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Abstract: Livestock manure is widely applied onto agriculture soil to fertilize crops and increase soil
fertility. However, it is difficult to provide real-time manure nutrient data based on traditional lab
analyses during application. Manure sensing using near-infrared (NIR) spectroscopy is an innovative,
rapid, and cost-effective technique for inline analysis of animal manure. This study investigated a NIR
sensing system with reflectance and transflectance modes to predict N speciation in dairy cow manure
using a spiking method. In this study, 20 dairy cow manure samples were collected and spiked to
achieve four levels of ammoniacal nitrogen (NH4-N) and organic nitrogen (Org-N) concentrations
that resulted in 100 samples in each spiking group. All samples were scanned and analyzed using
a NIR system with reflectance and transflectance sensor configurations. NIR calibration models
were developed using partial least square regression analysis for NH4-N, Org-N, total solid (TS),
ash, and particle size (PS). Coefficient of determination (R2) and root mean square error (RMSE)
were selected to evaluate the models. A transflectance probe with a 1 mm path length had the
best performance for analyzing manure constituents among three path lengths. Reflectance mode
improved the calibration accuracy for NH4-N and Org-N, whereas transflectance mode improved the
model predictability for TS, ash, and PS. Reflectance provided good prediction for NH4-N (R2 = 0.83;
RMSE = 0.65 mg mL−1) and approximate predictions for Org-N (R2 = 0.66; RMSE = 1.18 mg mL−1).
Transflectance was excellent for TS predictions (R2 = 0.97), and provided good quantitative predictions
for ash and approximate predictions for PS. The correlations between the accuracy of NH4-N and
Org-N calibration models and other manure parameters were not observed indicating the predictions
of N contents were not affected by TS, ash, and PS.

Keywords: NIR; manure sensing; nitrogen; spiking; dairy cow

1. Introduction

Nutrients contained in animal manure are a valuable resource for crop growth when
applied at agronomic rates. However, overapplication can lead to increased nutrient losses
to the environment. Variability in manure nutrient concentrations [1] and traditional
chemical analysis of manure composition [2] makes precise nutrient application difficult to
achieve. Currently, livestock farmers use agitation and sampling techniques to manage the
variability in manure nutrients [1,3]. However, real-time nutrient sensing has the potential
to improve the accuracy and precision of applied nutrients and enhance crop productivity.

Near-infrared (NIR) spectroscopy is a high-energy vibrational spectroscopy performed
in the wavelength range between 750 to 2500 nm where a linear relationship between ab-
sorbance and concentration is exhibited by most biological and agricultural materials [4]. It
provides an alternative analytical technique to traditional analysis methods for determining
the composition of animal manure based on the relationships between spectral and com-
positional properties of a set of samples. Traditional laboratory manure chemical analysis
methods can be expensive (particularly for large sample numbers) and take significant
time to obtain results. This time lag results in concentration data being available after
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manure application, allowing for changes in nutrient accounting systems but not the actual
application rate. A NIR manure sensing system has advantages over traditional analyses
as it is rapid, has high efficiency, is non-destructive of samples, and avoids the use of
hazardous chemicals [5].

Most of the existing literature investigates spectral data from NIR systems to analyze
nutrient concentrations in soil [6,7] and agricultural waste [8–15] with promising results
using a reflectance mode. For example, Raju et al. [15] used a NIR spectrometer with a
diffuse reflectance probe to monitor the total ammoniacal nitrogen (NH4-N) of an anaerobic
cattle manure digester and the NIR model provided excellent predictions of NH4-N for
monitoring and screening purposes. Ye et al. [13] collected various types of manure
samples and obtained spectra data using a NIR spectrometer. The results presented good
predictions for total nitrogen (TN) of animal manure. Malley, Yesmin, and Eilers [14] used
a Foss NIR system in the reflectance mode to predict constituents in hog manure and hog
manure-amended soil and concluded the NIR spectroscopy in reflectance mode was a
feasible technology for analyzing moisture, organic matter, nitrogen (N), and phosphorus
(P) in hog manure. Kemsley et al. [10] compared three spectroscopic techniques for the
determination of NH4-N in composted manure samples and found the NIR reflectance had
the best performance. Currently, only a few researchers have investigated the feasibility
of NIR spectroscopy for manure composition analysis in transflectance mode. Saeys
et al. [16] compared the reflectance and transflectance presentation modes for nutrient
content analysis in hog manure and the results indicated the transflectance mode performed
better than the reflectance mode for predicting TN, NH4-N, dry matter (DM), and other
constituents measured in the study.

Although the NIR spectroscopy has been demonstrated as a reliable technique in
manure nutrient analysis, the sensing systems require periodic maintenance due to the large
variations in manure which are expensive, time-consuming, and technically difficult [17].
Additionally, as the NIR analysis of manure compositions is developed based on the
relationship between nutrient concentrations and the spectral data, it is unknown whether
the changes in the NIR spectral data are driven by the direct variance of N concentration or
by the indirect variance of other manure constituents. This study explores the changes of
NIR predictions by adding external N sources into raw manure samples without affecting
other manure characteristics. Several spiking strategies have been suggested to analyze
soil properties using NIR spectroscopy for establishing calibration models [18–23]. Yet, no
research has been reported to include the spiking methodology in developing calibration
models of NIR in manure analysis.

We hypothesized that (1) the transflectance mode of NIR has a better performance
than the reflectance mode for predicting manure constituents; (2) NIR spectrum is directly
influenced by N concentrations in manure samples and independent to other manure
characteristics. In order to examine the hypothesis, calibration models of NIR sensing
systems for prediction N speciation and other manure constituents were constructed using
dairy cow manure in this study. Calibration samples were prepared by collecting manure
on dairy farms and spiking the raw samples with adding external N sources. Additionally,
these samples were used to determine whether the changes in the NIR spectral data were
driven by the direct variance of N concentration or by the indirect variance of other manure
constituents. Finally, the study also evaluated sensor configurations of a reflectance contact
sensor and a transflectance probe with three different optical path lengths (1, 2, and 5 mm)
to assess the configuration that is most effective in predicting manure constituents.

2. Material and Methods
2.1. Manure Sampling and Chemical Analysis

A set of 20 manure samples were collected and used for model calibration, labeled
from S1 to S20. Dairy cow manure samples were collected from the six dairy farms in
Wisconsin between October 2020 and May 2021. Approximately 2 L of each sample was
collected then stored in closed containers at 4 ◦C for less than 7 days until subsampling
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and analyses were performed. During subsampling, manure was mixed on a stirring
plate for 1 h and a 500 mL subsample was prepared for certified laboratory analysis, a
30 mL subsample was separated for particle size analysis, and ten 50 mL subsamples were
prepared for N spiking assessments.

Particle size distribution of manure samples was analyzed following a modified
procedure of ASTM D6913 [24]. Bulk samples (30 mL) were placed in ceramic dishes and
dried in oven at 105 ◦C for 24 h. Particle size fractioning of the dried manure sample was
performed using a RETSCH AS 200 control vibratory sieve shaker (Retsch GmbH, Garman)
with six stacked mesh sieves (53, 125, 250, 500, 2000, and 4000 µm). The total weight of
each dried manure sample was measured before separation and the dry matter collected
on each sieve after separation.

Chemical analyses of the manure samples for total solids (TS), TN, NH4-N, P, K, and
ash was performed at University of Wisconsin Soil and Forage Laboratory in Marshfield,
WI, a certified lab by the Minnesota Department of Agriculture in the Manure Analysis
Proficiency (MAP) Program, following the A3769 standard [25].

2.2. Manure Spiking

Subsamples of manure were used for N spiking. One subsample was used as a refer-
ence that did not receive any additional N compounds. The remaining subsamples received
incremental NH4-N or Org-N additions by dissolving a specific amount of ammonium
chloride (NH4Cl) or Arginine in the sample. Each raw sample was spiked at four levels
which were 1.25, 1.5, 2, and 4 times the N concentration analyzed by the certified lab of the
raw manure. The concentration of Org-N in manure sample was calculated by subtracting
the NH4-N from TN (Org-N = TN − NH4-N). The NH4-N and Org-N for spiking were pre-
pared using ammonium chloride (NH4Cl) and Arginine, respectively. All spiking samples
were shaken by inverting 20 times and stored in a refrigerator at 4 ◦C for 24 h until the
chemical dissolved completely before scanning with the NIR sensors for analysis.

2.3. Near-Infrared (NIR) Spectroscopic Device and Measurement

A total of 200 samples, including both NH4-N and Org-N spiking groups, were
scanned in the laboratory using a near-infrared spectrometer (Model PSS-2120, Polytec,
Waldbronn, Germany). Each sample was scanned by one reflectance contact head sensor
(HS) (Model PSS-H-B01, Polytec, Waldbronn, Germany) and one transflectance liquid
probe (Model Falcata XP 6, Hellma Analytics, Müllheim, Germany) assembled with three
different optical path lengths of 1, 2, and 5 mm (PB1, PB2, PB5), respectively. The reflectance
(R) measured by HS and transmittance (T) measured by PB was converted to relative
absorbance values using the log (1/R) and log (1/T) transformations, respectively. The
reference spectrum of head sensor was pure white, while the transflectance probes were
referred to distilled deionized (DDI) water to obtain better results. Spectra were recorded
over a wavelength range of 1100 to 2100 nm with a step of 2 nm under reflectance and
transflectance modes. A specific Polytec NIR Sample Cup with optical quartz bottom that
was nearly completely transparent was used in reflectance mode. Manure was manually
stirred before pouring into the cup and between successive measurements to avoid solid
settling. However, there was no stirring during the measurement to avoid the scanning
noise of contact sensor surface. In transflectance mode, manure was contained in a plastic
sample container and stirred before and during the measurement. Three measurements
were taken for each sample using each sensor and the average of measurements was
calculated for further analysis.

2.4. Statistical Analysis and PLS Calibration Assessment

Descriptive statistics and regression analysis were performed using RStudio Version
1.2.1335. The acquisition of spectroscopic measurement data was achieved using the Polytec
analytic software (PAS LABS Version 1.2). All calculations and analysis were performed
with MATLAB version 9.8 R2020a (MathWorks, Inc., Natick, MA, USA), PLS_Toolbox
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version. 8.9 with MATLAB [26], and Microsoft Excel version 16.0 (Microsoft Corporation,
Redmond, WA, USA). NIR calibrations models were developed using partial least-square
(PLS) regression to establish the relationships between spectral data and chemical ref-
erence values of each parameter. Successful predictions of nutrient content using PLS
method depends on proper calibration methods including preprocessing methods and
multivariate methods for regression analysis and the appropriate variable selection tech-
niques [6]. Therefore, pre-processing techniques including no pre-treatment, mean center
(MC), multiplicative scatter correction (MSC), Savitzky-Golay smoothing with first and
second derivation (D), and combinations of any two of them were applied to process the
spectral data. Cross-validation (CV) was used based on the sample size of 100 for each
spiking group [27]. The k-fold method of venetian blinds was selected for CV with 10 data
splits resulting in 10 samples per sub-validation dataset. The optimum number of latent
variables (LV) of PLS regression was determined by the software automatically.

Statistical indicators of coefficient of determination (R2), root mean square error
(RMSE), and the ratio of performance to deviation (RPD) of NIR calibration results were
considered to assess the model performance in this study. R2 indicates the stability and
fitness of a model, and the closer R2 is to 1, the higher the model fit and the more stable
it is [6]. RMSE measures the spread of prediction errors and how concentrated the data
are around the line of best fit. RPD is defined as standard deviation (SD) divided by the
RMSE, and it is more discriminant than R2 when high R2 is close to 1 [28]. Therefore, a
good calibration model is investigated based on the higher R2, the lower RMSE, and higher
RPD values.

Williams [29] defined 7 levels of calibration accuracy for NIR systems based on R2

using cereal products, and a value for R2 between 0.50 and 0.65 indicates that more than
50% of the variance in Y is accounted for by the variance in X so that discrimination between
high and low concentrations can be made. An R2 value between 0.66 and 0.81 indicates
approximate predictions, whereas the value for R2 between 0.82 and 0.90 reveals useful
prediction. Calibration models having a value for R2 above 0.91 are considered excellent.
Williams [30] reported the RPD statistic and considered 6 levels of prediction accuracy based
on the RPD for forages, feeds, and soils samples. For RPD, the calibration is considered very
poor and not useful below 1.9. Between 2.0 and 2.4, the calibration is poor and can only
be used for rough screening. From 2.5 to 2.9, a fair calibration can be used for screening.
Between 3.0 to 3.4, the calibration is good and can be used for quality control. For values
between 3.5 and 4.0 and above 4.1, the prediction is classified as very good and excellent,
respectively, and the calibration is good for process control and any applications to this
type of materials, respectively.

3. Results
3.1. NIR Spectra

The spectra averaged 100 calibration samples of NH4-N and Org-N spiking groups,
respectively, scanned by reflectance and transflectance sensor configurations and are illus-
trated in Figures 1 and 2. Two large broad peaks at approximately 1450 nm and 1950 nm
resulting from the absorption by O-H bonds of water were observed in reflectance HS for
both NH4-N and Org-N spiking samples. The reflectance sensor measures a fraction of the
incident light that is backscattered at the sample surface and directed to the detection optics,
while the transflectance probe is designed for measuring the transmitted part of the incident
light through the sample and back to the detector thereafter, and the part of the signal comes
from the backscattered light at the sample surface [31]. Generally, the presence of peaks in
spectrum indicates a direct correlation between spectral information and analytical concen-
tration, however, the characteristic peaks can be hidden by the overwhelmingly dominant
presence of water which makes it difficult to provide simple visual interpretations of the
NIR spectra [32]. The NIR predictions of N-related signals mainly originate by the first and
second overtones of N-H bonds at 1500–1530 nm and 2168–2180 nm, respectively, and the
N-H stretching vibration of a third overtone at 2050–2060 nm. However, the presence of
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the N-H bond based on visible peaks is hard to identify in the spectrum (Figures 1 and 2)
of this study due to the complete coverage of water absorption. Other interferences can
be generally caused by the effects of light scattering and surface roughness of particles in
heterogeneous and complex materials such as fresh manure. These interferences can be
partially eliminated by choosing appropriate pretreatments of raw spectral data to improve
the predictability. Water content is dominant in manure samples; the NIR spectrum that
refers to a water reference would improve the signal-to-noise ratio compared to that which
refers to a pure white reference, as shown in Figures 1 and 2. The differences between the
NH4-N and Org-N spiked samples were not apparent from the sample spectra.

3.2. Chemical Composition of Manure Samples

Chemical analyses of the twenty original samples for TS, ash, PS, and manure nutrients
including NH4-N, Org-N, P, and K are presented in Table 1. Statistics of the mean, minimum,
maximum, and standard deviation (SD) of the calibration dataset are shown in Table 2. As
the reliability of the NIR calibration is highly dependent on the data range of constituents,
a wide range of dairy cow manure samples with diverse composition is desirable to
develop the NIR calibrations [33]. In our case, the TS, ash, and PS ranges varied between
1.4–19.8%, 13.6–50.2%, and 137–628 µm, respectively. The ranges of NH4-N and Org-N were
0.75–4.25 mg mL−1 and 0.36–3.75 mg mL−1 of the 20 raw manure samples before spiking,
respectively. The reliability of the NIR calibration was improved by the chemicals spiking
to increase diversity of the N content in the calibration dataset, and they were extended
to 17.01 mg mL−1 for NH4-N, and 14.28 mg mL−1 for Org-N (Table 2). The averaged TS,
NH4-N, and Org-N of the raw manure samples in this study were slightly lower compared
to those of the previous studies. Reeves and Van Kessel [31] analyzed 107 dairy cow manure
samples, and the means of TS, NH4-N, and TN were 11.4% (range: 1.4–38.6%), 1.8 mg
mL−1 (range: 0.2–4.7 mg mL−1), and 4.4 mg mL−1 (range: 0.9–9.4 mg mL−1), respectively.
Finzi et al. [34] conducted a study of using NIR spectroscopy to analyze livestock slurry
and digestates and the chemical analysis of 12 dairy slurry showed that the means of TS,
NH4-N, and TKN were 9.01% (range: 6.34–11.24%), 1.53 mg mL−1 (range: 1.15–2.13 mg
mL−1), and 3.31 mg mL−1 (range: 2.52–4.13 mg mL−1), respectively.

Figure 1. Cont.
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Figure 1. (a) Averaged spectrum of 100 samples in NH4-N spiking group scanned by one-reflec-tance
and three-transflectance sensor configurations. The spectrum of PB1, PB2, and PB5 were converted to
pure white reference. (b) Averaged spectrum of 100 samples in NH4-N spiking group scanned by
one-reflectance and three-transflectance (PB1, PB2, PB5) sensor configurations. The spectrum of PB1,
PB2, and PB5 refer to DDI water.

Figure 2. Cont.
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Figure 2. (a) Averaged spectrum of 100 samples in Org-N spiking group scanned by one-reflec-tance
and three-transflectance sensor configurations. The spectrum of PB1, PB2, and PB5 were converted
to pure white reference. (b) Averaged spectrum of 100 samples in Org-N spiking group scanned by
one-reflectance and three-transflectance (PB1, PB2, PB5) sensor configurations. The spectrum of PB1,
PB2, and PB5 refer to DDI water.

Table 1. Chemical and physical properties of raw manure samples.

Sample ID TS (%) Ash (%) PS (µM) NH4-N (mg mL−1) Org-N (mg mL−1) P
(mg mL−1)

K
(mg mL−1)

S1 9.8 13.6 490 1.07 1.46 0.41 1.70
S2 8.1 14.0 498 1.13 1.37 0.42 1.56
S3 5.4 20.6 291 1.13 1.29 0.45 1.52
S4 5.1 22.9 291 1.12 1.27 0.44 1.52
S5 3.8 28.9 347 1.13 1.25 0.43 1.40
S6 4.7 24.6 296 1.17 1.26 0.44 1.38
S7 4.4 25.7 288 1.18 1.23 0.47 1.36
S8 3.0 28.0 278 0.96 0.98 0.36 1.30
S9 2.8 26.6 276 0.89 0.95 0.34 1.14

S10 2.7 27.7 195 0.97 0.94 0.33 1.18
S11 19.8 50.2 343 1.50 2.84 0.81 2.00
S12 6.1 35.8 288 4.25 1.57 0.53 5.05
S13 12.0 17.2 360 1.58 2.84 0.92 3.67
S14 4.7 21.5 314 1.01 1.09 0.47 1.85
S15 1.4 36.4 283 0.75 0.36 0.16 1.08
S16 1.5 43.7 137 0.90 0.37 0.16 1.40
S17 8.4 41.7 314 1.34 1.42 0.61 2.20
S18 6.3 21.1 309 1.07 1.44 0.46 1.67
S19 13.2 22.8 428 1.97 2.76 0.83 2.92
S20 13.3 17.3 628 0.93 3.57 1.10 1.49

TS = total solid; PS = particle size; NH4-N = ammoniacal nitrogen; Org-N = organic nitrogen; P = phosphorus;
K = potassium.
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Table 2. Statistics of manure compositions of calibration sample set.

Parameter TS (%) Ash (%) PS (µM) NH4-N (mg mL−1) Org-N (mg mL−1)

Spiking N/A N/A N/A Before After Before After
N 100 100 100 20 100 20 100

Minimum 1.4 13.6 137 0.75 0.75 0.36 0.36
Mean 6.8 27.0 333 1.30 2.54 1.51 2.95

Maximum 19.8 50.2 628 4.25 17.01 3.57 14.28
SD 4.6 9.8 107 0.75 2.16 0.84 2.46

N = sample size; SD = standard deviation; TS = total solid; PS = particle size; NH4-N = ammoniacal nitrogen;
Org-N = organic nitrogen.

Common composition of raw excreted dairy cow manure that has not been treated or
altered has an average TN content of 4.55–6.47 mg mL−1 (37.97–54.01 lbs 1000 gal−1) [35].
Utilizing these data as a bounding criterion, the TN content of spiked manure sample that
doubled the maximum reported value of 6.47 mg mL−1 which is 12.94 mg mL−1 would be
removed as an outlier. Consequently, S12 spiked for NH4-N at level four, and S19 and S20
spiked for Org-N at level four, were excluded in PLS analysis for N content.

The correlation coefficients (r) between the different constituents of manure samples
based on wet chemical measurements in lab were determined (Table 3). Total N in manure
is the sum of N forms of NH4-N, Org-N, and nitrate. However, nitrate accounts for a
small fraction of TN in manure and is generally negligible and not measured [31]. Higher
correlation between Org-N and TN (r = 0.82) was observed and this was because the
concentration of Org-N in manure sample was calculated by subtracting the NH4-N from
TN. Many studies have reported the correlations between N sources and other manure
constituents; however, the results were not consistent and varied significantly among
studies. Cabassi et al. [36] reported r greater than 0.65 between ash and DM, Org-N and
DM, and Org-N and ash based on analysis of 99 cattle slurry samples. Saeys, Darius, and
Ramon [12] reported group-wise correlations among manure constituents and divided the
constituents into a DM-group and a N-group including the parameters that were highly
correlated with DM content and TN content, respectively. According to Saeys’ analyses,
NH4-N and K were highly correlated to TN content and were assigned to the N-group, and
this was comparable to the results in this study [12,33]. The r between TN and P was 0.80
which indicated a high correlation, and this was not observed in previous research.

Table 3. Correlation coefficients (r) among the chemical constituents in raw samples of dairy cow
manure (N = 20).

Parameter TS Ash PS NH4-N Org-N TN P K

TS 1.00
Ash −0.32 1.00
PS 0.17 −0.62 1.00

NH4-N 0.18 0.16 0.00 1.00
Org-N −0.17 −0.34 0.70 0.25 1.00

TN −0.01 −0.13 0.46 0.76 0.82 1.00
P −0.14 −0.31 0.65 0.25 0.98 0.80 1.00
K 0.07 −0.01 0.09 0.91 0.41 0.82 0.44 1.00

TS = total solid; PS = particle size; NH4-N = ammoniacal nitrogen; Org-N = organic nitrogen; TN = total nitrogen;
P = phosphorus; K = potassium.

3.3. Constituent PLS Calibrations of Reflectance and Transflectance Sensors

The best cross-validation results for manure constituents in reflectance and trans-
flectance modes are presented in Table 4 for NH4-N spiking group and Table 5 for Org-N
spiking group. The scatter plots and linear regression between NIR predictions and refer-
ence values are shown in Figures 3 and 4.
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Table 4. NIR calibrations (n = 100) of manure constituents using reflectance and transflectance sensors
based on the NH4-N spiking sample group.

Configuration Parameter Pretreatment Outliers LVs R2 (CV) RMSE (CV) RPD (CV)

HS

NH4-N MC; D-1,1,15 1 7 0.83 0.65 2.45
TS MSC; D-1,1,15 0 7 0.90 0.015 3.16

Ash MC; D-1,2,15 0 7 0.66 0.057 1.71
PS D-2,2,15 0 5 0.69 60.0 1.79

PB1

NH4-N D-1,2,15 1 9 0.56 1.07 1.50
TS D-1,1,15 0 8 0.97 0.008 5.50

Ash MC; D-2,2,15 0 7 0.86 0.037 2.64
PS MC; D-1,2,15 0 8 0.78 49.4 2.15

PB2

NH4-N MSC; D-1,2,15 1 1 0.30 1.64 1.20
TS MC 0 8 0.88 0.016 2.86

Ash MSC 0 8 0.90 0.031 3.10
PS MSC 0 5 0.70 58.5 1.81

PB5

NH4-N MSC; D-2,2,15 1 1 0.37 1.65 1.26
TS MSC 0 8 0.89 0.015 3.03

Ash MSC 0 9 0.89 0.032 3.00
PS MSC; D-1,2,15 0 8 0.74 53.9 1.97

HS = reflectance head sensor; PB = transflectance probe with optical path length of 1 mm, 2 mm, and 5 mm;
TS = total solid; PS = particle size; NH4-N = ammoniacal nitrogen; LV = latent variable; CV = cross-validation;
RMSE = root mean square error, and the units of NH4-N, TS, Ash, and PS are mg mL−1, %, %, and µM, respectively;
RPD = residual prediction deviation; MC = mean center; MSC = multiplicative scatter correction; D = Savitzky-
Golay derivative: first or second derivative, first or quadratic polynomial interpolation, smoothing kernel of
length 15.

Table 5. NIR calibrations (n = 100) of manure constituents using reflectance and transflectance sensors
based on the Org-N spiking sample group.

Configuration Parameter Pretreatment Outliers LVs R2 (CV) RMSE (CV) RPD (CV)

HS

Org-N D-1,2,15 2 12 0.66 1.18 1.73
TS MC; D-1,2,15 0 9 0.90 0.015 3.16

Ash MC; D-1,1,15 0 9 0.72 0.053 1.88
PS MC; D-2,2,15 0 5 0.67 61.9 1.73

PB1

Org-N MC; D-1,1,15 2 6 0.34 1.67 1.23
TS MC; D-1,1,15 0 6 0.97 0.009 5.42

Ash MC; D-1,1,15 0 6 0.87 0.035 2.77
PS MSC; D-1,1,15 0 7 0.77 50.7 2.09

PB2

Org-N MC; D-1,2,15 2 8 0.27 1.83 1.17
TS MC 0 8 0.92 0.013 3.58

Ash MSC 0 8 0.88 0.034 2.86
PS MSC 0 8 0.78 50.4 2.11

PB5

Org-N MSC; D-1,2,15 2 3 0.15 1.89 1.08
TS MSC 0 7 0.80 0.021 2.26

Ash MSC; D-1,2,15 0 8 0.85 0.038 2.56
PS MC 0 7 0.77 51.6 2.07

HS = reflectance head sensor; PB = transflectance probe with optical path length of 1 mm, 2 mm, and 5 mm;
TS = total solid; PS = particle size; Org-N = organic nitrogen; LV = latent variable; CV = cross-validation;
RMSE = root mean square error, and the units of Org-N, TS, Ash, and PS are mg mL−1, %, %, and µM, re-
spectively; RPD = residual prediction deviation; MC = mean center; MSC = multiplicative scatter correction;
D = Savitzky-Golay derivative: first or second derivative, first or quadratic polynomial interpolation, smoothing
kernel of length 15.
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Figure 3. Cont.



Remote Sens. 2022, 14, 963 11 of 19

Figure 3. The PLS linear relationships between NIR predictions and lab measurements for manure
constituents using reflectance (HS) and transflectance (PB1) sensors based on NH4-N spiking group:
(A) NH4-N content; (B) total solid (TS); (C) ash content; (D) particle size (PS).
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Figure 4. Cont.
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Figure 4. The PLS linear relationships between NIR predictions and lab measurements for manure
constituents using reflectance (HS) and transflectance (PB1) sensors based on Org-N spiking group:
(A) Org-N content; (B) total solid (TS); (C) ash content; (D) particle size (PS).

3.3.1. Path Lengths

Among the three transflectance configurations, the PB1 configuration was the best for
predicting NH4-N content, with an R2 of 0.56 and an RMSE of 1.07 mg mL−1. However,
based on the established criteria, this calibration with an RPD of 1.50 would only have
utility to separate high and low values (Table 4). The calibration accuracy of the PB2
and PB5 for NH4-N content were similar (PB2: R2 = 0.30, RMSE = 1.64 mg mL−1; PB5:
R2 = 0.37, RMSE = 1.65 mg mL−1) and the low R2 values indicated PB2 and PB5 were
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not useful for predicting the concentrations of NH4-N. The number of LVs for PB2 and
PB5 for NH4-N was only one, which indicated that the regression should be regarded
with caution because based on the concepts of PLS analysis, it was unlikely that all the
variance in spectral and reference data was explicable by a single factor [27]. The R2 for
TS achieved with spectra collected in the transflectance mode were all greater than 0.88
which revealed good-to-excellent calibration accuracy. Specifically, comparing predicted
TS to laboratory reference values yielded an R2 of 0.97 and an RMSE of 0.008%, indicating
excellent quantitative predication of PB1 (RPD = 5.5). The TS predicted by PB2 and PB5
had an R2 of 0.88 and 0.89 and RMSE of 0.016% and 0.015%, respectively, and RPD values
of 2.86 and 3.03 showed fair-to-good classifications according to the established criteria.
For predicting ash content, the PB2 configuration had the best performance with an R2

of 0.90 and an RMSE of 0.031%. The PB1 and PB5 configurations had R2 of 0.86 and 0.89
and RMSE of 0.037% to 0.032%, respectively, and both indicated good calibration accuracy
(Table 4). The results of R2 were in the range of 0.70–0.78 with RMSE of 49.4–58.5 µm for
PS and presented approximate accuracy of all three transflectance configurations, and the
RPDs were between 1.81 and 2.15 which revealed the prediction accuracy based on RPD
statistic was poor (Table 4). Overall, the transflectance configuration of PB1 presented
the best predictions for NH4-N, TS, and PS among the three optical path lengths. For ash
content, the R2 and RMSE of PB2 were slightly better than those of PB1 and PB5, however,
the performance of the three configurations for ash calibrations were similar.

The predictions of manure constituents with different optical path lengths in trans-
flectance mode based on the Org-N spiking group are shown in Table 5. Prediction models
based on the transflectance configurations were only able to account for 34% of the variance
in predicted Org-N content. The calibration accuracy of TS decreased as the optical path
length of the transflectance probe increased from 1 mm to 5 mm. The TS predicted by PB1
was excellent with an R2 and RMSE of 0.97 and 0.009%, respectively, and an RPD of 5.42 il-
lustrated the calibration was usable in any application. Similar to the results in the NH4-N
spiking group, PB2 showed better performance for predicting ash content with an R2 of
0.88 and an RMSE of 0.034% compared to the PB1 and PB5 configurations. For predicting
PS, the results of the three configurations were similar and had no significant differences.

The results of NIR predictions in transflectance mode for TS, ash, and PS between
the NH4-N and Org-N spiking groups indicated that these manure constituents could be
predicted independent of the spectral influence of these chemical species.

3.3.2. Reflectance and Transflectance PLS Calibration

To investigate the performance of reflectance and transflectance sensors, linear re-
gression was used to evaluate NIR predictions versus lab measurements for manure con-
stituents using reflectance HS and transflectance PB1 based on NH4-N spiking group
(Figure 3, Table 4). The NH4-N content predicted by NIR had an R2 of 0.83 and an RMSE
of 0.65 mg mL−1 for reflectance HS, and an R2 of 0.56 and an RMSE of 1.07 mg mL−1 for
transflectance PB1, respectively (Table 4). The reflectance HS was useful in predicting NH4-
N content and performed better than the transflectance PB1 which could only discriminate
the high and low concentrations of NH4-N in manure. However, the NH4-N predicted by
reflectance HS (RPD = 2.45) and transflectance PB1 (RPD = 1.50) were classified as poor
and fair based on the RPD statistic. Figure 4 and Table 5 show the linear regression results
of NIR predictions versus lab measurements for manure constituents using reflectance and
transflectance sensors based on the Org-N spiking group. The Org-N content predicted by
the reflectance HS with R2 of 0.66 and RMSE of 1.18 mg mL−1 was more accurate than the
transflectance PB1 with R2 of 0.34 and RMSE of 1.67 mg mL−1 (Table 5). The reflectance HS
approximately predicted Org-N content, whereas the transflectance PB1 was not feasible
for Org-N prediction as the R2 was under 0.5. The number of LVs for the HS Org-N model
was 12 which was relatively large, and this might indicate some uncertainty in the model
computation [27].
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The R2 and RMSE of transflectance PB1 were 0.97 and 0.008% in the NH4-N spiking
group, respectively (Table 4), which indicated that the accuracy of TS predictions was
excellent, and the calibration was usable in any applications (RPD = 5.50). Although
TS predicted by the reflectance HS was less accurate than the PB1, it provided good
quantitative prediction with an R2 of 0.90 and an RMSE of 0.015%. The HS predicted
ash and PS approximately; the R2 and RMSE were 0.66 and 0.057% for ash, and 0.69 and
60.0 µm for PS, respectively (Table 4). The R2 and RMSE values of 0.86 and 0.037% for ash
content and 0.78 and 49.4 µm for PS, respectively, indicated the transflectance PB1 was
better than the reflectance HS in predicting ash and PS in manure samples of the NH4-N
spiking group (Table 4). The calibration evaluations of reflectance and transflectance modes
for TS, ash, and PS in the Org-N spiking group were all similar to the results in the NH4-N
spiking group that the transflectance PB1 (TS: R2 = 0.97, RMSE = 0.009%; ash: R2 = 0.87,
RMSE = 0.035%; PS: R2 = 0.77, RMSE = 50.7 µm) presented a better performance than the
reflectance HS (TS: R2 = 0.90, RMSE = 0.015%; ash: R2 = 0.72, RMSE = 0.053%; PS: R2 = 0.67,
RMSE = 61.9 µm) for predicting TS, ash, and PS, respectively (Table 5).

Therefore, the reflectance HS had a better performance than the transflectance probe
for predicting NH4-N and Org-N concentrations. Both the reflectance and transflectance
provided excellent calibration accuracy for TS, however the transflectance probe was more
accurate than the reflectance sensor. The transflectance probe had a better performance
than the reflectance sensor for predicting ash content and PS.

3.4. Relationship between Nitrogen and Other Manure Parameters

To investigate whether the NIR predictions of N sources were affected by the cor-
relation between the N content and manure characteristics, or directly predicted by the
changes in N concentrations, each sample with its corresponding five spiking levels was
grouped together and labeled from SGNH4N1 to SGNH4N20 for NH4-N spiking group (SG)
samples, and from SGOrgN1 to SGOrgN20 for Org-N spiking group samples. The calibration
dataset was distributed into calibration and validation parts, one SG sample was set as the
validation dataset, and the other 19 SGs (with their corresponded spiking levels) were used
for the PLS calibration dataset. This procedure was repeated 20 times, setting each SG as a
validation dataset, and therefore twenty R2

SG of linear regression between the predicted
versus measured N content of SG were calculated.

The linear regressions between the twenty R2
SG of NH4-N predictions and the mea-

sured TS, ash content, and PS of the predicted sample, respectively, using reflectance HS
and transflectance PB1 are summarized in Table 6. For each SGNH4-N, the manure con-
stituents including TS, ash, and PS were the same for the five spiked samples, and the
concentration of NH4-N was the only variance, and thus a high R2

SG indicated the NH4-N
content was accurately predicted by the NIR spectroscopy independent of TS, ash content,
and PS of the manure. Although most of the R2

SG were greater than 0.8 indicating good
predictions of NH4-N within each spiking group, the prediction accuracy of NH4-N for
individual SG was not consistent and varied from 0.014 to 0.992 for reflectance HS and
from 0.000 to 0.998 for transflectance PB1, respectively (Figure S1). Such low accuracies in
predicting NH4-N in some SG samples may relate to the small sample size (n = 5), with
a relatively large SD of each SG. The coefficients of determination R2

r between the R2
SG

and TS were 0.14 for HS and 0.30 for PB1 (Table 6) which indicated a weak correlation
between the accuracy of NH4-N prediction and manure TS content for both reflectance and
transflectance sensors. Similarly, ash content and PS of manure had little effect on NH4-N
predictions for both HS and PB1 (Table 6).
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Table 6. Linear regression of the twenty R2
SG for predicting NH4-N and Org-N, respectively, versus

the total solid (TS), ash content, and particle size (PS) of the predicted manure sample, respectively.

Parameter
NH4-N Org-N

Sensor Equation Rr
2 Sensor Equation Rr

2

TS
HS 1.89x + 0.69 0.14 HS 2.71x + 0.55 0.27
PB1 −3.33x + 1.03 0.30 PB1 −1.81x + 0.77 0.10

Ash
HS −0.28x + 0.90 0.01 HS −1.20x + 1.05 0.24
PB1 0.42x + 0.69 0.02 PB1 −1.30x + 1.00 0.22

PS
HS 0.00x + 0.80 0.00 HS 0.00x + 0.22 0.47
PB1 −0.00x + 1.10 0.12 PB1 0.00x + 0.56 0.01

SG = spiking group; R2
r = coefficients of determination of R2

SG vs. manure constituents; R2
SG = the R2 of

PLS calibration using 19 SG samples as calibration and 1 SG sample as validation dataset; HS = reflectance
head sensor; PB1 = transflectance probe with optical path length of 1 mm; TS = total solid; PS = particle size;
NH4-N = ammoniacal nitrogen; Org-N = organic nitrogen.

The results of the R2
SG of individual SG for predicting Org-N versus other manure

compositions are presented in Table 6. The R2
SG was between 0.149 and 0.988 for reflectance

HS and between 0.149 and 0.996 for transflectance PB1, respectively (Figure S2). Strong
linear patterns between the R2

SG for predicting Org-N and TS and ash content of manure
samples, respectively, were not observed for both HS and PB1(Table 6). The R2

r values of
R2

SG versus PS for HS and PB1 were 0.47 and 0.01, respectively (Table 6), which indicated
the PS had a greater effect on the predicted accuracy of Org-N content for reflectance HS
than for transflectance PB1.

The non-linear relationships between the R2
SG of NH4-N and Org-N predictions and

TS, ash, and PS of manure samples show that the NIR spectra can predict the concentrations
of NH4-N and Org-N in manure independent of TS, ash content, and PS of the manure
samples. This result indicates that the NIR spectrum is influenced directly by the N source,
and prediction models for NH4-N and Org-N can be made independent of correlations
between the N source and other manure constituent values.

4. Discussion
4.1. Effect of Path Lengths of Transflectance Mode

The performances of the transflectance probe with three configurations of different
optical path lengths were evaluated for manure samples of both NH4-N and Org-N spiking
groups. The averaged raw spectra of transflectance configurations PB1 and PB2 showed
high noise level at 1900–2100 nm which indicated most light was blocked and that the NIR
measurement was not accurate beyond 1900 nm (Figures 1a and 2a). Moreover, the noise
level of PB2 was higher than the PB1 at approximately 1450 nm. The light was completed
blocked and broad peaks at 1450 nm and 1950 nm were not observed in the spectrum of
PB5 in Figures 1 and 2, which indicated the absorbance measured by PB5 was not accurate.
According to the NIR calibration results, the transflectance probe with the shortest optical
path length (PB1) presented the most accurate predictions of manure constituents, including
NH4-N, Org-N, and TS, among the three path lengths (Tables 4 and 5). The performances
of PB1 for predicting ash and PS were similar to PB2 and PB5. An explanation of this result
could be that with a longer path length, the light travels through more solution and is
absorbed, and this would increase the absorbance and have less light transmit through
the sample. Consequently, the spectrum of PB1 configuration which has the shortest
pathway is less saturated compared to PB2 and PB5 with longer pathways during the NIR
measurements, resulting in a better predicted utility.

4.2. NIR Prediction for Nitrogen Concentrations

The PLS calibration results of reflectance and transflectance modes indicated that the
reflectance HS provided better predictions for NH4-N and Org-N than the transflectance
probe. The calibration of the NH4-N content using NIR reflectance was useful, and the
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reflectance HS provided approximately quantitative predictions of Org-N. The NIR trans-
flectance only separated high and low concentrations of NH4-N, whereas it was not usable
for predicting Org-N. The performance of the NIR technique for analyzing NH4-N content
has been investigated in many previous studies and good quantitative predictions in differ-
ent animal specials have been presented. However, only a few studies have investigated
the use of NIR with both transflectance and reflectance sensors analyzing manure nutrients.
Reeves and Van Kessel [37] calibrated the NIR reflectance model using 107 dairy cow’s
manure and the R2 for NH4-N prediction was 0.83, which agree to the results in this study.
Saeys et al. [16] used reflectance and transflectance modes of NIR spectroscopy to analyze
NH4-N content in swine manure and the R2 and RPD were 0.77 and 2.10 using reflectance
mode and 0.76 and 2.06 using transflectance mode, respectively, and our results partially
agreed with those findings that the reflectance presented better predictions for NH4-N than
the transflectance mode. However, the R2 and RPD of reflectance was significantly higher
(p < 0.05) than those of transflectance in this study, whereas the calibrations for NH4-N
of the two modes were close, as reported by Saeys et al. [16]. This may be explained by
the different animal species of manure. The calibrations for Org-N using both reflectance
and transflectance were less accurate than those for NH4-N content. The calibration of
Org-N content in this study was less accurate compared to the previous analysis. Based
on the NIR reflectance spectra of 135 composted swine manure samples, Nam and Lee [9]
reported that the R2 for the Org-N calibration model was 0.76. Reeves [11] analyzed 207
poultry manure samples using NIR and the R2 was 0.89 for Org-N.

4.3. Future Work

Future work may be required to improve the accuracy and precision of calibration
models; validate the calibration models using external manure samples within the predic-
tion range of N from other dairy cow farms; enhance the procedure of spiking method in
manure analysis using NIR techniques; investigate the methodology with other manure
constituents such as P and K; and conduct online variable rate application of organic
fertilizer using NIR sensing system.

5. Conclusions

This study measured the spectra of dairy cow manure samples using a NIR spec-
troscopy in both reflectance and transflectance modes. Manure samples were collected
from six dairy cow farms and spiked with chemical compounds to alter NH4-N and Org-N
contents in the calibration dataset. The NIR models for predicting the constituents in dairy
cow manure were developed using the spiked samples and the performance of the NIR
predictions of different sensor configurations were evaluated. The relationship of NIR
predictions for N contents independent of other manure physical and chemical properties
was explored in this study. The results illustrated a transflectance probe with 1 mm op-
tical path length (PB1) showed the best performance for predicting NH4-N, Org-N, and
TS. The differences of calibration performance for ash and PS among three transflectance
configurations (PB1, PB2, PB5) were small. To compare the reflectance and transflectance
modes of the NIR system, the transflectance probe (PB1) yielded prediction models with
better performance for TS, ash, and PS when evaluating R2 and RMSE of both spiking
groups. Calibration models of the reflectance sensor (HS) had better performance than
the transflectance probe (PB1) for predicting NH4-N (HS: R2 = 0.83, RMSE = 0.65 mg
mL−1; PB1: R2 = 0.56, RMSE = 1.07 mg mL−1) and Org-N (HS: R2 = 0.66, RMSE = 1.18 mg
mL−1; PB1: R2 = 0.34, RMSE = 1.67 mg mL−1) concentrations with higher R2s and lower
RMSEs. Additionally, the HS models provided good prediction for NH4-N (R2 = 0.83) and
approximate predictions for Org-N (R2 = 0.66); however, transflectance PB1 was able to
discriminate high and low values for NH4-N (R2 = 0.56) and was not feasible to use for
predicting Org-N (R2 = 0.34). The calibration of TS using transflectance PB1 was excellent
with an R2 of 0.97 and was usable for any applications. Transflectance PB1 provided good
quantitative predictions for ash and approximate predictions for PS. The correlations be-
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tween the accuracy of NIR predictions for NH4-N and Org-N concentrations and TS, ash,
and PS of dairy cow manure were not observed.

In summary, the transflectance was more accurate than the reflectance for predicting
TS, ash, and PS, while the reflectance provided better predictions of N speciation than the
transflectance in dairy cow manure using the NIR system. The NIR sensors can predict
the N concentrations without being affected by other manure characteristics of TS, ash
content, and PS. The results obtained in this study indicate that the spiking method of
adding chemical N sources to provide adequate calibration samples has the potential to
conduct a rapid and cost-effective analysis of dairy cow manure, including NH4-N, Org-N,
TS, ash, and PS, using NIR spectroscopy.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14040963/s1, Figure S1: Linear regression of the R2

SG of induvial
spiking group (SG) for predicting NH4-N vs. other manure compositions; Figure S2: Linear regression
of the R2

SG of induvial spiking group (SG) for predicting Org-N vs. other manure compositions.
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