
	11
	B4_dissimilarity
	16
	RVI



	2
	B532_mean
	7
	B3_variance
	12
	Slope
	17
	B532_homogeneity



	3
	B3_secondary moment
	8
	B5_contrast
	13
	B532_entropy
	18
	B3_mean



	4
	B4_variance
	9
	B532_dissimilarity
	14
	B3_entropy
	19
	B4_mean



	5
	B532_correlation
	10
	B3_contrast
	15
	B4_entropy
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Table 4. Performance assessments of three different machine learning methods. R2 and RMSE were obtained through training, testing, validation, and all samples, respectively.
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R2

	
RMSE




	
Training

	
Testing

	
Validation

	
All

	
Training

	
Testing

	
Validation

	
All






	
RF

	
0.6334

	
0.6798

	
0.0728

	
0.6602

	
0.2779

	
0.2202

	
0.3981

	
0.2441




	
SVM

	
0.8620

	
0.4705

	
0.9638

	
0.8151

	
0.1714

	
0.1643

	
0.3207

	
0.1988




	
ANN

	
0.8917

	
0.8726

	
0.9304

	
0.8742

	
0.1625

	
0.1210

	
0.1319

	
0.1531











[image: Table] 





Table 5. Significant correlation (p < 0.05) between the predictive mean BC of the reserve and climate factors, as well as the PMB.
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	Significant Factor
	CC
	p Value





	Total daily maximum surface temperature (°C)
	0.7169
	0.0298



	Average daily maximum surface temperature (°C)
	0.7206
	0.0285



	Max precipitation (mm)
	−0.7027
	0.0348



	Max mean temperature (°C)
	0.6869
	0.0410



	The mean biomass of the previous time (Mg ha−1)
	−0.7118
	0.0315
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