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Abstract: The noise2noise-based despeckling method, capable of training the despeckling deep neural
network with only noisy synthetic aperture radar (SAR) image, has presented very good performance
in recent research. This method requires a fine-registered multi-temporal dataset with minor time
variance and uses similarity estimation to compensate for the time variance. However, constructing
such a training dataset is very time-consuming and may not be viable for a certain practitioner. In this
article, we propose a novel single-image-capable speckling method that combines the similarity-based
block-matching and noise referenced deep learning network. The denoising network designed for
this method is an encoder–decoder convolutional neural network and is accommodated to small
image patches. This method firstly constructs a large number of noisy pairs as training input by
similarity-based block-matching in either one noisy SAR image or multiple images. Then, the method
trains the network in a Siamese manner with two parameter-sharing branches. The proposed method
demonstrates favorable despeckling performance with both simulated and real SAR data with respect
to other state-of-the-art reference filters. It also presents satisfying generalization capability as the
trained network can despeckle well the unseen image of the same sensor. The main advantage of
the proposed method is its application flexibility. It could be trained with either one noisy image
or multiple images. Furthermore, the despeckling could be inferred by either the ad hoc trained
network or a pre-trained one of the same sensor.

Keywords: block matching; convolutional neural network (CNN); deep learning; speckle filtering;
synthetic aperture radar (SAR); image similarity

1. Introduction

As a coherent system, synthetic rapture radar (SAR) is naturally affected by speckles,
which is a random structure caused by the interference of waves scattered from detection
objects. Speckle is a real SAR measurement that brings information about the detection
object. However, its uncertainty, variance, and noise-like appearance affect the image
interpretation, making despeckling indispensable. Despeckling research has been con-
stantly driven by new image processing development. Recently, deep learning methods
have shown very promising results. The latest developments of supervised deep learning
denoising methods, such as denoising convolutional neural network (DnCNN) [1] and
fast and flexible denoising convolutional neural network (FFDNet) [2], have improved the
denoising results of ordinary images compared with the traditional methods. Inspired by
this, many researchers thus then have tried to apply supervised deep learning methods to
SAR despeckling. Such a method requires corresponding clean images as references to help
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the deep model learn the mapping from noisy image to denoised image. However, there
is no “clean” SAR image. To solve this problem, some researchers have tries to build an
approximate clean reference from noisy images by using the multi-look fusion [3]. On the
other hand, other researchers have used the optical image or pre-denoised multi-temporal
fusion images as clean references and calculated simulated noisy images for training [4].
However, both the approximate clean reference method and simulated noise reference
method are problematic. Multi-look fusion cannot achieve comparable denoising results of
the state-of-art denoising filter, thus greatly limiting the denoising potential of the deep
model. Simulating noise reference, on the other hand, creates a domain gap [5], which
causes despeckling performance mismatch between the synthesized image and the real
SAR image.

Due to the lack of clean ground truth, the self-supervised deep learning despeckling
method, which requires no clean reference, is an appealing research direction. Researchers
in the image denoising domain have proposed multiple self-supervised deep learning
denoising methods. Some of these methods require only a single noisy image to train the
network, such as deep image prior [6], noise2void [7], and noise2self [8]. The application
to SAR despeckling has just begun. Currently, various blind-spot methods have been
proposed, which evaluate the value of a pixel by its surrounding pixels as the receptive
field. By using the SAR image statistics, Molini et al. [9] adapted Laine et al.’s [10] model to
SAR despeckling and achieved a fair result. Joo et al. [11] extended the neural adaptive
image denoiser (N-AIDE) for multiplicative noise, and their results out-performed dilated
residual network-based SAR filter (SAR-DRN) [12] on a simulated SAR dataset.

Using only one noisy image is valuable when the independent noise realization pair is
not available for training. On the other hand, using multiple noise realization of the same
ground truth may have the potential to produce better denoising results, as multiple noise
realizations provide the filter with richer information concerning the data distribution and
the noise feature. Lehtinen et al. [13] proposed a noise2noise method, which trains a deep
learning model with multiple noisy image pairs that refer to the same clean target and
follow an independent noise distribution. Directly applying the noise2noise method to
multi-temporal SAR despeckling is problematic, as the multi-temporal SAR image of the
same region cannot be regarded as independent noise realizations of the same clean image
without the ground truth concerning the temporal variance. Addressing this problem,
Dalsasso et al. [14] used a simulated-based and supervised trained despeckling model to
acquire pre-estimations of the despeckled images. Then, they used the difference between
the pre-estimations to compensate for the temporal change and by this way formalized a
series of noise2noise training images pairs. Their model can be evaluated as a hybrid of
supervised and self-supervised, thus may not be fully domain gap free. In our previous
work [15], we proposed a fully self-supervised noise2noise SAR despeckling method
(NR_SAR_DL) that uses bi-temporal SAR amplitude image blocks of the same region as
training pairs and weights the training loss by the estimated pixel similarity between the
training images. This method yields state-of-arts results.

The similarity loss-weighting training employed in the training process in [15] can
only reduce but not fully eliminate the influence of the temporal variance, as no similarity
lower bound was employed for both the training image pair and its pixel pair. As a result,
the noisy images with major changes in their ground truths are not excluded from the
training process and thus may taint the neural network. The influence is minor when the
time variance is limited but evident when the variance is significant. Another drawback
is that the multi-temporal SAR images used for training should achieve a fine subpixel
registration, which is often a very time-consuming task.

Extending the original method of [15] by setting a threshold for the similarity of the
training image block pair shows promising results to improve the overall despeckling
performance. Such a method answers the question of whether an image pair contains two
independent noise realizations of the same clean image by two quantitative parameters: an
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estimation of their similarity value based on the statistical feature, and the selection of the
similarity threshold that separates the similar and the non-similar.

Some prominent similarity, like the one used in NR_SAR_DL [15], does not consider
the location and the time. Thus, similar block pairs can be selected from not only those
time sequence images that refer to the same location as in the method of [15] but also those
of different locations and different times. Inspired by the irrelevance of location and time
in the similarity calculation, we developed a similar Block Matching and Noise-Referenced
Deep Learning network filter (BM-NR-DL). The main idea of this method is to search and
construct a large number of image block pairs that are deemed similar by their similarity
estimation and then train the deep learning despeckling network with them. It uses only
real SAR images to train the deep model and could be fully self-supervised. Compared
with other self-supervised methods, the proposed method has two main innovations:

(1) The proposed method in this article for the first time in SAR despeckling combines
the self-supervised noise2noise method with the similarity-based block-matching method.
The block can be searched in a single SAR image or multiple images, thus providing a
uniform yet flexible training solution. Furthermore, when training on time sequence images
of the same region, the images no longer need to be fine registered.

(2) The U-network [16] style model employed in both the original noise2noise [13] and
the NR_SAR_DL solution [15] requires a minimal size of image blocks for training, such as
64× 64. However, large image blocks impede the block-matching procedure. The proposed
method inserts a transposed convolutional layer before the encoder and minimizes the
encoding layer number without damaging the despeckling performance. The model can
now be trained with a block size significantly smaller than those of [13] and [15], making
block-matching possible.

The test with both simulated and real SAR single-look intensity data shows that the
proposed method outperforms other state-of-art despeckling methods. The proposed
method has great application flexibility, as it can be trained with either one SAR image or
multiple images. The method also presents good generalization capability. The network
trained using SAR images acquired by a certain sensor can readily despeckle other images
acquired by the same sensor. Moreover, the proposed method has good scalability in both
the training and despeckling process. For training, due to the training flexibility provided
by this method, the set of image pairs used in the training process could be readily scaled
up. For despeckling, the deep learning inference process is much more computationally
efficient than other traditional methods, such as block-matching and 3D filtering (BM3D)
and probabilistic block-based weights (PPB). The despeckling process can be easily scaled
up taking advantage of the parallel computing.

The article is organized as follows: Section 2 demonstrates the related research. Sec-
tion 3 describes the main feature of the proposed method. Section 4 presents the validation
of the proposed model and the comparison with other despeckling methods. Section 5
discusses the performance of the proposed model and points to potential future research
directions. Section 6 concludes the research.

2. Related Work

Deep Learning and SAR despeckling: Denoising is one of the image restoration
processes whose purpose is to recover the clean image from its noisy observation. The
noisy observation can be expressed as a function of the signal and corruption:

X̂ = f (X, n) (1)

where X̂ is the noisy observation, X is the clean image, and n is the corruption. The function
f (·) is largely domain specific. In SAR despeckling, it is often described as a multiplicative
noise function in most circumstances and noise-free in extreme intensity conditions. The
ill-posed problem of such a process requires image priors to limit and regulate the solution
space. Many explicitly, handcraft priors, such as total variant (TV) [17], Markov random
fields (MRFs) [18], and nonlocal means (NLM) [19], are popular among the state-of-art
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denoising algorithms. The classical SAR despeckling methods, including Lee filter [20],
Kuan filter [21], Frost filter [22], PPB [23], and SAR-BM3D [24], also use handcraft priors.
However, the features of both the noise and the original image are complex and may be
dedicated by the application instance, thus impeding the construction of widely applicable
yet precise priors. Ma et al. [25] presented variational methods by introducing non-local
regularization functions. Deep learning methods, on the other hand, implicate priors
by their network structures with performances better than those with explicit priors [6].
Meanwhile, deep learning methods can learn priors from data with proper training [26].
The implicit priors with learnable priors together may explain the better despeckling results
of the deep learning methods than the traditional ones, which are demonstrated in recent
studies [12,27].

The deep learning despeckling often consists of a training process and an inference
process. The training process aims to find the parameter set θ of the network fθ(·) that
minimizes the sum of the loss calculated by loss function L between the network output
image and its corresponding training reference

argmin
θ

M

∑
i

L
[

fθ

(
X̂i
)
, Ri
]

(2)

where M is the number of training samples, and Ri is the i-th training reference. Due to
the large number of training samples used in the learning process, each optimization step
often employs only a small subset of the training samples, achieving stochastic gradient
descent of loss. Once the network is well trained, it infers the clean estimation X′ from
noisy images X̂.

X′ = fθ

(
X̂
)

(3)

The two main factors that influence the despeckling performance are the network struc-
ture, which dedicates the handcraft prior, and the learning method, which dedicates the
learnable prior. Currently, the most common network structure employed for SAR despeck-
ling is the convolutional neural network (CNN) with an encoder–decoder structure [28],
Siamese structure [15], N3 non-local layer [3], residual architecture [28], or Generative
Adversarial Network [29]. The input of the network can be original SAR images [30] or
their log transformation [31], and the output of the network can be the residual content,
the denoised image, or the weights for further denoising process [3]. On the other hand,
self-supervised learning has merged as a promising future trend, as it avoids the domain
gap introduced by supervised learning methods, which employ simulated data in their
training. The existing self-supervised methods require either one single noise image or mul-
tiple noisy image pairs. Compared with only a single noise instance, using multiple noisy
images with independent noise distribution provides more information concerning the
noise and the original signal. It may lead to better denoising performance, as demonstrated
in [7].

Noise2Noise and SAR despeckling: For the deep learning denoising method that
only uses noisy images, noise2noise [13] achieves state-of-the-art results. This method
trains the model with a series of noisy image pairs, and each image pair contains two
independent and zero-mean noisy realizations of the same scene, one as training input
and one as training reference. The main obstacle to the application of the noise2noise
SAR despeckling is the construction of the noisy SAR image pair that refers to the same
ground truth, since the ground truth is not directly available. Different observations of
the same land area cannot be deemed fully stationary, as the land feature is constantly
changing. Addressing this problem, some researchers try to construct the image pairs by
using synthesized speckled images [14,32,33], either directly for network training [32,33] or
as an initial process [14] to evaluate and compensate for the change that occurs between
multi-temporal images acquired over the same area. The training process using synthesized
noisy images may inevitably bring in the domain gap. On the other hand, the NR-SAR-DL
previously proposed by our research group [15] employs no synthesized noisy image. As
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demonstrated in Figure 1, this method directly uses multi-temporal observations of the
same area as the noise2noise training set. The denoising network is an encoder–decoder
convolutional network with skip-connection and trained in a Siamese way with two
branches. The method compensates the temporal change by weighting the training loss
with the pixel level similarity estimation.
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Figure 1. Basic framework of the NR-SAR-DL filter [15].

Block-matching in SAR despeckling algorithm: The self-similarity presented inside
noisy images provides the possibility to construct a denoising algorithm by matching
similar blocks and then using the nonlocal filter as presented in the BM3D [34]. As the
speckled SAR image also presents self-similarity, there are several despeckle algorithms
that are built on block-matching and have good performance, such as SAR-BM3D [24] and
Fast adaptive nonlocal SAR (FANS) [35]. Block-matching can also be carried out among
multi-temporal SAR images [36]. Block-matching has recently been embedded in some
deep learning denoising methods [37–39] and despeckling methods [40,41]. However, the
network involved in these methods still requires supervised training with clean references.
Combining block-matching and self-supervised noise-referenced network training has only
emerged in the latest pre-print with feasible results [42].

3. Methodology

Changing the training reference to the noisy image whose ground truth is different but
similar can still fulfill the premise of noise2noise once the noise and the difference are zero-
expectation and independent. Regarding the applicability of constructing noise2noise train-
ing pairs by using noisy images of similar blocks, we proposed a novel SAR despeckling
method that combines block-matching and noise-referenced deep learning (BM-NR-DL).
The basic idea and framework of this method are shown in Figure 2. This method trains
the denoising network with a large number of noise2noise training samples constructed by
similarity-based noisy-block-matching in a single SAR image or a group of SAR images.
Firstly, the index blocks are randomly selected in the noisy image or the group of noisy
images. Then their similar blocks are searched in the dataset to construct the noise2noise
training pair with the index block. Finally, the network is trained in a Siamese style with
two parameter-sharing branches. In each training step, one image in the image pair is the
input of one branch and the reference of the other. The training procedure consists of two
passes. The first pass uses the original noisy image to calculate the similarity and produces
preliminary denoised images. The second pass then updates the similarity estimation with
the information provided by the first pass and refines the denoising result. The network
trained in the second pass produces the final denoising output. The principle of this method
is to ensure that the ground-truth difference between the training input and reference is
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small by setting a similarity threshold for block-matching, and the difference expectation is
close to zero by switching the input and reference in a Siamese style training.
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Figure 2. The workflow of the proposed BM-NR-DL method. Each noise2noise training pair contains
an index patch A and a similar patch B. There are two training passes, and the second pass searches
the similarity patches by considering the denoised result of the first pass. The similarity patch search
could be carried out in either one noisy image or multiple ones.

3.1. Block Matching and Noise2noise Pairing

In each training pass, p index blocks are firstly randomly chosen from the noisy data,
which could be a single SAR image or multiple SAR images of the same sensor. Then, for
each index block, the method constructs a group of candidate similar blocks from the noisy
data by k-th nearest neighbor search within these noisy images with a similarity estimation
S and a similarity threshold of T.

For a randomly chosen index block, the mean of its k-th nearest neighbor blocks may
not be zero, as it is influenced heavily by its domestic signal distribution, the similarity
estimation S, the similarity threshold T, and the value of k. However, when calculating
from the stochastic point of view with a small T, which is a certainty in a high-dimension
k-th nearest neighbor (KNN) search, the probability of a specific block to appear in the
index part is equal to its probability to appear in the neighbor part and thus may result
in a zero-mean difference. However, when the sample size is limited, there could be an
imbalance. Considering this, our method then establishes noise2noise training pairs by
using a Siamese network structure. In the training process, we simultaneously set each
index block as the input and each of its candidate similar neighbor as the reference and
set each candidate similar neighbor as the input and the corresponding index block as the
reference. Choosing the block size in a block matching process faces a dilemma: small block
size is sensitive to noise, while big block size increases the similarity estimation error and
computation burden. Some of the current block-matching despeckling methods choose
a block size of 8× 8, such as that of [24,36]; this is similar to BM3D, whose optimized
block-size ranges from 4 to 12 [43]. The block size used in the BM-NR-DL filter has a similar
range as BM3D, but with a lower bound of 6.
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3.2. Denoising Neural Network

The denoising neural network is based on the convolutional neural network and
consists of an encoder part, which captures the image features from different levels of
abstraction, and a decoder part with skip connections, which concatenates these features
to establish the denoised output. Such an encoder–decoder structure is designed to first
capture the texture information with the receptive field at different scales and then recover
the image with the captured information. Previous investigation has proven that such a
structure is a good image prior for low-level image statistics that can be used in various
inverse problems such as denoising [6]. It also showed good performance in our previous
deep learning denoising attempt [15]. Table 1 presents the detailed structure of the network.
Compared with the ordinary U-net neural network, the encoder part of the proposed
network consists of transpose convolutional layers, so the encoder part can deal with small
input image blocks while still maintaining enough pooling layers. The proposed network
can be trained with blocks as small as 6× 6. During the training, two branches of the
denoising network are grouped into a Siamese network with parameter sharing. Each
branch takes one image in the image pair as input and outputs the denoised image. The
loss is the sum of the L2 loss between the denoised output of each branch with its noisy
counterpart and the L2 loss between the two denoised outputs:

L(θ, IA, IB, λ) = || fθ(IB), IA||2 + || fθ(IA), IB||2 + λ|| fθ(IB), fθ(IA)||2 (4)

where θ is the denoising network parameter set, IA and IB represent the two images in an
image pair, and λ weighs the relative importance of the loss within each branch and the
loss between branches. The basic idea behind parameter-sharing is that the two images in
the image pairs are independent noisy realization of similar ground truth. The network
corresponding to each branch should achieve an overall optimization with each noisy
image and produce similar output.

Table 1. Parameters of the denoising deep network.

Step Featureout Function

Input 1 Input SAR image batch
Upinput 64 transposed convolution 4 × 4, stride: 4
Conv1 256 2 steps convolution 3 × 3
Pool1 256 maxpooling 2 × 2
Conv2 256 convolution 3 × 3
Pool2 256 maxpooling 2 × 2

Bottleneck 256 convolution 3 × 3
Up1 256 Upsampling scale factor: 2
Cat1 512 Concatenate Pool1 output

Conv3 256 2 steps convolution 3 × 3
Up2 256 Upsampling scale factor: 2
Cat2 256 + 64 Concatenate UpInput output

Conv4 32 3 steps convolution 3 × 3
Conv5 1 convolution 3 × 3

AvgPool 1 average pool scale factor: 4

This method contains no batch normalization, since in our experiment, introducing
batch normalization deteriorated the denoising performance. The activation function is
leaky rectified linear unit [44] for all the convolution layers except the last one, which uses
liner activation function. In the inference stage, only one branch of the trained network is
needed to despeckle the SAR image, as each branch shares the same set of parameters.

3.3. Two-Pass Noise-Referenced Training

The proposed method contains two training passes. The first pass searches similar
blocks with threshold T1 and trains the denoising network N1 based on the original cor-
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rupted SAR images. The block similarity measure S1 is designed for Gramma distributed
data [23,24] for single-looked amplitude data

S1 = ∑
k

log
(

x(s, h)
x(r, h)

+
x(r, h)
x(s, h)

)
(5)

where x denotes amplitude of a pixel in the noisy block; s, r refer to the index pixel of the
two compared blocks; and h is used to scan the entire block. The first pass then products
preliminary despeckled images for the next pass.

The second pass takes advantage of the preliminary despeckled images. Inspired
by [23,24], it trains the network N2 with similar block pairs from the original noisy image
with threshold T2 and similarity S2:

S2 = ∑
k

[
log
(

x(s, k)
x(t, k)

+
x(t, k)
x(s, k)

)
+ η
|x′(s, k)− x′(t, k)|2

x′(s, k)x′(t, k)

]
(6)

where x′ denotes the amplitude of a pixel in the preliminary despeckled block produced
by the first pass, and η denotes the weights of the preliminary despeckled image in the
similarity measure. Finally, the denoising process uses N2 to infer the clean estimation.

4. Experiments and Results

We conducted experiments on both the simulated and real SAR data to gauge the
performance of the proposed despeckling method. The training was carried out with
either a single SAR image or time sequence images of the same sensor. We compared the
despeckling results of the proposed model with the following four state-of-the-art methods:
for single image-based despeckling, the probabilistic block-based (PPB) filter [23], and
the dilated residual network-based SAR (SAR-DRN) filter [12]; and for multitemporal
image-based despeckling, the 3D block matching-based multitemporal SAR (MSAR-BM3D)
filter [36], and the noise-referenced deep learning (NR-SAR-DL) filter [15]. All these
methods were implemented by the source codes provided by the authors of the respective
articles. The proposed method was implemented in the Pytorch package [45] and run on
a workstation with an INTEL 10920x CPU, two NVIDIA 2080Ti GPUs, and 128G RAM.
The experiment employed the Adam method [46] to optimize the network in the training
process, with the parameter settings as β1 = 0.9 and β2 = 0.999. The learning rate was set to
0.003 without decay during the training. The block size was set to 13 × 13 pixels, and η
was set to 2 for similarity calculation in the second pass for all the dataset except Sentinel-1,
where η was set to 1. The loss weight λ was set to 0 for the first pass and 0.5 for the second
pass. Due to the calculation capacity limitation, each test used 10,000 index blocks, and the
similarity blocks were searched within 90× 90 pixels from the center of the index blocks. For
each index block, 32 of the most similar blocks were searched to construct training pairs. We
chose the similarity threshold T to eliminate the 10% outliers in the training pairs produced
in the similar search process. However, fine tuning T based on the denoising result was
still required. The source codes of the proposed method and the experiment dataset can
be retrieved from the link https://github.com/githubeastmad/bm-nr-dl (accessed on 19
December 2021).

Figure 3 demonstrates the training curve for a TerraSAR image. During the training,
the loss converged very quickly but would not decrease close to zero, since the training
output was a clean image, and the reference was its noisy counterpart. The training on the
TerraSAR image cost around 9 min for each pass with 1500 iterations and a batch size of
300 to achieve a decent denoising result. For comparison, the PPB filter cost around 4 min
running on the same machine.

https://github.com/githubeastmad/bm-nr-dl
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4.1. Experiments with Simulated Images

Using the same optical image, we synthesized single-look speckled SAR images for
experiments. Two tests were carried out: the first test trained the network on a single-look
speckled image and despeckled the same image. The second test trained the network on bi-
temporal images and despeckled the trained image. The despeckled results of the proposed
model were quantitatively compared with other models by the peak signal-to-noise ratio
(PSNR) [47], the structural similarity (SSIM) index [48], and the equivalent number of looks
(ENL) [49]. Table 2 lists the assessment results, and Figure 4 shows the filtering results
of the different methods. Table 2 also includes the rank-sum of each filter, which is the
sum of the filter performance ranking in the three metrics. In the experiments, the PPB
filter presented an over-smoothed result with considerable fine linear structure loss. The
SAR-DRN filtered image still had notable speckles. It also presented a lower range of
gray-level compared with the clean image. The MSAR-BM3D filtered image had a block
effect in the homogeneous region. The linear structure in the urban region was also blurred
to some degree. NR-SAR-DL introduced some undesirable point-like artifacts. It also had a
subtle block effect in the homogeneous area. The proposed BM-NR-DL filter, either trained
using a single noisy image or bi-temporal images, yielded good despeckling results with
visually pleasing output. The despeckled image presented no significant artifacts or blurs.
The quantitative evaluation listed in Table 2 supports the previous observations.

Table 2. Quantitative assessment results for the simulated dataset.

Method Filter PSNR SSIM ENL Rank-Sum

Single noisy image
PPB 19.30 0.64 2202.53 7

SAR-DRN 19.04 0.63 53.93 3
BM-NR-DL 21.43 0.69 860.80 8

Two noisy images

MSAR-
BM3D 23.80 0.71 805.76 7

NR-SAR-DL 23.66 0.63 257.17 3
BM-NR-DL 24.64 0.71 726.66 8
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4.2. Experiments with Real SAR Images

We then inspected the despeckling performance of the proposed model using real
single-look SAR datasets from three different sensors: TerraSAR, Sentinel-1, and ALOS.
The TerraSAR images were in Ruhr, Germany on 20 February and 4 March, 2008. The
Sentinel-1 images were in Wuhan, China on 26 April and 8 May, 2019. The ALOS images
were acquired in 2007 and 2010, which contained major changes. The multi-temporal data
had not been fine-registered. Two tests were carried out for each dataset: the first test
trained the despeckling deep model with only one speckled image and then despeckled the
same image. The second test trained the network with two speckled images and despeckled
the two images. Since no ground-truth was available, we compared the performance of
the proposed method with others by the four following quantitative metrics: the ENL,
the edge-preservation degree based on the ratio of average (EPD-ROA) [50], the mean of
ratio (MOR), and the target-to-clutter ratio (TCR) [51]. The EPD-ROA metric is calculated
as follows:

EPD− ROA =
∑M

i=1|x′A(i)/x′B(i)|
∑M

i=1|xA(i)/xB(i)|
(7)

where x′A(i) and x′B(i) are the adjacent pixel pair of a certain direction in the despeckled
image. The EPD-ROA metric describes how the denoising filter retains edges along certain
directions. Its value should be close to 1 if the edge preservation is good. The MOR metric is
the ratio between the despeckled image and the original one. It describes how the denoising
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filter preserves the radiometric information and, if the preservation is good, should be close
to 1. The TCR is calculated with image patches as follows:

TCR =
∣∣20 log10 max

(
X′
)
/E
(
X′
)
− 20 log10 max

(
X̂
)
/E
(
X̂
)∣∣ (8)

where X′ and X̂ denote the despeckled and noisy image patches with a high return point,
respectively. The TCR measures the radiometric information preservation of the region
around the high return point and should be close to 0.

Table 3 lists the assessment results, and Figures 5–7 show the despeckling results of
the experiments with ALOS, Sentinel-1, and the TerraSAR dataset, respectively. Table 3
also includes the rank-sum of each filter, which is the sum of the filter performance ranking
in the four metrics. For the TerraSAR dataset, the PPB, BM-NR-DL, and NR-SAR-DL
presented superior speckling surpassing capacity, as indicated by ENL. However, the PPB
over-smoothed the image and yielded unnatural despeckling results. It also introduced
undesirable artifacts in the despeckled image. The SAR-DRN retained well the fine struc-
tures but was poor in speckle surpassing. NR-SAR-DL achieved very good speckling
surpassing capacity but failed to retain some strong point targets, as demonstrated in the
TCR value for the selected highlight. MSAR-BM3D yielded natural despeckling output
with good highlight retaining capacity. However, its result presented some artifacts and
had a significant block effect. The BM-NR-DL filter showed the best speckle suppression,
good fine structure maintenance, and good strong point target retainment. The despeckling
results of the model trained with single image presented higher ENL and TCR compared
with those of the model trained with two images. However, the later model preserved
better the fine structures and radiometric information.

Table 3. Quantitative assessment results for the TerraSAR, Sentinel-1, and ALOS datasets.

TerraSAR

Method Filter ENL EPD MOR TCR Rank-
Sum

Single noisy
images

PPB 111.68 0.66 0.85 1.86 7
SAR-DRN 6.89 0.74 0.93 2.17 8

BM-NR-DL 171.71 0.66 0.96 6.05 9

Two noisy
images

NR-SAR-DL 130.17 0.66 0.99 0.58 9
MSAR-BM3D 57.98 0.67 0.96 3.35 6
BM-NR-DL 59.22 0.66 0.99 2.57 9

Sentinel-1

Single noisy
images

PPB 102.85 0.70 0.86 3.10 11
SAR-DRN 9.30 0.69 0.38 8.51 5

BM-NR-DL 76.06 0.68 0.87 8.03 8

Two noisy
images

NR-SAR-DL 67.68 0.71 0.79 7.95 7
MSAR-BM3D 61.74 0.70 0.88 1.73 8
BM-NR-DL 79.62 0.69 0.88 5.02 9

ALOS

Single noisy
images

PPB 683.94 0.96 0.98 6.46 9
SAR-DRN 9.17 1.07 0.61 1.73 6

BM-NR-DL 276.29 0.96 0.93 4.03 9

Two noisy
images

NR-SAR-DL 29.68 0.95 0.92 2.21 7
MSAR-BM3D 205.32 0.96 0.91 2.67 7
BM-NR-DL 303.99 0.96 0.99 2.81 10
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filter, the MSAR-BM3D filter, and the BM-NR-DL filter trained with bi-temporal images, respectively.
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Figure 6. The despeckling result of the Sentinel-1 dataset. (a) Speckled image. (b–g) The images
filtered by the PPB filter, the SAR-DRN filter, the BM-NR-DL filter trained with one image, the
NR-SAR-DL filter, the MSAR-BM3D filter, and the BM-NR-DL filter trained with bi-temporal images,
respectively. (h) Speckled image of a same region but another time phase. (i) The image filtered by
the BM-NR-DL filter pre-trained with bi-temporal images.
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Figure 7. The despeckling result of the TerraSAR dataset. (a) Speckled image. (b–g) The images
filtered by the PPB filter, the SAR-DRN filter, the BM-NR-DL filter trained with one image, the
NR-SAR-DL filter, the MSAR-BM3D filter, and the BM-NR-DL filter trained with bi-temporal images,
respectively. (h) Another time phase image filtered by the BM-NR-DL filter pre-trained with bi-
temporal images. (i) Speckled image of a new region. (j) The image filtered by the BM-NR-DL filter
pre-trained with bi-temporal images.
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For the Sentinel-1 and ALOS datasets, though PPB presented the highest ENL, visual
inspection showed that its results missed fine structures and were over-smooth. On the
other hand, the SAR-DRN filter failed to eliminate the speckles to a large degree. It also
greatly distorted the radiometric information of the speckled image. The despeckling
results of the MSAR-BM3D method had artifacts and presented block-effects, similar to the
results with simulated and TerraSAR images. NR-SAR-DL showed good performance in
all the four metrics. However, BM-NR-DL performances were even better, except for EPD
and TCR in the Sentinel-1 dataset. Visual inspection also discovered that the BM-NR-DL
method preserved more fine structures and had much less radiometric distortion compared
with the NR-SAR-DL method. The only exception was that the BM-NR-DL despeckled
ALOS image had a lower contrast compared with that despeckled by the NR-SAR-DL
method. However, by post-processing, the contrast could be easily maintained, and the fine
structures were still well preserved. The high return preserving capability of BM-NR-DL
was acceptable. In sum, BM-NR-DL achieved a good balance between speckle surpassing
and structure preserving. Unlike other methods, which present an over sharpening feeling,
the despeckled image of the BM-NR-DL was more natural.

4.3. Generalization Experiments

Generalization capacity, which refers to the performance of a denoising method on a
non-training dataset, is not a necessity for BM-NR-DL, as this method can be self-supervised.
However, exploiting the generalization capacity of the despeckling network is valuable,
since using a pre-trained network has a great performance advantage compared with
training an ad hoc model for each new noisy image.

We used the model trained in the previous experiments with real SAR data to despeckle
the image that was not used in the training process to understand the generalization
capability of the denoising network. The preliminary evaluation with images acquired
by a different sensor of the training image was unsatisfactory. As a result, generalization
experiments were carried out only with the images of the same sensor. For TerraSAR,
the single-image-trained network was used to despeckle another TerraSAR image of the
same region but with significant temporal alternation. In addition, the two-image-trained
network was used to despeckle another TerraSAR image of a new region. For Sentinel-1,
the two-image-trained network was used to despeckle another Sentinal-1 image of the
same region but with significant temporal alternation. In the test of both datasets, we used
the PPB filter as the reference. The images are shown in Figure 6h,i and Figure 7h,j, and the
quantitative analysis is shown in Table 4.

Table 4. Quantitative assessment results of the generalization experiments.

Dataset Experiment ENL EPD MOR TCR

TerraSAR

T1 trained, T3
despeckling 97.03 0.60 0.90 4.15

PPB T3 108.88 0.66 0.86 1.95

T1, T2 trained, new
region despeckling 95.5581 0.7178 0.93 6.05

PPB new region 262.28 0.7206 0.88 3.56

Sentinel-1
T1, T2 trained, T3

despeckling 110.91 0.64 0.99 10.33

PPB T3 108.94 0.69 0.85 3.64

The experiment showed positive results. The visual inspection of the despeckling
result showed that the speckle was effectively eliminated without significant loss in the
fine structure in accordance with the quantitative evaluation. We spotted no obvious block
effects and very few artifacts. In contrast, the PPB filter produced an over-smooth result
with noticeable artifacts. The quantitative evaluation indicated a slight decrease in the EPD
value for the TerraSAR dataset when compared with the despeckling result of the training
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images. The previous ad hoc model despeckling result showed a higher EPD value than
PPB in contrast to a slightly lower value than PPB in the current experiment. However,
there was no perceivable deterioration in the edge perception.

The observation of the previously mentioned experiment demonstrated that the gen-
eralization capability of the denoising network is very promising when used for a given
sensor. The great generalization capacity of the proposed model brings application flex-
ibility. The noisy image can now be despeckled either by an ad hoc trained network or
by the network that is previously well-trained with the images of the same sensor. The
ad-hoc trained network can yield promising despeckling results. On the other hand, using
the pre-trained network can process the noisy image much quicker with very limited
performance reduction. In our experiment, the despeckling of a 2400 ∗ 2400 Sentinel-1
image only costs around 10 s, while PPB requires over 400 s.

5. Discussion

The proposed BM-NR-DL despeckling method combines block-matching and noise-
referenced SAR deep learning despeckling. To our knowledge, it is the first such attempt
in this domain. The proposed model shows good speckling results in the previous experi-
ments with both synthesized and real SAR data. Its speckling result is visually pleasing
with a balance between speckle suppression and detail preservation, and its quantitative
evaluation metrics are generally superior to other reference methods. These experiments
also demonstrate the applicability of the BM-NR-DL in various training and despeckling
settings. The noisy image patches for network training could be acquired from either
a single SAR image or multiple images of the same sensor. Synthesized noisy data or
a “clean” image are no longer necessary, thus avoiding the domain gap introduced by
synthesized data. The despeckling network also has good generalization capability. The
despeckling network can now be specifically trained for the targeted noisy images, or it
can be pre-trained with other images of the same sensor, thus saving calculation time for a
specific mission.

Despite the overall promising results, the high return preservation of the proposed
method can only be regarded as fair. By carefully inspecting the highlights in the tested
images, we discover that the structure of the highlighting is largely preserved in the
despeckled result; yet the radiometric information has been distorted to some degree. In
the experiment, the highlighting despeckling performance is very sensitive to the training
settings, such as the block-matching searching radius and the nature of the training noisy
image. Extending the search radius has a positive impact on the performance of high return
preservation. This observation may indicate that the current block-matching process has
not searched and constructed enough similar noisy image pairs that contains high returns.
In addition, some of the training settings, such as λ in the training loss calculation and the
similarity threshold T, are set according to the empirical test result. It may require multiple
fine-tuning manually, which could be time-consuming. The training of the proposed deep
network also requires more time compared with classical denoising approaches. Thus,
practitioners may expect a longer denoising time if training an ad hoc network for the best
denoising result. On the other hand, denoising with a pre-trained network is significantly
quicker than classical denoising approaches.

Potential further investigations include using the lookup tables for a wider range of
block searching, such as that of [36], and introducing auto-adaptive similarity estimation
according to different image blocks, such as that of [25]. Moreover, using the lookup tables
and variational methods may raise an interesting research question for future work: instead
of randomized index block selection in the current BM-NR-DL method, how can training
image pairs be constructed that lead to better performance and generalization capability?
Discovering the rule of parameter setting could also facilitate this process and may lead to
an automatic solution in the future.
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6. Conclusions

The noise-referenced speckling deep learning network has shown promising results
in recent research. It can train with only real SAR data, thus avoiding domain gaps.
However, its training process requires a fine registered multitemporal dataset for image
pair extraction. The training cannot deal well with images that have major changes and may
still require temporal variation compensation based on pixel-level similarity evaluation.
Inspired by the fact that the similarity index could be irrelevant to the block’s location
and acquiring time, in this article, we propose a block-matching noise-referenced deep
learning method for self-supervised network training and SAR despeckling. The main
idea of the proposed method is to construct a series of noisy block pairs by similarity-
based block matching in one or several SAR images as the network training input. Then
the method uses these noisy block pairs to train a Siamese network with two parameter-
sharing encoder–decoder convolutional neural network branches through two passes: first
for the preliminary despeckling, and second for the final training with a refined similarity
estimation. The despeckling inference requires only one branch of the Siamese network.

The experiments with both the simulated and real SAR dataset show promising
despeckling results. The despeckled image is visually pleasing without the feeling of over
sharpening. The fine structure is well preserved without significant artifacts. The proposed
method also demonstrates a good despeckling capability for non-training images from the
same sensor. Despite the good despeckling performance, another main advantage of the
proposed method is its training flexibility. The network can be trained with either one SAR
image or multiple images of a certain sensor. Moreover, the network can be trained ad hoc
or pre-trained with images other than the targeted one.
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X Clean image
X̂ Noisy/speckled image
X′ Denoised image
fθ(·) Network with the parameter set θ

S Similarity index
L(·) Loss function
T Similarity threshold
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