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Abstract: Riparian zones fulfill diverse ecological and economic functions. Sustainable management
requires detailed spatial information about vegetation and hydromorphological properties. In this
study, we propose a machine learning classification workflow to map classes of the thematic levels
Basic surface types (BA), Vegetation units (VE), Dominant stands (DO) and Substrate types (SU)
based on multispectral imagery from an unmanned aerial system (UAS). A case study was carried
out in Emmericher Ward on the river Rhine, Germany. The results showed that: (I) In terms of overall
accuracy, classification results decreased with increasing detail of classes from BA (88.9%) and VE
(88.4%) to DO (74.8%) or SU (62%), respectively. (II) The use of Support Vector Machines and Extreme
Gradient Boost algorithms did not increase classification performance in comparison to Random
Forest. (III) Based on probability maps, classification performance was lower in areas of shaded
vegetation and in the transition zones. (IV) In order to cover larger areas, a gyrocopter can be used
applying the same workflow and achieving comparable results as by UAS for thematic levels BA, VE
and homogeneous classes covering larger areas. The generated classification maps are a valuable tool
for ecologically integrated water management.

Keywords: UAS; airborne imagery; remote sensing; classification; random forest; OBIA; management;
riparian zones; hydromorphology

1. Introduction

Surface waters, their riparian zones and floodplains are hotspots for highly specialized
vegetation communities and fulfill valuable ecosystem services. Here, flooding and water
availability drive the small-scale distribution of vegetation communities [1]. The interplay
of vegetation and sedimentation and erosion processes leads to diverse terrain structures
which provide habitats for endangered species [2,3]. Riparian zones perform several func-
tions: they act as natural corridors for terrestrial wildlife, contribute to water purification,
reduce flood vulnerability and serve as areas of recreation [4,5]. At the same time, they
are often degraded or eliminated by human activities, e.g., due to chemical contamination
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or flood regulation measures [2,6]. The federal waterways in Germany also act as an effi-
cient and economically indispensable mode of transport, under increased anthropogenic
pressure. In order to counteract degradation and to improve the ecological state of rivers
while considering all concerned parties and diverse interests, several intergovernmental
action plans have been developed [7]. Implementation strategies are defined in several
provisions, including the EU Biodiversity Strategy for 2030, EU Fauna and Flora Habitat
Directive [8], EU Water Framework Directive [9], and realized within the scope of country
specific activities such as Germany’s Blue Belt Program [10].

Waterways and riparian systems are heterogeneous due to their topography, hydro-
logical properties, vegetation and human action [11,12]. Hence, detailed data are crucial
for the proper management of those sites. Traditionally, data are collected during field
surveys that are time-consuming and whose spatial coverage is often insufficient in larger
areas. Due to the complex structure and spatial arrangement of riparian ecosystems, some
sites may be difficult to access leading to a lack of information. Remote sensing techniques
have since been established as a facilitating and supporting method to gather informa-
tion about ecosystems. Comprehensive reviews on different approaches using remote
sensing methods for mapping riparian ecosystems are given by Huylenbroeck, et al. [13],
Piégay, et al. [14] and Tomsett and Leyland [15]. Unmanned aerial systems (UAS) are
suitable to obtain images with a resolution in the centimeter range to detect narrow, linear
riparian habitats defined by vegetation and sediment types.

The applicability of UAS has been evaluated for multiple purposes in river manage-
ment and research. For instance, they were used for long-term post-restoration moni-
toring of an urban stream [16] or to map dominant substrate types of the riverbed [17].
Moreover, UAS have been used to map vegetation types [12,18,19] and vegetation cover-
age [12], to track the phenological change of natural vegetation [20] or to monitor invasive
species [21,22]. Studies focusing on an integrative approach by using the same very high-
resolution imagery to retrieve detailed information across multiple disciplines, such as
vegetation cover and substrate types, are still sparse.

Management actions, such as restoration, are mostly applied on a local scale in narrow
corridors ranging from a few hectares up to kilometers in size [23]. Due to the relatively
low flight altitude, UAS are suitable to cover areas of a few hectares [14,24]. Lightweight
manned gyrocopters can be an alternative means to acquire imagery with very high spatial
resolution in the decimeter range even over larger areas with recording rates of up to
40 km2/h [25]. The gyrocopter is an ultralight rotorcraft that differs from a helicopter
in that the wing is not actively propelled by an engine but only by the incoming airflow.
This effect is known as autorotation and provides the necessary lift and flight capability.
Furthermore, due to the simple design principle compared to helicopters, gyrocopters are
significantly cheaper to purchase and operate. The flight characteristics of a gyrocopter are
more like those of an airplane than a helicopter, making it much easier to fly. Pilots need
an ultralight aircraft pilot license for gyrocopter. They therefore represent an economic
alternative to helicopters. In particular, the excellent low-speed flight characteristics and
maneuverability make the gyrocopter for observation and survey flights. The gyrocopter
flies at an altitude of between 150 m and 3000 m at speeds between 30 km/h and 150 km/h.
Considering the possibility of additional payloads and the flexibility of gyrocopters, they
have proven to be a suitable tool, for instance, to obtain water temperature data over larger
areas in the Elbe estuary [26], to map invasive plant species [27] or to identify European
Spruce infested by bark beetles [28]. Hence, gyrocopters might be used to map detailed
classes of riparian surface types over larger areas. To our knowledge, there are no studies
using gyrocopters to map detailed cover classes of riparian ecosystems.

Dealing with very high-resolution data as acquired with UAS requires sophisticated
methods [29]. At the same time, they need to be applicable for regular management [30],
where it is essential to use reproducible methods for spatial and temporal comparability.
Several studies have shown that approaches using object-based image analysis (OBIA),
where areas of homogeneous pixels are grouped into objects, have outperformed pixel-
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based approaches when classifications are based on very high-resolution data (see, e.g.,
reviews by Dronova [11] and Mahdavi, et al. [31]). Machine learning algorithms offer
various ways to classify these objects. Algorithm performance depends on the classes to be
mapped, the training data, and the predictor variables provided, which is why multiple
classifiers should be tested to identify the most suitable option [32]. Well-established
algorithms for this type of classification are, for instance, Random Forest (RF), showing
sufficient results for mapping riparian vegetation [18,33,34]; Support Vector Machine
(SVM), which is mentioned to achieve good results even with small sampling sizes [11,35];
and Extreme Gradient Boost (XGBoost), which is a more recent and popular method for
classification studies [36–38]. A comprehensive overview of machine learning methods for
classification tasks is given in the reviews by Fassnacht et al. [35] and Maxwell, Warner and
Fang [34]. The assessment of classification maps is generally conducted using a confusion
matrix [39]. Additionally, we used spatial distribution of classification accuracy as this
information is especially important for management. An easy and straight-forward way to
obtain these data are probability maps, e.g., calculated within RF, that provide information
on the degree of certainty with which an object is assigned to a given class [40]. Mapping
the probability of a classification can identify areas that should be prioritized and assessed
more carefully during field campaigns [41].The various aspects of the image classification
workflow have to be fine-tuned to produce results with sufficient quality and comparability
necessary for management purposes [13].

In this study, we propose an OBIA classification framework based on multispectral
UAS imagery for mapping vegetation communities and hydromorphological substrate
classes with different levels of detail (later referred to as ‘levels’) in a riparian ecosystem.
The study area is a part of the nature conservation area Emmericher Ward located at the
river Rhine, Germany. Besides the UAS and gyrocopter imagery and in situ data acquired
during the field survey, additional data for the study area were used, including a flood
duration model and a digital elevation model based on LiDAR.

The aims of this study are:

(I) To evaluate the final results for Random Forest classification models for the levels
Basic surface type (BA, e.g., substrate types, water), Vegetation units (VE, e.g., reed,
herbaceous vegetation), Dominant stands (DO, up to species level) and Substrate
types (SU, e.g., sand, gravel);

(II) To compare classification results from the Random Forest algorithm (RF) with Support
Vector Machine (SVM) and Extreme Gradient Boosting (XGBoost);

(III) To identify areas in the classification results with high degrees of uncertainty or
certainty, respectively; and

(IV) To transfer the workflow to data acquired by gyrocopter and to compare the achieved
results with those from UAS data.

2. Materials and Methods
2.1. Study Area

This study was conducted in the nature conservation area Emmericher Ward, situated
at the river Rhine in Germany, near the border to the Netherlands (Figure 1). The floodplain
Emmericher Ward is part of the Natura 2000 network of breeding and resting sites for
rare and threatened species within the framework of the EU Fauna and Flora Habitat
Directive [42]. The study area of 59 ha includes a secondary channel, which is connected
to the river Rhine, and exhibits high flood dynamics. The mean annual flood (based on
a period of 100-year, yellow line in Figure 1) regularly inundates large parts of the study
area and reaches the extensively managed grassland in the northern part. Due to this
circumstance, the area has a high heterogeneity in vegetation and hydromorphology. The
vegetation consists of meadows, softwood floodplain forest, reed, riparian pioneers and
stands of herbaceous vegetation. The substrate types are dominated by sand and gravel
with typical hydromorphological elements for river habitats, for instance, banks, island
areas, scours and shallow water zones.
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Figure 1. Study area Emmericher Ward. RGB-imagery acquired by unmanned aerial system (UAS,
59 ha) and gyrocopter (1220 ha) on 23 July 2019.

2.2. Image Data and Pre-Processing

Flight surveys with the UAS and gyrocopter for obtaining multispectral imagery
took place in July 2019. In parallel, reference data of vegetation and hydromorphological
substrate types were recorded in the field.

UAS imagery was obtained using the MicaSense RedEdge-M camera mounted on a
DJI Phantom 4 Pro (Table 1). During the flight, images were taken every two seconds, while
gain and exposure settings were set to automatic. The raw images are converted to spectral
radiance, followed by reflectance with the aid of a calibrated 5-panel greyscale, which was
deployed and captured by the camera system in the field during data acquisition. The
processing is based on the Python 3 MicaSense image processing workflow published on
GitHub (https://github.com/micasense/imageprocessing, accessed on 7 January 2019)
and was customized to the specific needs of the study. The single reflectance images
were combined in Agisoft Metashape to obtain an orthomosaic. Georeferencing was
carried out with Ground Control Points (GCPs) whose coordinates were measured in
the field with a Differential Global Positioning System (DGPS). Afterwards, an Empirical
Line Correction was conducted using laboratory measures with a hyperspectral sensor of
the 5-panel greyscale. Additionally, RGB imagery with a spatial resolution of 2 cm was
recorded with the built-in camera of the DJI Phantom 4 Pro, which was solely used for
visual interpretation.

https://github.com/micasense/imageprocessing
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Table 1. Specifications of the sensor systems used and imagery acquired by unmanned aerial system
(UAS) and gyrocopter.

Platform Sensor

Center of Wavebands in nm
(Bandwidth in Parenthesis) Spatial

Resolution
in cm

Flight
Altitude

in mBlue Green Red Red-Edge Near-
Infrared

UAS
(DJI Phantom 4 Pro)

Micasence
RedEdge-M

475
(20)

560
(20)

668
(10)

717
(10)

840
(40) 5 70

Gyrocopter PanX 2.0 475
(50)

550
(50)

650
(25) _ 875

(25) 28 650

The gyrocopter was equipped with a PanX 2.0 camera system developed by the
University of Applied Science Koblenz. This camera system consists of four identical
industrial cameras (2048 × 2048 pixels) precisely aligned and each equipped with an
individual spectral filter (Table 1). The used lenses had a wide aperture (F2.0/f = 12 mm)
to ensure high image quality and a wide swath width. The PanX 2.0 is controlled by an
autonomous GPS waypoint guided computer system that triggers the cameras and stores
the images. Raw data were calibrated based on measurements with an integrating sphere
in the laboratory (flat-field correction) and radiometrically corrected based on before-flight
images of reflectance panels in the field. Georeferencing was based on the GPS of the
camera and GCPs. All subsequent processing steps match the procedure applied to the
UAS imagery.

The classification workflow is summarized in Figure 2. In order to represent the
various characteristics of different land cover types, spectral indices, textures and digital
surface models (DSM) were calculated based on the UAS and gyrocopter data, using the
same methods in each case. The DSM were produced from the individual overlapping
images using Structure-from-Motion workflow [43] in Agisoft Metashape. The spectral
indices were calculated with Python 3 scripts and are listed in Table 2. The normalized
difference red edge index (NDRE) was only calculated for UAS imagery, as a red-edge band
is required for this index. In the same processing step, the total brightness of the imagery
was also calculated.
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Figure 2. Overview of the classification workflow for classifying multispectral very-high resolution
imagery acquired by unmanned aerial system (UAS) and gyrocopter in combination with additional
abiotic and reference data. The classification was applied four times with different reference data
to classify the levels: Basic surface types (BA), Vegetation units (VE), Dominant stands (DO) and
Substrate types (SU). A digital elevation model was processed from the multispectral imagery and
normalized with a digital elevation model (DEM) to a normalized digital surface model (nDSM).
Algorithms used for classification were Random Forest (RF), Support Vector Machine (SVM) and
Extreme Gradient Boost (XGBoost).
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Table 2. Spectral indices used in this study: normalized difference vegetation index (NDVI), green
normalized difference index (gNDVI), normalized difference red edge index (NDRE), normalized
difference water index (NDWI), normalized red-blue index (NRBI), soil adjusted vegetation index
(SAVI), simple ratio of the NIR and red bands (SR), green vegetation index (GVI), and total brightness.

Index Equation Case Study

NDVI NDVI = (NIR−red)
(NIR+red)

Jensen [44]

gNDVI gNDVI = (NIR−green)
(NIR+green)

Xue and Su [45]

NDRE NDRE = (NIR−re)
(NIR+re)

Jorge, et al. [46]

NDWI NDWI = (green−NIR)
(green+NIR)

Jensen [44]

NRBI NRBI = (red−blue)
(red+blue)

Michez, et al. [47]

SAVI SAVI = (1 + L) (NIR−red)
(NIR+red+L) ; L = 0.5 Jensen [44]

SR SR = NIR
red Jensen [44]

GVI GVI = NIR
green Michez, et al. [47]

Total Brightness TotBright = blue + green + red + re + NIR This study, based on Jensen [44]

Textural features emphasize the spatial relationship between pixels which may im-
prove classification results [48,49]. We used the Grey Level Co-occurrence Matrix, as
proposed by Haralick, et al. [50] to calculate them. Two moving window sizes of 3 × 3 and
17 × 17 pixels were applied in one direction (45◦) to account for different scales [51]. For
each scale, the textural features contrast, dissimilarity, entropy, homogeneity, mean and
angular second moment were extracted. In order to keep data redundancy low, only the red
band was used, as it had the highest entropy, following the approach of Dorigo, et al. [52].
Additionally, textural features were calculated in all directions segment-wise using eCogni-
tion software (v. 10.1, Trimble Germany GmbH, [53]) and the NIR band as this spectrum
has a high differentiation power of vegetation [54,55].

2.3. Additional Abiotic Data

To account for the main abiotic drivers which are shaping the distribution of plant
communities in river ecosystems, a flood duration model (FDM) from Weber [56] was
incorporated into the analysis. This model uses the daily stream gauge data from 1990–2019
and a digital elevation model (DEM) with a resolution of 1 m, providing information about
the number of days a pixel was flooded within a given year to represent the flood dynamics.
We used the mean and standard deviation of days on which an area was flooded within a
year as input data for the classification.

In order to retrieve a normalized digital surface model (nDSM), which represents the
vegetation height, we used a LiDAR-based DEM with a spatial resolution of 5 cm acquired
on behalf of the German Federal Institute of Hydrology (BfG).

2.4. Reference Data

Point-based reference data for training and validation of the models of the desired
classes were collected in the field and their location and coordinates were measured using
DGPS. To triple the sample size, reference data collection was expanded based on the visual
interpretation of the UAS orthophotos. We aimed for a probabilistic sample design with
randomly selected reference data, but this was not always feasible due to (I) inaccessibility
of some areas with reasonable effort of time (e.g., because of dense vegetation or water
bodies), or (II) difficulties to identify the vegetation on species level in subsequent samplings
based on orthophotos. On the other hand, non-random sampling also allowed us to sample
vegetation units that are typically occurring in natural riparian systems but have low spatial
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coverage, such as reeds or riparian pioneers. Hence, approximately half of the reference
data were selected randomly and the other half non-randomly.

Each reference point was labeled with the respective class of the thematic level. The the-
matic classification levels are Basic surface types (BA) of which the classes “vegetation” and
Substrate types (SU) are further distinguished. The class “vegetation” is further differenti-
ated first into the sublevel Vegetation units (VE) and then in an even more detailed way into
the sublevel Dominant stands (DO). Thematically, VE classes are divided into more detailed
classes of DO. For example, “pioneers” (level VE) are further broken down on the thematic
level DO into “pioneers” (in this field study mostly represented by Persicaria hydropiper) and
“small pioneers” (containing, e.g., small growing Chenopodium spp. or Limosella aquatica).
All classes are listed in Figure 3 and the number of reference points for each class is given
in Table 3.

Table 3. Tuned hyperparameters for each thematic level (BA = Basic surface types,
VE = Vegetation units, DO = Dominant stands, SU = Substrate types) and algorithm
(RF = Random forest, SVM = Support Vector Machine, XGBoost = Extreme Gradient Boost) based
on a random search with 50 iterations. Start and end values are given in the respective columns. For
more details on the hyperparameters, see the corresponding documentation of the R-packages.

Algorithm(R-
Package)

Hyperparameter Start End
Tuned Parameter Values for Each Level

BA VE DO SU

RF
(ranger)

mtry 1 63 2 19 12 17
num.tree 100 1000 201 513 499 200

SVM
(ksvm)

cost (C) 0.1 10,000 841 71.7 31.7 3.04
sigma 0.001 10 0.00135 0.00344 0.00221 0.02040

XGBoost
(xgboost)

nrounds 100 500 103 286 155 276
max-depth 1 10 6 3 4 10

eta 0.1 0.5 0.170 0.137 0.177 0.181
lambda 0.1 1 0.496 0.704 0.840 0.127

2.5. Image Segmentation

Following an OBIA workflow, image segmentation is carried out with eCognition Soft-
ware. The image was first divided into vegetated and non-vegetated areas using a contrast
split algorithm based on the NDWI layer and a threshold of −0.7. The threshold, represent-
ing the maximum contrast between dark objects (low values = non-vegetation) and light
(high values = vegetation), was identified by a stepwise search. Furthermore, objects were
created by applying a multiresolution segmentation, which is a bottom-up region grow
merging technique, whereby smaller segments are merged to large ones until a heterogene-
ity threshold is reached [57]. The heterogeneity threshold depends on the scale parameter
and the two weighting parameters color/shape (here 0.7) and smoothness/compactness
(here 0.5). Parameter settings were defined as a result of preliminary parameter testing
using multiple combinations of values or input variables and subsequent visual evaluation.
The scale parameter was adjusted for vegetated (scale: 150) and non-vegetated (scale: 100)
areas, as smaller values lead to smaller objects. We expected smaller objects for substrate
types (e.g., dead wood, small patches of sand or gravel) and larger ones for vegetation (e.g.,
tree crowns or grassland). Spectral indices, nDSM and mean and standard deviation of
FDM were used as input variables for the segmentation of vegetated areas. Textures were
calculated afterwards based on segments in eCognition, as including pixel-based textures
in the segmentation process results in highly fragmented tree crowns. Non-vegetated areas
were segmented using spectral indices, textures, mean and standard deviation of FDM.
nDSM was excluded, as it is approximately zero for non-vegetated regions.

As the metadata for each segment, the mean and standard deviation of the input layers
were computed. Additionally, geometric features were retrieved such as length-width-
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relation of the segment, pixel number, mean difference based on the nDSM and the number
of dark pixels of the neighboring segments based on the SAVI index.

2.6. Feature Selection

The further workflow was implemented within the R programming language [58].
Important input features were selected from all available variables in order to reduce com-
putational time and complexity of the model and to increase predictive performance [59]. In
the variety of existing selection methods, there is no best method. Instead, the performance
of the methods rather depends on the dataset [60]. In order to find the most suitable one,
we compared nine selection methods in a preliminary analysis based on achieved overall
accuracy (OA). Therefore, wrapper and filter methods, as well as Principal Component
Analysis and Pearson’s correlation were included [59,60]. Based on the results, we chose
the algorithm independent filter method ranger impurity, which ranks all features based
on decision trees using the Gini index to calculate node impurity [61]. In addition, forward
feature selection was used with the corresponding algorithms to determine the suitable
number of features [59].

2.7. Classification Algorithm

Supervised classification with non-parametric methods was applied with three differ-
ent approaches (random forest (RF), support vector machine (SVM), and extreme gradient
boost (XGBoost)). Preliminary Random Forest algorithm (RF) was used as it is a common
and simple-to-use algorithm for classification tasks of remote sensing imagery (see, e.g., re-
view by Belgiu and Drăguţ [62]). It is an ensemble classifier building multiple decision trees
with randomly chosen training data and subsets of features. The final class is determined
by a majority vote from all trees [63]. In order to identify the best fitting algorithm, we
compared results archived by RF with SVM and XGBoost. SVM aims to find a hyperplane
in the feature space, where objects are separated into the pre-defined classes. Non-linear
class boundaries are identified by projecting the feature space into a higher dimension
(kernel trick). In our study, we used the radial basis function as kernel [64]. A detailed
explanation of SVM and the use for remote sensing applications is given in the review
by Mountrakis, et al. [65]. XGBoost is an ensemble tree-boosting method, which tries to
minimize errors of a previous tree in the next tree built [66]. The mentioned algorithms
were applied using the R package “mlr” [67], which accesses the packages “ranger” [61],
“e1071” [68] and “xgboost” [69].

For each algorithm and each classification level, hyperparameter tuning was per-
formed: We applied a random search based on 50 iterations, while each iteration included
a two-fold cross-validation with three repetitions, in order to find the best hyperparameter
set [11]. Table 3 shows the resulting values of the tuned hyperparameters.

2.8. Accuracy Measures and Model Fitting

Classification accuracy of the algorithms is assessed with the aid of measures derived
from the confusion matrix including the overall accuracy (OA), the producer’s accuracy
(PA), the user’s accuracy (UA) and the Kappa coefficient (Kc). OA shows the proportion
of validation data that were classified correctly. PA indicates how often real objects of
a class on the ground are correctly shown on the resulting classification map. On the
contrary, UA indicates how often a class on the resulting classification map will actually be
present on the ground. Kc compares classification results to values assigned by chance [39].
Kc is a frequently reported measure which we included for better comparability with
other studies, even though the use of this measure has been criticized for remote sensing
applications [70,71].

The reference data are a sample of individual classes taken on the ground and thus
associated with uncertainties depending on the composition of recorded data, which is
especially true for small sampling sizes. Consequently, accuracy measures can vary [72].
To account for this variability, a bootstrap resampling approach was applied, randomly
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splitting reference data multiple times with replacement in 70% of training and 30% of
validation data [73]. Each iteration contains a stratified sampling to conserve the proportion
of class distribution, in order to ensure that classes with a small sampling size are also
represented in the training data. Furthermore, in each iteration a model and a confusion
matrix are built. Referring to Hsiao and Cheng [72], we used 500 bootstrap iterations as we
expected this number to be sufficiently high for stabilizing the resample estimates. Accuracy
measures were derived from the accumulated confusion matrices over all iterations. Intra-
class variation was calculated based on all single confusion matrices using the range
between the 25% and 75% quantiles of OA, PA, UA and Kc from all iterations.

The final model was built by fitting the model with all available reference data. Conse-
quently, accuracy measures retrieved from bootstrap models are not directly describing the
accuracy of the final model. However, the lack of perfect accuracy estimates is accepted
with regard to the higher probability of building the best model by including all available
data in the training sample [74,75].

As the aforementioned accuracy measures only assess the models based on data from
the whole, highly heterogenic study area, information about the spatial distribution of
accuracy and uncertainty were sought after. Areas of low classification performance were
identified using class membership probabilities automatically estimated within the RF
classification using the ‘ranger’ R-package. Here each object is attributed with the propor-
tion of votes for each class, based on the different classification trees built by RF. The final
probability map is created by using the percentage of votes from the most frequent class.

The processing steps described in “Feature selection”, “Classification algorithm” and
“Accuracy measures and model fitting” were repeated four times to classify the levels
BA, VE, DO and SU. BA classification was used as a mask layer for VE and DO (mask
classes: vegetation and vegetation shadow) and for SU classification (mask class: substrate
types and substrate types wet). Training data of vegetation located in shaded areas were
excluded for fitting the model [76].

3. Results and Discussion
3.1. Random Forest Classification of Different Thematic Levels
3.1.1. Results

Figure 3 displays the resulting classification maps for all thematic levels of riparian
vegetation and hydromorphological substrate types using the aforementioned workflow
with RF and UAS-based features. Accuracy measures using different algorithms and
platforms are presented in Table 4. In this section we are focusing on the RF results of UAS
data (first column).

High classification performance of RF was achieved for the level BA (OA = 88.9%) and
VE (OA = 88.4%). PA and UA were ranging between 96% and 76% for BA and between 95%
and 71% for VE with intra-class variation ranging from less than 7% (BA) up to 16% (VE).
The classification of the level DO (OA = 74.8%) resulted in PA and UA between 95% and 4%
with intra-class variation reaching up to 100% (Figure 4). Visual interpretation showed that
homogeneous or larger stands were mapped correctly (e.g., Brassica nigra or Urtica dioica)
For the thematic level SU an OA = 62% was achieved with class-specific accuracy measures
between 73% and 28% and an intra-class variation of up to 33%. The confusion matrices for
all levels and the variation in PA and UA for the levels BA, VE, and SU can be found in the
Supplementary materials (Tables S1–S4 and Figures S1–S3).
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Table 4. Accuracy measures based on accumulated confusion matrices over 500 bootstrap iterations
for each classification level, algorithm (RF = Random Forest, SVM = Support Vector Machine, XGBoost
= Extreme Gradient Boost) and platform (gyrocopter, UAS = unmanned aerial system). The accuracy
measures used are overall accuracy (OA), Kappa coefficient (Kc), producer’s accuracy (PA), user’s
accuracy (UA) and the number of reference points for training and validation (n).

Classification Level with
Classified Classes

UAS Gyrocopter

RF SVM XGBoost RF

PA UA PA UA PA UA n PA UA n

Basic surface types (BA) OA = 88.9
Kc = 0.85

OA = 88.6
Kc = 0.85

OA = 88.3
Kc = 0.85

OA = 88.4
Kc = 0.85

Water 90 88 90 87 89 88 150 87 94 156
Water shallow 77 81 75 83 77 80 165 79 85 172
Substrate types 88 93 88 92 87 93 259 87 94 244

Substrate types wet 83 76 85 77 82 76 198 90 78 232
Vegetation 96 94 95 94 96 94 623 97 90 555

Vegetation shadow 80 89 80 87 81 86 180 72 89 170
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Table 4. Cont.

Classification Level with
Classified Classes

UAS Gyrocopter

RF SVM XGBoost RF

PA UA PA UA PA UA n PA UA n

Vegetation units (VE) OA = 88.4
Kc = 0.82

OA = 89.2
Kc = 0.83

OA = 89.1
Kc = 0.83

OA = 86.4
Kc = 0.79

Grassland 95 91 91 88 90 94 27 95 96
Herbaceous vegetation 94 92 94 92 94 92 222 93 91 221

Pioneers 84 83 83 91 85 76 40 83 89 37
Reed 72 71 76 78 71 83 48 65 65 49

Woody 83 90 85 87 87 89 81 79 81

Dominant stands (DO) OA = 74.8
Kc = 0.72

OA = 73.8
Kc = 0.71

OA = 66.5
Kc = 0.63

OA = 65.6
Kc = 0.62

Agrostis stolonifera 32 65 37 50 8 14 8 13 28
Arctium lappa 86 80 89 84 75 77 22 76 78
Brassica nigra 76 64 82 66 64 60 33 63 55

Carduus crispus 87 77 90 79 77 71 44 81 72 47
Cirsium arvense 20 53 9 21 8 13 11 19 38

Grassland 95 92 81 69 81 81 13 78 72 15
Lythrum salicaria 68 92 62 64 99 99 8 67 97

Pasture 92 91 73 86 91 88 19 74 82 18
Phalaris arundinacea 64 62 61 49 64 65 24 54 54 25
Phragmites australis 79 67 66 61 77 66 24 61 59

Pioneers 83 70 61 82 72 63 20 84 80
Pioneers small 88 84 97 79 84 93 7 90 82 6
Populus spp. 57 73 73 79 49 55 40 59 63 39
Rubus caesius 38 79 75 82 39 46 13 40 47

Salix spp. 82 75 75 83 74 72 55 71 63 56
Tanacetum vulgare 4 19 9 18 12 16 10 1 4 11
Tripleurospermum

perforatum 76 89 66 62 8 13 10 79 63

Urtica dioica 87 76 86 84 80 70 66 77 68 61
Woody 82 82 81 75 74 81 18 47 73 15

Substrate types (SU) OA = 62
Kc = 0.53

OA = 64.9
Kc = 0.56

OA = 59.7
Kc = 0.50

OA = 52
Kc = 0.37

Armour stones 73 70 83 74 74 74 22 24 62
Fine grained material 68 58 66 61 60 57 29 66 55

Gravel 73 68 79 68 70 66 75 73 54
Sand 65 69 69 73 58 61 59 49 49

Layer of shells 64 68 56 68 67 71 18 52 60
Stones 28 50 21 44 34 42 17 5 17
Wood 33 32 36 38 34 34 29 16 29

Regarding feature selection for RF, 24 out of 63 potential features were selected for
BA. The top five features with the highest discrimination power were only spectral indices
(total brightness, GVI, gNDVI, NDWI and NDRE). Thirty features were selected for VE
and 32 for DO. In these two classification levels, the features nDSM, FDM, and “different
neighbor” were among the five most important ones. Among the 25 chosen features in SU
classification, textural features were predominant. All selected features and importance
values can be found in the Supplementary materials (Figures S6–S9).

3.1.2. Discussion

Classification performance decreased with increasing detail of the thematic level. It
was high and stable for classes in the BA and VE levels, but class dependent for the DO
and SU levels with high variation for classes with low sample sizes.
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Figure 4. Violin plots (density distribution) of intra-class variation of producer’s and user’s accuracy
of dominant stand classes over 500 bootstrap iterations based on UAS data and Random Forest.
Sorted by producer’s accuracy in decreasing order. Median values over 500 iterations are represented
by horizontal lines (e.g., median producer’s accuracy of Grassland = 100%). Numbers of reference
data are presented on x-axis; red color indicates n ≤ 13.

Results of the BA and VE level classification were comparable to other studies classify-
ing riparian ecosystems using UAS imagery. Gómez-Sapiens et al. [19] achieved overall
accuracies between 87% and 96% depending on the study site in a study focusing on
vegetation cover with four vegetation and three non-vegetation classes along the Colorado
river. In their study, very high accuracies were reported for water (PA/UA = 100/100% vs.
90/88% in our study) and substrate types (PA/UA = 99–100/80–100% vs. 88/93%), but low
accuracies for Herbaceous vegetation (PA/UA = 58/50% vs. 94/92%). The lower accuracies
in our study regarding the classes water and substrate types are mainly due to the inclusion
of the similar classes water shallow and substrate types wet, which we used initially for
a more detailed analysis of substrate types. Misclassification occurred mostly between
classes of the same cover type, such as vegetation and vegetation shadow, substrate types
and substrate types wet or water and water shallow and are therefore explainable: if for
the class substrate types, misclassified samples of substrate types wet are included, the
PA of substrate types would increase to 98%. The same is true for the class water/water
shallow (=PA of 100%) or vegetation/vegetation shadow (=PA of 99%). Depending on the
research question classes could be aggregated, which in our case would lead to an increase
in classification performance. van Iersel, Straatsma, Middelkoop and Addink [18] evaluated
the potential of multitemporal imagery for mapping six vegetation and four non-vegetation
classes at a distributary of the Rhine river in the Netherlands. Their classification with one
time-step resulted in OA of 91.6% with PA/UA of e.g., 87/96% for reed (vs. 72/71% in
our study), 96/86% for pioneers (vs. 84/83%) and 74/79% for herbaceous vegetation (vs.
94/92%). Including multitemporal imagery of up to six time-steps within a year increased
OA to 99.3%. Even though multitemporal imagery can increase classification performance,
which is also reported in the study by Michez et al. [22], it needs to be considered that
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multitemporal imagery also requires more resources, such as time spent in the field and
cost of data acquisition, which may be limited in practice.

Regarding DO classification, we considered PA and UA values of 60% and greater to be
sufficient. This was true for 14 out of 19 classes and mainly included those forming homo-
geneous stands. The classes Populus spp., Rubus caesius, Cirsium arvense, Agrostis stolonifera
and Tanacetum vulgare were mapped insufficiently. Tanacetum vulgare, Cirsium arvense and
the small grass Agrostis stolonifera occurred mainly in small patches, growing between other
species and thus leading to segments with mixed spectral signals.

Populus spp. was often confused with Salix spp. Dunford, et al. [77] also reported
problems with distinguishing among the two taxa wherefore Gómez-Sapiens et al. [19]
combined both classes to Cottonwood-Willow and achieved PA values of 82–97% and UA
values of 75–88%. Thus, an aggregation of both classes would improve the classification.

All insufficiently classified classes, with the exception of Populus spp., had small
sampling sizes of reference data (n ≤ 13) and high intra-class variation. The latter was
generally observed in cases of underrepresented classes, such as Lythrum salicaria or
Tripleurospermum perforatum. A small sampling size may fail to represent the population
the sample was drawn from, including the spectral intra-class variation [78], and may thus
have a negative influence on classification results [33,79]. In fact, we applied our workflow
to another area named Nonnenwerth, also located on the river Rhine. In this case, we
only distinguished between seven classes of DO, because no others were present, and
achieved higher accuracies: Rubus caesius was classified with PA = 79% and UA = 85%
having 29 reference points versus PA = 38% and UA = 79% resulting from the analysis
of this study on Emmericher Ward using 13 reference points. The desired quantity and
quality (random sampling) of reference data were not always possible, especially for higher
thematic classes, which may negatively affect the explanatory power of the results [71].
Unfortunately, limitations in reference data collection are not uncommon [32] and a statisti-
cally proper sampling may even be unfeasible in most management projects due to time
constraints or inaccessibility.

In order to obtain information on classes that have a low spatial coverage but are of
special interest, e.g., as they are protected or typical for riparian ecosystems, we decided
to include all classes in our study, even if they consist of a low sample size. One of these
classes is Lythrum salicaria, a species typically occurring along the river Rhine. Within our
study site, it can mainly be found at one location in a larger patch of approximately 460 m2

(Figure 5). Even though PA was not very high (68% with strong variation of >40%), visual
interpretation showed that this patch was mostly mapped correctly. On the other hand, UA
of 92% appears too high as the correctly classified area marked in blue has too few reference
points. Other examples of classes with low sample sizes, but with good classification
results are pasture and grassland. Overall, good results can be achieved for classes with
small sampling sizes, which was especially true for larger homogeneous stands, but higher
sampling size may increase classification performance and robustness of the results.
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Figure 5. Occurrence of Lythrum salicaria: (a) Comparison between occurrence in the field and
classified segments plotted into RGB imagery, (b) classification probability, (c) field photo of flow-
ering Lythrum salicaria from 23 July 2019. The subset of the map contains 97% of the area where
Lythrum salicaria was classified.

Classification results varied for the thematic level SU as well. For instance, the class
armour stones reached a PA of 73%, while stones and wood had PA values as low as 28%
and 33% respectively and an intra-class variation of up to 33%. The majority of segments,
located next to vegetation was wrongly classified as wood. Contrarily, van Iersel, Straatsma,
Middelkoop and Addink [18] were able to differentiate between rock/rubble and bare sand
with very high PA and UA from 98% and more. Compared to this study, our results for the
classification accuracy were moderate. However, we differentiated between seven substrate
types. An increased number of defined classes decreases classification results [24,33], which
can be seen in our study regarding vegetation classification (VE with 6 classes: OA = 88.4%;
DO with 19 classes: OA = 72.6%).

3.2. Comparison of Algorithms
3.2.1. Results

The classification using RF was compared with those using SVM and XGBoost. Classi-
fication with SVM and XGBoost resulted in similar OA’s for the thematic levels BA and
VE as with RF where OA exhibited a less than 1% difference among algorithms (Table 4).
Considering OA’s, over 500 iterations for each algorithm showed an intra-algorithm varia-
tion of 1–2% for BA and 3% for VE. Differences in OA among algorithms increased up to
5.4% for the levels DO and SU with an intra-algorithm variation of 4–5% (DO) and 5–8%
(SU). PA and UA as well as visual evaluation were similar among algorithms concerning
the classes of the BA and VE levels. For the levels DO and SU, results among algorithms
depended on the class considered. For instance, RF outperformed SVM for the DO classes
pioneers (+22% in PA with RF vs. SVM) and pasture (+19%) while the opposite was true for
Rubus caesius (+37% in PA with SVM vs. RF) and Populus spp. (+16%). In most of the DO
classes, PA was higher with RF than with XGBoost. DO classification with SVM resulted in
more heterogeneous maps than with RF or XGBoost (Figure 6). For instance, small canopy
gaps in forested areas were indeed mapped correctly with SVM as herbaceaus vegetation
(level VE) but were misclassified in DO classification. RF and XGBoost labeled those canopy
gaps as classes of woody vegetation, which may also not be correct, but as the surrounding
areas are covered by woody vegetation this error is negligible. The same was true regarding
areas of pasture (VE and DO levels) or wood and fine-grained material of SU classification
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(Figure 7). However, RF misclassified small poplar trees (Populus spp.) directly located
on the river, whereas they were classified correctly with SVM. Visual evaluation of SU
classification revealed that the results of RF and SVM show a clear distinction of substrates
(referring to sand and gravel on the sand bank, Figure 7) whereby the RF classification
demonstrated the most accurate mapping of the riverbank substrates. Around the river-
bank, woody areas are clearly overstated by all algorithms. While the RF results show the
inhomogeneous substrate distribution of the banks (shells, gravel, sand, wood), the mineral
substrates are only sporadically recorded in the SVM results. Other misclassifications of
substrate distribution (RF and SVM) are due to transitional areas between wet and moist
substrate classes.

3.2.2. Discussion

The comparison of algorithms showed that for the BA and VE thematic levels results
were similar. A more distinct separation could be seen for the levels DO and SU, however
no algorithm was superior to all classes. RF was favored, as the heterogeneity in SVM
classification makes a visual application in the field more difficult.

SVM has the advantage that the algorithm is insensitive to small sampling sizes
as for instance reported by Burai, et al. [80]. Even though SVM had higher PA values
than RF, some classes with small sampling sizes like Agrostis stolonifera or Rubus caesius
demonstrated intra-class variations that were comparable to RF. Hence, the insensitivity
of SVM to small sampling sizes was neither confirmed nor disconfirmed by our study.
The sampling sizes of most classes of DO in this study were probably too small. A direct
comparison of algorithms would require a balanced and sufficient sampling size, which
remains challenging in anthropogenic modified and fragmented habitats.
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(SVM), (e) and Extreme Gradient Boost (XGBoost); see Table 4 for the complete genus names.
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Figure 7. Subset of Substrate types of classification using different algorithms and features; (a) RGB
unmanned aerial system (UAS) imagery; (b) classification with gyrocopter features and Random
Forest (RF); (c) classification with UAS features and Random Forest, (d) and Support Vector Machine
(SVM), (e) and Extreme Gradient Boost (XGBoost).

Both RF and SVM revealed their strength in terms of accuracy measures and visual
interpretation. A general improvement of the results may be achieved by combining both
models to a single one as in the study by Xu, et al. [81] using the C5.0 algorithm. Even
though model complexity increased, the computational time was still low. In fact, XGBoost
took the most computation time of all models in their study, which is in line with our study,
where median XGBoost computational times was up to seven times slower than RF and
nine times slower than SVM.

In summary, applying SVM and XGBoost instead of RF did not increase classification
performance in our study which is why we chose RF for all further analysis since accuracy
measures were good, visual evaluation was convenient, computation time was low and RF
was already successfully used by other studies for mapping riparian ecosystems [18,33,34].

3.3. Spatial Evaluation of Classification Probability
3.3.1. Results

To identify areas of low classification performance, we used probability maps (Figure 8)
based on the results of the RF algorithm. For vegetation, two types of areas of low classifi-
cation performance were identified: those located within the transition zone and shaded
areas. Here, the transition zone is an area, containing a mixture of vegetation and bare
ground, between dense vegetation and the waterbody (We derived the span of this zone
from the mean water level to the most inland segment of bare ground plus a buffer of 9 m.
Additionally, segments of vegetation that were closer to the water than the mean water
level were counted too). Shaded areas were automatically identified in the BA classification
(class vegetation shadow). As shown in Figure 9, classified objects of the VE level located
within the transition zone had median classification probabilities of 70% while shaded
objects (not counting those in the transition zone) exhibit median values of 63%. In contrast,
classification was more stable in unshaded areas that were covered by dense vegetation
(90%). The same pattern of classification probability appeared in the DO classification, but
the values and differences between median probabilities were generally lower.

Within the transition zone, lower classification probability was also obtained for SU
classification (42%) compared to areas without interference of vegetation (58%).
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Figure 9. Violin (density distribution) and box-and-whisker plots of classification probability for
each segment, grouped in several areas. Classification probability for Vegetation units and Dominant
stands is lower in transition zones (n = 27,238 objects) and in shaded areas (n = 17,500 objects) than in
dense and properly lit vegetation (n = 81,638 objects). Classification probability for Substrate types is
lower in transition zones (n = 4539 objects) than where Substrate types occur without any vegetation
(n = 10,030 objects). Classification is calculated using Random Forest and UAS data.

3.3.2. Discussion

Classification probability in our study area seems to depend on illumination and
whether the classified object is located within the transition zone or not. Apart from overall
probability, information can also be given for each class. For instance, Figure 5 shows lower
classification probabilities for segments that were wrongly classified as Lythrum salicaria
(marked in blue) and also for segments exhibiting a lower coverage of this class (on the
right-hand side in Figure 5b).
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A low classification probability does not necessarily mean that an area is classified
wrong. However, this was often the case when the area was within a transition zone
or shaded. For instance, shaded pasture near the forest line was often confused with
herbaceous vegetation. Shadows can lead to a reduction, or even a total loss of spectral
information [82], and thus have a negative influence on classification. Lower classification
probabilities in the transition zone are mainly due to a high degree of heterogeneity leading
to mixed segments. These objects contain small growing vegetation (e.g., pioneer trees
of Populus spp.) and bare ground. Mixed objects with predominance of vegetation in
reality, mostly represented by small pioneer trees of Populus spp., were often classified as
several vegetation classes. Mixed objects with predominance of substrate types containing
vegetation were in most cases labeled as the SU class wood. Taking the uncertainty into
account, we recommend classifying substrate types and substrate types only (the riverbed
and riverbank, respectively) separately in further works. Furthermore, adapting the scale
parameter in the segmentation process [83] or applying a multi-scale approach by creating
a hierarchy of several single-scale segmentations [84] may improve object delineation and
thus classification results. Probability maps are an efficient and easy way to identify areas
with low classification performance that should be assessed more carefully in the field.

3.4. Transfer of Classification Method from UAS to Larger Scale Gyrocopter Data
3.4.1. Results

Images acquired by gyrocopter were classified with the same workflow (RF algorithm)
as for UAS data resulting in OAs of 88.4% (BA), 86.4% (VE), 65.6% (DO) and 52% (SU).
Single classes of BA and VE levels were classified with similar accuracies (Table 4). The
highest differences occurred for the classes vegetation shadow (PA = −9% lower with
gyrocopter vs. UAS) and substrate types wet (PA = +7%) for the level BA and woody
(UA = −9%) for the level VE. The majority of DO and SU classes had lower classification
accuracies (often even double digits, up to −35% for woody and −49% for armour stones)
using gyrocopter data in comparison to UAS data. Despite lower accuracies, the spatial
distribution and coverage is similar among platforms of DO classes forming large stands,
such as Urtica dioica or Brassica nigra (Figure 6a,e). Areas where classes presented patchy,
e.g., Phragmites australis, or small-scale alternation between occurring classes, e.g., layer of
shells and sand (Figure 7), could not be captured sufficiently.

3.4.2. Discussion

Gyrocopter classification results were comparable to those using UAS data for coarser
thematic classes of the levels BA and VE as well as for classes covering larger and continuous
areas of the DO and SU levels.

The insufficient detection of small-scale patches may be due to the technical properties
including different camera systems (primarily the absence of the Red-Edge band, RE) and a
lower spatial resolution of the gyrocopter data. Studies have shown that information of the
RE spectrum can increase classification performance of vegetation [85,86]. Jorge, Vallbé and
Soler [46] recommend NDRE over NDVI for the identification of possible heterogeneities in
the vegetation cover. In our study, the mean and standard deviation of NDRE were always
among the important variables of the feature selection of UAS variables (see Figures S6–S9
in the Supplementary materials).

The gyrocopter’s lower resolution is caused by the higher flight altitude, which again
is associated with stronger interference of the atmosphere. This can lead to differences in
image brightness between drone and gyrocopter images after flat-field and radiometric
correction was applied. To address this problem, a field spectrometer can be used for cali-
bration as proposed by Naethe, et al. [87]. Intercalibration is essential to match information
across different platforms. Reference targets in the field serve as a known ground truth with
the purpose of minimizing uncertainties with respect to camera calibration and temporal
changes in incoming light. Thus, camera reflectance from drone and gyrocopter could be
aligned, using a stable ground truth and radiometrically calibrated field spectrometer. This
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may allow a more direct comparison of reflectance properties between both platforms and
also application of a pre-fitted model from one data source to another. Even though those
technical properties need to be considered, we will not stress this in further detail. The
focus of this study was to evaluate the use of a gyrocopter for mapping riparian waterways.

For a direct comparison among both platforms, only the area covered by UAS was
used for gyrocopter classification (59 ha). Our results indicate that good class-dependent
results may be achieved by classifying the whole area covered by the gyrocopter, which was
approximately 1220 ha in this study, even though classification results achieved with the
gyrocopter do not allow precise statements about the substrate distribution. However, with
gyrocopter images, various additional hydromorphological information can be obtained
for a large area. These include, for example, the condition of the riparian zone, either
being natural/near-natural or consisting of constructions. From the BA, additional detailed
information on the prevailing hydromorphological structure (e.g., shallow water zones,
pools, island areas) can be derived. Depending on the research question and management
aim, UAS should be used when small-scale patches of vegetation and substrate types need
to be monitored. Furthermore, we used UAS imagery as a valuable source for reference
data collection [88].

Taking practical consideration into account, the data collection for each platform took
approximately one day for the respective areas with an additional day in the field for GCP
collection (the same GCPs were used for both platforms). Covering larger areas solely with
UAS can quickly exceed cost budgets [18]. Hence, we recommend using a gyrocopter for
surveys of larger areas (>1 km2) and UAS for smaller areas (<1 km2). Ideally, whenever
larger areas are surveyed by gyrocopter, smaller areas of interest and for reference data
collection are recorded by UAS, while intercalibrating all camera systems.

4. Conclusions

In this study, we proposed an object-based image analysis workflow to classify veg-
etation and substrate types with different level of detail, using multispectral very high-
resolution UAS and gyrocopter imagery in a riparian ecosystem along the river Rhine
in Germany. With reference to the numbering of the four research questions, our conclu-
sions are:

(I) Classification results for UAS data with RF decreased with increasing class detail
from BA (OA = 88.9%) and VE (OA = 88.4%) to DO (OA = 74.8%) and SU (OA =
62%). Classes with high spatial coverage or those which are homogeneous could be
mapped sufficiently. Classes with low sample sizes had high intra-class variability
and, even when good median accuracies were achieved. In general, RF was a suitable
algorithm to classify vegetation and substrate types in riparian zones. The results of
the feature selections showed for BA level, that the spectral indices have the largest
explanatory power in the models, whereas for the VE and DO level the highest
explanatory power lies on the hydrotopographic parameters and for the SU level
textural indices were predominant.

(II) Classification performance did not change notably when using SVM or XGBoost
instead of RF. SVM introduced more heterogeneous and patchy maps while clas-
sifying vegetation that did not match with the visual interpretation and would be
difficult to work with in the field. On the other hand, XGBoost consumed the highest
computational time. Thus, for the rest of this study RF was used.

(III) Classification probability maps can be used to identify areas of low performance
and prioritize them during (re-)visits in the field. For instance, areas located in the
transition zone and shaded areas of vegetation had low classification probabilities
and were often classified incorrectly. Hence, when using probability maps efficiency
of field surveys may be increased.

(IV) Gyrocopter data can be used within the same classification workflow and achieve
comparable results as UAS data for classes of the levels BA and VE as well as for
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classes covering larger and homogeneous areas. For management purposes, it might
be useful to collect information over larger areas, possibly in combination with UAS.

Overall, this study demonstrated that UAS and gyrocopter data can be used in com-
bination with machine learning techniques to retrieve information about vegetation and
substrate types distribution in riparian zones, which may be used for management actions
such as monitoring and assessing of measures to improve ecological status.

5. Outlook and Further Work

Possibilities for further research and development of the approach are:

• To apply the workflow on the whole gyrocopter area and including classes, such as
“urban areas” or “agriculture”, which are not represented in the area under investiga-
tion in this study. This step also includes the collection of training and validation data
of those classes based on the imagery.

• To evaluate the transferability of the classification workflow in new areas. This step
also includes the application of the already existing classification models on new areas
and evaluation of the question of what extent the existing reference data can be used
in addition to newly collected reference data to build new models.

• To examine the effect of multi-temporal imagery on classification results, as demon-
strated by van Iersel, Straatsma, Middelkoop and Addink [18], and to evaluate if a
potential increase in classification performance may justify the additional workload.

• To implement the proposed workflow in management routines of the waterway and
shipping administration and to adjust them to the future needs of the stakeholder
concerns [13]. Potential routine could be to use the classification maps as a basis for
more detailed vegetation mapping or to use them within the hydromorphological
evaluation and classification tool, Valmorph [89].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14040954/s1, Tables S1–S4: Confusion matrices for each level
based on UAS data and Random Forest. Each confusion matrix represents the accumulated val-
ues over 500 bootstrap iterations; Figures S1–S3: Violin plots (density distribution) of producer’s
and user’s accuracy over 500 bootstrap iterations based on UAS data and Random Forest for Ba-
sic surface types, Vegetation units and Substrate types; Figures S4 and S5: Overall accuracy and
computational time for each level and algorithm based on UAS data and 500 bootstrap iterations;
Figures S6–S9: Selected features for all levels based on UAS data and Random Forest.
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52. Dorigo, W.; Lucieer, A.; Podobnikar, T.; Čarni, A. Mapping invasive Fallopia japonica by combined spectral, spatial, and temporal
analysis of digital orthophotos. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 185–195. [CrossRef]

53. Trimble. eCognition Developer 10.1 Reference Book; Trimble Germany GmbH: Munich, Germany, 2021.
54. Tu, Y.-H.; Johansen, K.; Phinn, S.; Robson, A. Measuring Canopy Structure and Condition Using Multi-Spectral UAS Imagery in a

Horticultural Environment. Remote Sens. 2019, 11, 269. [CrossRef]
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