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Abstract: The detection and monitoring of changes in urban buildings, as a major place for human
activities, have been considered profoundly in the field of remote sensing. In recent years, comparing
with other traditional methods, the deep learning-based methods have become the mainstream
methods for urban building change detection due to their strong learning ability and robustness.
Unfortunately, often, it is difficult and costly to obtain sufficient samples for the change detection
method development. As a result, the application of the deep learning-based building change
detection methods is limited in practice. In our work, we proposed a novel multi-task network based
on the idea of transfer learning, which is less dependent on change detection samples by appropriately
selecting high-dimensional features for sharing and a unique decoding module. Different from other
multi-task change detection networks, with the help of a high-accuracy building mask, our network
can fully utilize the prior information from building detection branches and further improve the
change detection result through the proposed object-level refinement algorithm. To evaluate the
proposed method, experiments on the publicly available WHU Building Change Dataset were
conducted. The experimental results show that the proposed method achieves F1 values of 0.8939,
0.9037, and 0.9212, respectively, when 10%, 25%, and 50% of change detection training samples are
used for network training under the same conditions, thus, outperforming other methods.

Keywords: change detection; multi-task change detection network; remote sensing; object-level
refinement algorithm

1. Introduction

Remote sensing-based change detection includes difference identification in remote
sensing images of the same area acquired at different times. It plays an important role in the
application of remote sensing images and has been widely used in many areas, including
land usage and cover change, forest and vegetation change, natural disaster monitoring,
and urban development [1–7]. Recently, due to the development of new concepts such as
smart city, automated change detection methods of urban buildings have received much
attention from the scientific community.

Currently, building change detection methods based on remote sensing images can
be roughly divided into traditional methods, including the principal component analysis
(PCA) [8–10], change vector analysis (CVA) [11–13], and texture-based transforms [14,15],
and deep learning-based methods, including the fully convolutional neural network
(FCN) [16–18], deep belief network (DBN) [19–21], and principal component analysis net-
work (PCANet) [22–24]. Regardless of many limitations, the traditional methods still
occupy a certain position in the field of specific change detection because they require fewer
training samples. However, the traditional methods have certain disadvantages in accuracy,
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reliability, and practicability compared to the deep learning-based methods. Due to the
limitations of traditional methods, an increasing number of studies on change detection
have been based on deep learning-based methods.

Deep learning-based change detection methods can be classified into two types: post-
classification comparison methods and direct comparison methods. The post-classification
comparison methods [25,26] first extract the ground objects of two images and then com-
pare the extraction results to obtain the change area. Although this approach can reduce
the demand for change detection samples, the imaging conditions of two compared images
cannot be the same, that is, even with the area unchanged, the result of the ground object
extraction will be different, and these errors will be introduced into the subsequent compar-
ison results. The direct comparison methods [27–29] directly compare the high-dimensional
features of two images to obtain the change region by constructing a network. Although
this approach can overcome the above-mentioned shortcomings of the post-classification
comparison methods, the number of required training samples is often larger. It should
be noted that unannotated change detection samples are difficult to obtain, let alone an
annotated change detection dataset. Therefore, reducing incorrect detections when using
fewer samples can help to improve change detection methods.

This paper proposes an end-to-end change detection method called the multi-task change
detection network, which is based on prior knowledge of building detection. The proposed
method can achieve high accuracy with only a few building change detection samples.

(1) Aiming to solve the problem of the low accuracy of the change detection methods
based on deep learning in the case of a small number of samples, a new multi-task
change detection method is proposed. The proposed method uses the building extrac-
tion dataset to pre-train the building extraction branch so that the feature extraction
module of the network can better extract the building features. Therefore, only a small
number of building transformation detection samples are required for the follow-up
network training while achieving an excellent detection effect.

(2) To enhance the network’s ability to extract the features of a building, a building
detection branch is added to the network, and a multi-task learning strategy is used in
network training so that the network has a stronger feature extraction capability.

(3) For making full use of the results of the building extraction branch to improve the
change detection accuracy, a object-level refinement algorithm is proposed. Combined
with the results of the change detection branch and building extraction branch, the
proposed method selects the building mask with change area greater than a predefined
threshold as a final change detection result, which improves the accuracy and visual
effect of change detection results.

The effectiveness of the proposed method is verified by the experiments on a public
dataset. The experimental results show that under the same conditions, the proposed
method is as effective as the existing advanced methods, although it uses a smaller number
of change detection samples. When all compared methods use the same number of change
detection samples, the proposed method is superior to the advanced methods.

The rest of this paper is organized as follows. Section 2 reviews the related work.
Section 3 introduces the proposed method in detail. Section 4 presents the detailed ex-
perimental results of the proposed method. Section 5 discusses open issues, and finally,
Section 6 concludes the paper.

2. Previous Work

There have been many studies on change detection methods based on deep learning.
This section briefly reviews several advanced change detection methods.

At present, most of the deep learning-based change detection methods have focused
on how to improve the accuracy and reduce the need for annotated samples. As a kind of
method that has low requirements for annotated samples, post-classification comparison
change detection methods [25,26] have certain significance in application. Methods of
this kind usually adopt segmentation network (e.g., mask region-based convolutional
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neural network, U-Net and DeepLabv3+) to extract object masks firstly, and then compared
the mask of two image to obtain change detection results. Although this approach can
reduce the requirements for annotated samples and does not require using real change
detection samples, the change detection accuracy is highly dependent on the building
detection accuracy. Considering the similarities between the building detection and change
detection tasks, multi-task learning-based methods [28,29] were proposed. By employing
the multi-task learning strategy, these models can use the connection between the two
tasks to improve the accuracy, but it requires a large number of training samples, and
these methods proposed do not fully utilize the results generated by the object detection
branches. To reduce the number of samples required for change detection, methods [30–34]
based small samples were proposed. Among them, the approaches of Chen et al. [31] and
Zheng et al. [32] stand out. Chen et al. proposed a synthesis framework, namely, Instance-
level change Augmentation (IAug), to generate change instances in unchanged regions
by leveraging generative adversarial training. In this way, the samples can be augmented
and the risk of class imbalance can also be reduced. However, their method also has the
problem that the generated architectural image may not be faithful with the image in the
target domain, which will affect the training effect of the network. Zheng et al. proposed a
single-temporal supervised learning (STAR) method, which leverages different regions in a
single period of image to construct pseudo bitemporal image pairs. This method can train
change detection network by only using unpaired labeled images. There are also some
unsupervised deep change detection methods [35–38], but their accuracy still has a lot of
room to improve.

Currently, there is no change detection method that can handle all application scenar-
ios. Due to the limitation of the performance of the object detection network, the accuracy
of post-classification comparison change detection methods is difficult to be greatly im-
proved. The large demand for annotated samples of the direct comparison method limits
its application. Although some data augmentation methods are mentioned above, they
provide limited usefulness. The problem of relying on a large number of labeled samples is
that, although unsupervised change detection methods overcome many obstacles, such
methods still require a lot of work.

Inspired by the above-mentioned methods, this paper proposes a new change detection
method based on a convolutional neural network trained with a small dataset. This method
makes full use of the correlation between the building extraction branch and the change
detection branch and improves the accuracy of change detection results by making full use
of the building extraction branch.

3. Proposed Methods

In this section, the proposed change detection method is described in detail. As shown
in Figure 1, the proposed method includes four main parts: a building detection branch, a
change detection branch, a learning strategy (pre-training and multi-task learning), and an
object-level refinement algorithm.

3.1. Building Detection Branch

At present, there are many building extraction methods based on convolutional neural
networks (CNNs) [39–41]. Among CNNs, the U-Net has been widely used in building
extraction applications due to its high segmentation accuracy and fine edges. Among
many improved building extraction algorithms based on the U-Net, the improved U-Net
algorithm proposed by Wei et al. [42] has the advantages of high accuracy on multiple
open datasets and stronger multi-scale feature fusion ability; so, this network is selected
as a building extraction module in the proposed method. The structure of the improved
U-Net is shown in Figure 2, where it can be seen that it consists of two parts. The left
part denotes the feature extraction structure of the network. Through four pooling layers,
the feature extraction network generates a total of five feature maps with different scales.
Correspondingly, the decoding structure on the right uses four upsampling layers to ensure
that the segmentation results can be restored to the original size. Moreover, the decoding
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structure of the network adopts the skip connection structure on the same stage, which
makes the decoding structure integrate more low-level features when recovering the feature
map so that the edge information of the network segmentation result can be more refined.
Compared to the traditional U-Net, the feature extraction structure in Figure 2 has three
additional convolution layers, and a certain number of batch normalization (BN) layers are
introduced to realize feature normalization and to accelerate network convergence.

In the network structure shown in Figure 2, features P2, P3, P4 and P5 contain richer
semantic and structural information in the same stage [42], which can also be used in the
change detection branch. Therefore, the difference of features P2, P3, P4 and P5 are selected
as the input of the change detection branch. See section for specific technical details.

Figure 1. Overview of the proposed method. The building extraction modules have been pre-trained.
Modules of the same color have the same weight.

Figure 2. The improved U-Net Structure.

3.2. Change Detection Branch

The feature extraction structure in the building detection branch can provide not only
building feature information but also necessary information on building change features
for change detection. As shown in Figure 1, the input of the change detection branch is
Pd2–Pd5, which can be obtained as follows:

Pdi = Pi− P′i, (1)

where Pi represents the feature i extracted from image A, and P′i represents the feature i
extracted from image B.
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The detailed structure of the change detection branch is shown in Figure 3, where it
can be seen that it includes two parts, the neck part and the head section. The neck part is
used to fuse multi-scale difference feature maps Pd2–Pd5. The multi-scale feature fusion
modules, such as path aggregation network (PANet), neural architecture search feature
pyramid network (NAS-FPN), and bi-directional feature pyramid network (BiFPN) [43–45],
have been widely studied. Considering that the proposed change detection method is based
on a small number of change detection samples, to avoid the overfitting problem, a feature
pyramid network (FPN) with fewer parameters and a simple structure is chosen as a feature
fusion module of the change detection branch. As a classic feature fusion method [46], the
FPN has been used in many studies [47–49]. The FPN represents a top-down network
structure with lateral connections, which can integrate and make full use of the features of
multiple scales in the network, making the segmentation result more refined.

Figure 3. The change detection branch structure. The FPN module is used to fuse high-dimensional
features of different scales.

The head section of the change detection branch refers to the semantic segmentation
branch introduced by Kirillov et al. [50]. In this part, four high-dimensional feature maps
with different scales are restored to the original size by the repeated structure consisting of
two upsampling, convolution, BN, and rectified unit (ReLU) layers first and then summed
up element by element. Finally, a pixel-based segmentation map with the same resolution
as the original one is generated by a 3 × 3 convolution kernel and sigmoid function.

3.3. Pre-Training and Multi-Task Learning

Due to their powerful feature extraction capabilities, CNNs have become a common
method for remote sensing image processing. However, their powerful feature extraction
ability requires using a large number of learning samples. In the change detection task, it is
very difficult to obtain the pixel-level labeled change detection samples; therefore, reducing
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the dependency on the number of samples is the main challenge to be addressed. As a
common training strategy in CNN, pre-training based on transfer learning can solve the
problem of insufficient samples. In the proposed method, the building extraction samples
are used to pre-train the building detection branch with shared weights to extract building
features better. The high-dimensional feature map of building change required by the
change detection branch can be obtained by (1). In this way, the highly accurate extraction
effect can be achieved while using a small number of change detection samples for training.
In the pre-training stage, the cross-entropy function is used as a loss function, and it can be
defined as follows:

loss = − 1
N

N

∑
n=1

[yn log ŷn + (1− yn) log (1− ŷn)], (2)

where N represents the number of samples; yn is the true value of the samples, which can
be 0 or 1, and ŷ is the prediction of the network, ranging from 0 to 1.

As a way for a machine to imitate human learning activities, multi-task learning
can transfer similar knowledge from one task to another [51]. In the proposed method,
due to the similarity between the change detection task and the building extraction task,
the multi-task learning strategy is adopted to make full use of the useful information in
multiple learning tasks to help each branch learn data patterns better. During the proposed
network training, supervised training of two branches is performed at the same time, and
each branch adopts cross-entropy as a loss function. The training strategy is given by:

Loss =
Q

∑
i=1

lossi, (3)

where Q denotes the number of branches, lossi is the loss of a branch i.
Our training strategy is as follows: firstly, we only train the building detection module

(as shown in Figure 2) in the pre-training stage, and then we adopt the multi-task learning
strategy to train the building extraction and change detection modules simultaneously.

3.4. Object-Level Refinement Algorithm

In the proposed change detection method, the segmentation results of the building
detection branch have high accuracy and fine edges, and the segmentation results of
the two branches (building mask and change building mask) are similar. Therefore, the
changing mask can be used to pick out the two-phase building mask and to retain the
change building mask. For instance, in the area where no buildings are detected in the
two-phase images, the change detection results will be considered as a pseudo-change
if changes were detected in this area. In this way, the pseudo-change can be eliminated,
thereby improving detection accuracy.

Based on this idea, an object-level refinement algorithm is developed, and the specific
process is shown in Figure 4.

The object-level refinement algorithm includes three steps. The first step is to obtain
the union m1 of two phases of the building mask. The second step is to overlap m1 with
the change detection mask to obtain m2. The third step is to process m2. The processing
rules are as follows:

(1) If a change mask is detected in the area where a building mask has been detected, and
the number of the pixels in the intersection of the two masks divided by the number
of the pixels in the building mask is greater than the predefined threshold α, then the
building mask is set as a result of the processed change mask.

(2) If a change mask is detected in the area where a building mask has been detected, and
the number of the pixels in the intersection of the two masks divided by the number of
the pixels in the building mask is less than the predefined threshold α, then all masks
in the area are set as non-change as a processed result.
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(3) If there is only a change mask and no building mask in an area, all masks in the area
are set as non-change as a processed result.

(4) If there is only a building mask and no change mask in an area, all masks in the area
are set as non-change as a processed result.

Figure 4. Object-level refinement algorithm. (1) The first step is to find the union of the masks of the
two phases of buildings. (2) The second step is to overlap the union of the building masks with the
change mask. (3) The third step is to pick out the building mask that meets the threshold requirements
as a final change detection result.

In the subsequent experiments, it is shown that the processed change detection results
not only have a significant improvement in the evaluation index but the mask edges of the
changes are also more refined.

4. Experiments and Analysis

To evaluate the proposed method, a series of ablation experiments were conducted,
and the proposed method was compared with other change detection methods on the
WHU Building Change Dataset [52].

4.1. Dataset and Implementation Details

The WHU Building Dataset [52] was used for model pre-training, and the WHU
Building Change Dataset was used to evaluate the proposed method. The study area
was located in Christchurch, New Zealand, having an area of 450 km2 at a 0.2-m spatial
resolution, as shown in Figure 5. In Figure 5, the red box is a part of the WHU Building
Dataset, and the images of this dataset were obtained in 2016; the yellow box denotes the
WHU Building Change Dataset, whose images were obtained in 2011 and 2016. The images
in the black (A), blue (B), and green (C) boxes are used as training data, and they accounted
for 10%, 25%, and 50% of the WHU Building Change Dataset, respectively. In Figure 5, the
images in the purple (D) box are used as test data, which accounted for 50% of the WHU
Building Change Dataset; 10% of the test data were randomly selected for verification.
The images were recorded into 512 × 512 patches without overlapping and then resized
to 256 × 256. Finally, 1702 tiles were included in the red box, and the black box included
192 × 2 patches; 480 × 2 patches were included in the blue box, and 960 × 2 patches were
included in the green box. The purple box included 960 × 2 patches. In order to prove that
our method also has advantages in general cases, we also cropped the dataset into training,
validation and test sets in a ratio of 8:1:1.
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Figure 5. Study area in Christchurch, New Zealand, at a 0.2-m spatial resolution. The red and yellow
boxes indicate the pre-training data and change detection data, respectively.

The proposed algorithm was implemented using the Pytorch framework on a PC with
Windows 10 system. In model pre-training, the Adam optimizer with a batch size of 16
and an epoch number of 150 was used. The initial learning rate was 1× 10−3, and it which
decreased to 5× 10−4 and 2.5× 10−4 when the epoch number was 80 and 120, respectively.
Furthermore, random resized crop, rotation, and horizontal flip and color jitter were used
as data augmentation methods. In training, the Adam optimizer with the same batch size
and epoch number as in pre-training was used. The initial learning rate was set to 1× 10−4,
and it which decreased to 5× 10−5 and 2.5× 10−5 when the epoch number was 80 and 120,
respectively. The data augmentation methods were the same as those used in pre-training.
All experiments were performed on a device with an Inter(R) Xeon(R) Silver 4114 CPU,
128-GB RAM and an NVIDIA TITAN 24-GB GPU. The training took 7 h in total.

In the algorithm evaluation, we use precision, recall and F1 value three as our evalua-
tion indicators:

precision =
TP

TP + FP
, (4)

recall =
TP

TP + FN
, (5)

F1 =
2 ∗ precison ∗ recall
precision + recall

, (6)
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where TP is the number of true positives, FP is the number of false positives, TN is the
number of true negatives, and FN is the number of false negatives.

4.2. Results of Change Detection

The comparison results of the proposed method and several advanced methods on the
WHU Building Change Dataset with the threshold α of the object-level refinement algorithm
as 0.5 for different sample sizes are presented in Table 1. As shown in Table 1, the proposed
method achieved the highest F1 value among all the methods when 50% of the total change
detection samples were used as training samples. When only 10% of the total change
detection samples were used as training samples, the proposed method achieved a better
performance (F1 value of 0.8939) than most methods, which were trained with a significantly
larger number of change detection samples than the proposed method. This was because
the proposed method adopts transfer learning to strengthen the network’s ability to extract
building features. Additionally, high-accuracy building detection branch supplements the
missing part of change detection results and also provides necessary information for noise
elimination through the object-level refinement algorithm. Therefore, the proposed method
can achieve good detection performance under a small training dataset size. As shown
in Table 2, we also compared with several current advanced methods in the case of large
samples, from which we can see that our method still has advantages.

Table 1. Results on WHU Building Change Dataset (Small Samples).

Method Year Precision Recall F1 Value

Ji et al., 2019a [25] (25% samples used for training) 2019 0.9520 0.8040 0.8745
Ji et al., 2019a [25] (50% samples used for training) 2019 0.9310 0.8920 0.9111
IFN [53] (50% samples used for training) 2020 0.9026 0.8054 0.8512
STANet [54] (50% samples used for training) 2020 0.7429 0.8935 0.8121

Our method (10% samples used for training) 2022 0.9220 0.8675 0.8939
Our method (25% samples used for training) 2022 0.9173 0.8906 0.9037
Our method (50% samples used for training) 2022 0.9512 0.8930 0.9212

Table 2. Results on WHU Building Change Dataset (Large Samples).

Method Year Precision Recall F1 Value

DASNet [55] (80% samples used for training) 2020 0.8920 0.9050 0.8980
DTCDSCN [28] (80% samples used for training) 2020 0.9015 0.8935 0.8975
IFN (80% samples used for training) 2020 0.9159 0.9374 0.9265
STANet (80% samples used for training) 2020 0.9007 0.8040 0.8496
SRCDNet [56] (80% samples used for training) 2021 0.8484 0.9013 0.8740

Our method (80% samples used for training) 2022 0.9457 0.9293 0.9374

Figure 6 shows five examples of change detection results of the proposed method
and other methods on 256 × 256 patches for different training sample sizes. Based on the
comparison results, the proposed method was more accurate and had finer edge details
than the other methods. As shown in the second and third rows in Figure 6, Figure 6d,e
include more missed detection results than Figure 6f, but the overall difference is not
significant. This is because the final change detection mask in the proposed method is
obtained by the object-level refinement algorithm, which is actually a screened building
mask. Therefore, even if there is a certain detection error or a missed detection in the
change detection branch results, it will have little impact on the final refinement results.
The effectiveness of the object-level refinement algorithm will be discussed in Section 4.3.
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Figure 6. Change detection results of different methods on the WHU Building Change Dataset.
(a) 2011 images; (b) 2016 images; (c) ground truth; (d) the proposed method (10% of samples were
used for training); (e) the proposed method (25% of samples were used for training); (f) the proposed
method (50% of samples were used for training); (g) Ji et al. [25] (50% of samples were used for
training); (h) IFN [53] method; (i) STANet [54] method.

Figure 7 shows the final test results of the proposed method in the entire test area for
different training sample sizes, where white pixels represent true positives, black pixels
represent true negatives, red pixels represent false positives, and blue pixels represent false
negatives. From the perspective of the whole test area, the proposed algorithm achieved
a high accuracy under different training sample sizes, and as the training sample size
increased, the error detection gradually decreased.

(a)

(b)

(c)
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(d)

(e)

Figure 7. Results of the proposed method on the whole test area. (a) 2011 image; (b) 2016 image;
(c) 10% training data; (d) 25% training data; (e) 50% training data.

4.3. Efficiency of Object-Level Refinement Algorithm

Figure 8d,f,h show the results of the proposed method without the object-level re-
finement algorithm for different training sample sizes. Comparing these results with the
results in Figure 8e,g,i, there were more incomplete masks in the results of the change
detection branch under 10% and 25% training data. However, after the introduction of the
object-level refinement algorithm, the results have been improved to a large extent.

Figure 8. The results of the proposed method before and after the introduction of the object-level
refinement algorithm for different sample sizes. (a) 2016 images; (b) 2011 images; (c) ground truth
data; (d) unprocessed data (10% of samples were used for training); (e) processed data (10% of
samples were used for training); (f) unprocessed data (25% of samples were used for training);
(g) processed data (25% of samples were used for training); (h) unprocessed data (50% of samples
were used for training); (i) processed data (50% of samples were used for training).

Table 3 shows the comparison of the evaluation metrics before and after introducing
the object-level refinement algorithm under different training set sizes. As shown in
Table 3, there were large differences in precision, recall, and F1 value under 10% and 25%
training data before and after the object-level refinement algorithm processing. This result
is consistent with the results in Figure 6, which confirms the effectiveness of the object-level
refinement algorithm in the proposed method.
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Table 3. Results Before and After being Processed.

Training Data Size Processed Unprocessed

Precision Recall F1 Value Precision Recall F1 Value

10% 0.9220 0.8675 0.8939 0.8770 0.8247 0.8501

25% 0.9173 0.8906 0.9037 0.8927 0.8879 0.8903

50% 0.9512 0.8930 0.9212 0.9420 0.8966 0.9187

In the previous experiments, the threshold α in the object-level refinement algorithm
was set to 0.5, which is the threshold selected when neither precision nor recall is the
primary concern. In fact, the selection of threshold α has a significant impact on the object-
level refinement algorithm results. Figure 9 shows the relationship between threshold α
and evaluation metrics, precision, recall, and F1 value when the object-level refinement
algorithm was used for different training set sizes.

Figure 9. The relationship between the threshold α and three evaluation indicators, precision, recall,
and F1 value.

As shown in Figure 9, with the increase in threshold α, precision showed an upward
trend, recall showed a downward trend, and F1 value first increased and then decreased.
This was because, with the object-level refinement algorithm, buildings in the area where
no change is detected are removed. In the area where the change is detected, with the
reasonable increase of threshold α, the object-level refinement algorithm can make up for
the missing part of the change detection results and eliminate noise. Although some correct
results will inevitably be deleted when eliminating noise, its impact is small. Therefore,
the indicator F1, which represents the comprehensive performance, will be improved. As
threshold α continues to increase, only results of change detection branch with higher
accuracy will be retained. Therefore, precision will increase, while recall and f1 will
decrease. Theoretically, the decline of the three indicators of the change detection branch
trained by more samples is smaller, and the experimental results shown in Figure 9 also
prove this point of view.

Therefore, when selecting the value of threshold α, if it is necessary to ensure that,
after being processed by the object-level refinement algorithm, the result has a high recall,
a smaller value of α should be selected. In that case, the precision will not decrease much
compared with the one where the object-level refinement mechanism is not used . If it is
necessary to ensure that the processed result has a higher precision, a larger α should be
chosen, but to ensure that the recall does not drop too much, the value of α should not be
too large. If the processed results need to be improved regarding the precision, recall, and
F1 value at the same time, the value of α needs to be moderate. For instance, on the WHU
Building Change Dataset, the moderate range of α is approximately 0.4–0.5.

4.4. Efficiency of Pre-Training and Multi-Task Learning

The experiment presented in Section 4.3 demonstrates the effectiveness of the object-
level refinement algorithm. As presented above, the effect of the object-level refinement
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algorithm depends on the performance of the change detection branch. Therefore, to obtain
a higher change detection accuracy, it is necessary to improve the accuracy of the change
detection branch. When strategies such as pre-training and multi-task learning are not used,
the learning effect of a network is relatively poor under a small dataset. Table 4 shows the
evaluation indicators of the proposed method when the multi-task learning, pre-training,
and object-level refinement algorithm are used for different sample sizes at α = 0.5.

Table 4. Results of Adopting Different Strategies.

Sample Size Strategy Precision Recall F1 Value

10%

none 0.7627 0.5451 0.6358
multi-task learning 0.8718 0.7202 0.7888

multi-task learning and pre-train 0.8770 0.8247 0.8501
multi-task learning, pre-train

and object-level refinement algorithm
0.9220 0.8675 0.8939

25%

none 0.7350 0.8546 0.7903
multi-task learning 0.8424 0.8959 0.8588

multi-task learning and pre-train 0.8927 0.8879 0.8903
multi-task learning, pre-train

and object-level refinement algorithm
0.9173 0.8906 0.9037

50%

none 0.8908 0.8824 0.8866
multi-task learning 0.9271 0.9019 0.9143

multi-task learning and pre-train 0.9420 0.8966 0.9187
multi-task learning, pre-train

and object-level refinement algorithm
0.9512 0.8930 0.9212

As shown in Table 4, when 50% of samples were used for training, strategies such
as pre-training and multi-task learning did not significantly improve the precision, recall,
and F1 value. This was because, in the case of a sufficient number of samples, the network
learned the building features well , and additional learning strategies had a slight impact on
the network results. However, when 10% or 25% of samples were used for training, these
strategies improved the precision, recall, and F1 value significantly. This was because when
the training samples were insufficient, additional learning strategies could significantly
improve the feature extraction capability of the network. Due to the similarity between
the building detection task and the change detection task, when using multi-task learning,
the two tasks could promote each other’s learning effect during learning. In this case,
building segmentation samples could be used to compensate for the shortage of change
detection samples. On this basis, by introducing the pre-training, the network can obtain
building feature extraction capabilities in advance through building segmentation samples,
thereby further improving the detection accuracy of the network under a small sample
number. Since the pre-training and multi-task learning strategies used in this work both
use building segmentation samples to improve the network’s ability to extract building
features, the effect of the building detection branch on the network performance will also be
improved. This type of improvement can affect the final change detection result obtained
by the object-level refinement algorithm. By applying the above-mentioned strategies, the
proposed method makes full use of the building detection branch in both the training phase
and the testing phase and compensates for the limitations of other multi-branch change
detection methods.

The results of gradually adopting various strategies under 10% training data are
shown in Figure 10, where it can be seen that the improvement from column d, where
no strategy is used, to column e, where multi-task learning is used, is the most obvious,
followed by the improvement from column e with multi-task learning to column f with
multi-task learning and pre-training, and finally the improvement from column f with
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multi-task learning and pre-training to column g with multi-task learning, pre-training,
and object-level refinement algorithm. This result was because in the case of insufficient
samples, multi-task learning could better enhance the building feature extraction ability
of the network, and useful information could be used to enhance the learning effect of
each branch. Since the feature extraction capability of the network was enhanced to a
certain extent by using multi-task learning, the improvement effect was reduced when the
pre-training strategy was adopted, which was the most obvious in the case of 50% training
data, as shown in Table 4. In general, each of the adopted strategies had a large effect on
the detection result for a small data size.

Figure 10. Samples of Adopting Different Strategies under 10% Training Samples. (a) 2016 images.
(b) 2011 images. (c) ground truth. (d) none. (e) multi-task learning. (f) multi-task learning and
pre-training. (g) multi-task learning, pre-training and object-level refinement.

5. Discussion

In this section, the advantages and future improvements of the proposed method
are discussed. The comparison between the proposed method and several advanced
deep learning-based change detection methods on the WHU Building Change Dataset has
shown that the proposed method can achieve better performance than the other methods
under small change detection sample sizes. This improvement depends to a certain extent
on building extraction samples for pre-training. However, this cannot be regarded as
a defect of the proposed algorithm because, in addition to the WHU Building Change
Dataset used in the experiment, there are currently many other public building detection
datasets, such as Inria and AIRS datasets, but few change detection datasets. In addition,
the mapping and urban planning departments of central and local governments also have
global architectural GIS maps [25], which can be used in projects. Currently, the main
challenge is to overcome the lack of change detection samples, and the proposed method
can address this challenge well.

According to the ablation experiment, the object-level refinement algorithm has a
certain effect on the detection result under a reasonable threshold α, and this effect is more
significant when the training sample size is small. The relationship curve between the
threshold α and evaluation indicators shows that in most cases, threshold α can have a
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positive effect on the network performance. When the threshold α is small, the proposed
algorithm can obtain a high recall while ensuring good precision within a reasonable
range. In most practical applications, it is required to reduce the detection error without
introducing missing detections as much as possible.

The introduced object-level refinement algorithm also has certain defects, that is, when
only one part of a building changes, the object-level refinement algorithm will conclude
that the whole building has changed. Therefore, the object-level refinement algorithm can
have a negative effect on the detection result when this situation occurs. In addition, the
object-level refinement algorithm requires adjusting the threshold α manually according
to different engineering requirements, which can be time-consuming in the case of large
data volumes. In the future, we will consider how to improve the object-level refinement
algorithm to make it learnable so as to solve the mentioned shortcomings.

6. Conclusions

This paper proposed a novel end-to-end building change detection network under the
idea of multi-task learning. Through unique decode module and appropriately selecting
the high-dimensional features for sharing, the network’s dependence on change detection
samples is reduced greatly. The results of experiments in Tables 1 and 2 show that our
method trained only with 10% samples exceeds most of the methods we compared, with
the F1 value of 0.8993. For taking full advantage of the building detection branch, the object-
level refinement algorithm is proposed, which improved final change detection results.
Through ablation experiments, the effectiveness of object-level refinement algorithm was
proved in the case of small samples. Experiments show that after using proposed method,
F1 value improves by 4.38% when training with only 10% of samples, and improves by
1.34% when training with 25% of samples. In addition, it is shown that in the case of
fewer change detection training samples, the proposed method can achieve high-accuracy
change detection results and can adjust the precision, recall, and F1 values of the results by
adjusting the threshold value α of the object-level refinement algorithm, which is of great
engineering significance because the existing public change detection datasets are limited
and engineering requirements for test indicators are not the same for all applications.
Our method can be regarded as an effective way when the change detection samples are
insufficient. Furthermore, it provides a new idea for small sample change detection method.
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