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Abstract: There has been substantial progress in small object detection in aerial images in recent years,
due to the extensive applications and improved performances of convolutional neural networks
(CNNs). Typically, traditional machine learning algorithms tend to prioritize inference speed over
accuracy. Insufficient samples can cause problems for convolutional neural networks, such as instabil-
ity, non-convergence, and overfitting. Additionally, detecting aerial images has inherent challenges,
such as varying altitudes and illuminance situations, and blurred and dense objects, resulting in
low detection accuracy. As a result, this paper adds a transformer backbone attention mechanism as
a branch network, using the region-wide feature information. This paper also employs a generative
model to expand the input aerial images ahead of the backbone. The respective advantages of the
generative model and transformer network are incorporated. On the dataset presented in this study,
the model achieves 96.77% precision, 98.83% recall, and 97.91% mAP by adding the Multi-GANs
module to the one-stage detection network. These three indices are enhanced by 13.9%, 20.54%,
and 10.27%, respectively, when compared to the other detection networks. Furthermore, this study
provides an auto-pruning technique that may achieve 32.2 FPS inference speed with a minor perfor-
mance loss while responding to the real-time detection task’s usage environment. This research also
develops a macOS application for the proposed algorithm using Swift development technology.

Keywords: object detection; transformer; deep learning; aerial image; generative model; GANsformer
detection network

1. Introduction

In recent years, there has been significant progress in the development of aerial
image detection [1–3]. Traditional target detection typically employs images acquired
on the ground, and its dataset has limitations that constrain the scope of target detec-
tion research. Moreover, there are objective difficulties in acquiring particular images,
such as capturing images in extreme geographical locations or images with large objects.
However, aerial image detection—an improved and prevalent one for object detection
studies—optimizes these issues, broadens the research scope of object detection, and makes
access to images more flexible and convenient. Thanks to advancements in associated
image detection algorithms and approaches in capturing aerial images, strong support
for improved aerial image object detection has been provided. As a result, aerial image
object detection technologies will become increasingly important in the future.

To categorize objects in an image [4], traditional machine learning approaches gen-
erally capture handmade features, such as corners and edges. Other classic methods,
such as frame difference, optical flow, and histogram of oriented gradients [5], have great
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real-time inference speed due to their comparatively simple computations. However,
because they have been trained on specific qualities, they often perform poorly (in ac-
curacy) [6]. In particular, regarding the subject topic of this paper, if previously unseen
datasets [6]—comprised of various objects and collected under diverse situations—emerge,
these techniques function defectively and with inferior accuracy.

Deep learning methods have recently experienced significant advances in computer vi-
sion. Numerous detection approaches and algorithms have proven to be superior in image
detecting performance. Specifically, Wei Zhang et al. [7] introduced a CNN-CAPSNet—
an efficient remote-sensing image classification architecture, which takes advantage of the
strengths of CNN and CAPSNet models. As a first feature maps extractor, a CNN without
completely connected layers was utilized. Moreover, they chose a pre-trained deep CNN
model, which was utterly trained on the ImageNet dataset as a feature extractor. Statis-
tical results showed that the presented method could achieve competitive classification
performance compared to state-of-the-art methods. Mingjie Liu et al. [6] created a unique
approach for detecting small objects in an unmanned aerial vehicle (UAV) application.
They originally optimized the ResBlock in darknet using YOLOv3 by concatenating two
ResNet units with the same width and height. Subsequently, the overall architecture of the
darknet was enhanced by improving convolution operation to enrich spatial information.
In addition, they gathered a UAV-viewed dataset for small object detection. Minh-Tan
Pham et al. [8] presented YOLO-fine—an improved one-stage deep learning-based de-
tection model—on the basis of YOLOv3’s structure. The detector was designed to detect
small items with great precision and speed, permitting real-time applications in practical
situations. They further investigated its robustness to the emergence of new backdrops
on the validation set, addressing the essential obstacle of domain adaptation in remote
sensing. Experiments on aerial and satellite benchmark datasets reveal that YOLO-fine
performs significantly better than other state-of-the-art object detectors. Nevertheless, even
if Mask R-CNN [9] and Faster R-CNN [10] have high accuracy, their detection speeds are
insufficient for satisfactory performance in practical applications. In the meantime, most
previous scholars trained and tested these algorithms on huge natural photos, as opposed
to aerial images. PASCAL VOC [11] is one of the most notable instances.

Although object detection in aerial images is a significant research field, it contains
uncertainties and challenges during image capturing and processing.

1. Foremost, with variable altitude conditions and smaller object sizes, aerial images
contain a considerable variation. Altitude causes diverse clarity and sizes of objects
with varying resolutions in captured images. If the images were captured in an ex-
cessively high-altitude circumstance, images of the same objects would be viewed as
different shapes and blurred, complicating the differentiating.

2. Afterward, under different altitude circumstances, corresponding mutable illumi-
nance appears. Assuming images were captured at a relatively higher altitude,
the lighting condition would worsen, and objects could reach less favorable sharp-
ness [12].

3. Moreover, aerial images are prone to have multiple tiny objects in an individual
image. Some of them probably distribute densely [13], which causes mutual shielding.
Thus, using the pre-trained state-of-the-art models would generate lower accuracy.

4. In addition, when capturing aerial images, it would be affected by the weather.
Moreover, there are clutters in the high altitude that interfere with the target detection
object, such as flying birds, flying insects, and leaves.

Fortunately, some scholars have proposed various methods to tackle the problem
of small object detection in aerial images mentioned above. For example, Chuanyang
Liu et al. [14] developed an MTI-YOLO network for detecting insulators in complicated
aerial pictures. They gathered composite insulator photos from various scenes and created
a CCIN detection dataset. The provided MTI-YOLO network, as well as other comparative
networks, were then trained and validated on the established dataset. The network’s
AP is 17% and 9% higher than YOLO-tiny and YOLO-v2, respectively. The suggested
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network has a somewhat longer operational time than YOLO-tiny and YOLO-v2. Fur-
thermore, the suggested network uses 25.6% and 38.9% less memory than YOLO-v2 and
YOLO-v3, respectively. Luc Courtrai et al. [15] proved that the cycle Wasserstein GAN
with an auxiliary YOLOv3 network performs properly in high-quality images with a shal-
low spatial resolution (up to 1m/pixel). Jakaria Rabbi et al. [16] suggested an end-to-end
architecture that concurrently performs object detection and super-resolution to gain dis-
cernible boundary information of small-object images and alleviate the massive expense
of HR photography for broad areas. To improve feature extraction ability, Danqing Xu
et al. [17] deployed DenseNet. Furthermore, based on the original YOLO-V3, the detec-
tion scales were extended to four. In terms of accuracy, experiments on the RSOD and
UCS-AOD datasets revealed that our approach outperformed Faster-RCNN, SSD, YOLO-
V3, and YOLO-V3 small datasets. In the RSOD dataset, their approach’s mAP increased
from 77.10% to 88.73% compared to the original YOLO-V3. The mAP of detecting targets
such as aircraft rose by 12.12% in particular. Danilo Avola et al. [18] suggested a viable
and efficacious multi-stream architecture, applying diverse kernel sizes to manufacture
multi-scale image analyses. They manipulated this architecture as a backbone and then
developed a multi-stream-Faster R-CNN object detector, which is satisfactorily capable
of achieving real-time tracking on UAV images. The performance of the proposed pipeline
attained the state-of-the-art, demonstrating that the suggested multi-stream technique
can accurately simulate the robust multi-scale image processing paradigm. Ren Jin et
al. [19] presented an efficient algorithm in aerial images object detection. They neatly
ameliorated the restraint of inputting object samples in the multi-scale training procedure.
Specifically, these researchers adopted metric learning to attain the scale representation
boundary of each object category. Subsequently, tiny indiscernible objects were merged
into small object regions. Consequently, they established a relationship between multi-scale
training and multi-scale inference. Following the aforementioned processes, the suggested
technique was validated on three renowned aerial image datasets: VisDrone, DOTA, and
UAVDT. Experimentally, this approach was shown to enhance detection accuracy while
declining the number of processing pixels.

However, the small-object detection issues outlined above, as well as the inferior detec-
tion accuracy in this area, have not been effectively and meaningfully solved. CNNs have
difficulty capturing global features, such as long-distance relationships between visual ele-
ments, often critical for advanced computer vision tasks. An intuitive solution is to expand
the receptive field. Nonetheless, this solution may require more intensive but disruptive
pooling operations. Recently, the transformer architecture has been introduced for vision
tasks. The visual transformer (ViT) reflects the complex spatial transformations and long-
range feature dependencies that make up the global features. Unfortunately, the observed
visual transformer ignores local feature details, which reduces the discriminability between
background and foreground. Improved visual transformers propose a tokenization module
or use CNN feature maps as input tokens to capture feature adjacency information. How-
ever, questions remain about how to embed local features and global features precisely.
Moreover, this architecture can outperform CNNs only when based on immense datasets.

Given the transformer’s huge and irreconcilable shortcoming, this research utilizes
the core idea, attention, of the transformer. It then proposes a high-performance network
for detecting aerial images that incorporates a convolutional network and the transformer,
optimizing the mainstream detection network. The following are the study’s key contributions:

1. We modified the transformer to reduce the number of parameters, improve the train-
ing speed, and act as a branch network to improve CNN’s ability to capture global
features. Because GANsformer inherits and combines the structural and global feature
extraction advantages of CNN and visual transformers, its performance is signifi-
cantly better than CNN and ViT with comparable parameter complexity. GANsformer
has demonstrated its remarkable potential capability in aerial images detection tasks.
Eventually, on the validation set, the suggested technique achieves 96.77%, 98.86%,
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and 97.91% on Precision, Recall, and mAP, respectively. This experimental result
indicates that the suggested model outperforms all other comparison models.

2. In Section 6, we evaluated the performance of various combinations of generative mod-
els to verify the efficacy of Multi-GANs implementations. Experimentally, the SPA-
GAN model performs best in the attention extraction module, whereas the WGAN
model works best in image augmentation.

3. Moreover, the detection task’s loss function is optimized by substituting the IoU loss
with a more appropriate CIoU loss.

4. Additionally, this paper established a detection application based on the macOS.
The optimized model based on the proposed method, when being integrated in
the practical application device, could also effectively and satisfactorily detect objects
in aerial images.

Despite the above outstanding achievements, there are a few limitations in this re-
search. In the beginning, even though this paper attempted numerous strategies to solve
the imbalance problem of small sample datasets, the detection accuracy remained the low-
est across all classes in terms of detection outcomes. Furthermore, the suggested detection
network is based on the one-stage network with intrinsic flaws. Lastly, the loss function’s
design has the possibility of being enhanced. These are challenges that the authors of this
paper will need to overcome in the future.

The remainder of this paper is arranged as follows: Section 3 introduces the dataset
and describes the Multi-GANs detection network. Section 4 explains the experimental
setup and evaluation indicators. Section 5 discusses validation and detection results and
analyzes the experimental results. Section 6 conducts numerous ablation experiments
to verify the efficacy of the optimized method. Section 7 is a summary of the entire paper.

2. Related Work

Object detection is a critical research topic in the "science" of computer vision.
With the growth of deep learning [20,21] and machine learning [22–24] in image detection
applications, various sophisticated computer vision systems used for evaluating object
detections have been presented. Up until 2012, the classic machine learning approach was
commonly used to detect objects. Afterward, CNN-based models for detecting objects could
be classified into two types: one-stage and two-stage models. The single shot multi-box
detector (SSD) [25–27], You Only Look Once (YOLO) [28–30], and EfficientDet [31] series
are all one-stage versions. Meanwhile, the one-stage approach collects features from the
network directly to forecast the object type and position. Faster R-CNN [10] and Mask
R-CNN [9] are two-stage models. The two-stage approach must generate proposals—a pre-
determined box containing probable objects to be detected—before performing fine-grained
object detection. As a result, the two-stage approach has a comparatively slow speed as it
must repeat the classification and detection procedure numerous time and again. The alter-
native one-stage object detection technique, on the other hand, feeds all of the bounding
boxes into a network merely once and then forecasts them, making it fast and appropriate
for mobile. Thereby, we chose the one-stage detection network in this research.

Numerous novel CNN approaches are being created, based on investigators merging
new modules and advancements in linked disciplines, such as industry, agriculture, and
medicine. For example, Yan Zhang et al. [32] suggested a CNN augmented by a MAF
module in the agricultural field. This work used image preprocessing to broaden and aug-
ment the illness samples, warming up methods, and transfer learning to accelerate training.
The proposed system could detect three types of maize illnesses efficiently and correctly,
achieving 97.41% accuracy (in the validation set), outperforming traditional AI methods.
A CNN-based detection network with a pruning inference and generative module was
also previously suggested [33]. The pruning inference provided here dynamically disabled
a portion of the network structure in various conditions, reduced parameter amounts and
processes, and accelerated the network. When detecting apple blooms, this model achieved
90.01% (precision), 98.79% (recall), and 97.43% (mAP), respectively. The inference speed
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exceeded 29 frames per second. In the case of pear flaws detection, scholars developed
an upgraded CNN model; more specifically, a deep convolutional adversarial generation
network was used to extend the diseased pictures [34]. According to the experimental
data, the detection accuracy of the proposed technique was 97.35% (in the validation).
Furthermore, this model performed well on two unseen types of pears, demonstrating its
generalization potential and robustness.

CNNs are remarkable for advanced computer vision tasks, such as image classification,
target detection, and instance segmentation. The impressive performances of CNNs in these
tasks are mainly attributed to convolutional operations. That is, hierarchically collecting
local features as powerful image representations. Despite the advantages in local feature
extraction, capturing the global features remains a challenge for CNNs, but it is often
critical for advanced computer vision tasks. There are two feasible solutions to alleviate
this limitation:

1. One viable solution is to define larger receptive fields by introducing deeper ar-
chitectures or more pooling operations. Dilated convolution methods [35,36] in-
crease the sampling step, while deformable convolution learns the sampling position.
SENet [37] and GENet propose using global AvgPooling to aggregate the global
context and then rethinking the feature channels. In contrast, CBAM [38,39] uses
global max pooling and AvgPooling to independently refine features in the spatial
and channel dimensions, respectively.

2. Another possible solution is the global attention mechanism [40–42], which has signifi-
cant advantages in capturing long-range dependencies in natural language processing.
Inspired by the non-local means approach, non-local operations are introduced into
CNNs via a self-attention mode. Thus, the response at each location is a weighted
sum of global location features. The attention convolutional network [43] connects
the convolutional feature map with the self-attention feature map to enhance the con-
volutional operation and, thus, capture remote interactions.

Recently, transformer architectures have been introduced for vision tasks. As a pio-
neering work, visual transformer (ViT) [44–46] validates the feasibility of pure transformer
architectures for computer vision tasks. To exploit long-range dependencies, transformer
blocks act as standalone architectures or are introduced into CNNs for image classification,
target detection, semantic segmentation, image enhancement, and image generation. How-
ever, the self-attentive mechanism in visual transformers often ignores local feature details.
Moreover, transformers usually outperform CNNs’ overall performance only on massive
datasets. Given this vast and irreconcilable drawback, this study refers to the transformer’s
prominent attention. Then we incorporate it with a convolutional network to propose
the network in this paper.

3. Materials and Methods

We used the aerial images dataset, which was released by Northwestern Polytechnical
University in 2016, a publicly available level 10 geospatial object detection remote sensing
dataset. This dataset contains a total of 800 images, including 650 images of the object and
150 images of the background, with 10 categories of objects: aircraft, ships, oil tanks, baseball
fields, basketball courts, athletic fields, ports, bridges, tennis fields, and vehicles [47], as
shown in Figure 1.
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Figure 1. Dataset visualization. (A–I) shows multiple targets and multiple scales of the dataset: (A) is
a green channel-enhanced image containing cars; (B) contains a vast number of dense ships; (C) is
an athletic field, with a much larger scale than the ship in (B); (D) contains both airplane and oil tank
objects to be detected; (E) contains an airplane; (F) contains a baseball field; (G) contains tennis and
basketball courts; (H) contains two basketball courts; (I) contains a bridge, with the most huge scale
of all targets.

3.1. Data Augmentation

As analyzed above, the dataset contains 10 kinds of objects to be detected, although
the total number of images is only 800. However, deep learning, especially the CNN model,
needs a large amount of data to drive the training process. In this paper, the augmentation
operation was performed on the dataset first.

3.1.1. Basic Augmentation

In this paper, we referred to the method proposed by Alex et al. [48]. We used
image flipping, translation, and scaling for simple data augmentation. Image flipping and
image translation mainly improve the model’s accuracy by increasing the amount of data.
The primary purpose of image scaling is to improve the robustness of the model to different
scales of targets. As mentioned in Section 4.1, the scales of different targets are not the same,
so it is necessary to improve the model’s ability to detect the same target at different scales.
The specific implementation of image scaling is image affine transformation.

The target image’s width and height are anticipated to be wtarget and htarget, whereas
those of the original image are worigin and horigin. Equation (1) illustrates that when images
are enlarged and shrunk, the Ω, which represents the scaling factor, is first defined. At that
moment, we split the width and height of the original image through Ω. Afterward,
after the target frame’s center point intersects with that of the processed image, we take
a fragment inside the target frame.
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Ω = min{
htarget

horigin
,

wtarget

worigin
} (1)

In addition to the above spatial and scale data enhancements, this paper also uses
fundamental color channel transformations, such as HSV channel color change, to enhance
the recognition performance of the model for different lighting conditions.

3.1.2. Advanced Augmentation

In addition to the primary data enhancement methods mentioned above, we also used
the following five advanced augmentations to tackle the problem above of uneven amounts
of data for different kinds of aerial images, as shown in Figure 2.

In order to solve the enormous memory loss and the network’s unsatisfactory sensitiv-
ity to adversarial examples, we referred to the method depicted in the Mixup [49], which is
intended to address the network’s massive memory loss and inadequate sensitivity to ad-
versarial samples. Since the model used in this paper includes the Multi-GANs module,
enhancing the sensitivity of the adversarial samples can improve the module’s precision.
The method is shown in the Equations (2)–(4).

λ = Beta(α, β) (2)

mixed_batchx = λ× batchx1 + (1− λ)× batchx2 (3)

mixed_batchy = λ× batchy1 + (1− λ)× batchy2 (4)

The Cutout [50] method arbitrarily chops out a portion of the sample and fills it with
a specific pixel, while the categorization result stays unaffected. Cutout is accomplished
by masking the image with a defined size rectangle and setting all values within the rect-
angle to zero or other solid color values. Cutout allows the convolutional neural network
to use global information from the entire image rather than local information from a few
minor features.

The CutMix [51] method is adopted to remove a portion of the region. The other data
in the training set’s area pixel values are stochastically filled rather than filling zero pixels.
CutMix allows the model to recognize two targets from a local view of an image, increasing
the training efficiency. It also allows the model to focus on the areas where the target is
hard to differentiate. However, there is a lack of knowledge in several areas, which will
impact training efficiency.

The SnapMix [52] method randomly cuts out some areas in the sample. It fills them
with a particular patch from other images stochastically, and the classification label re-
mains unchanged.

The Mosaic [29] method can utilize multiple images at once. The most crucial benefit
of Mosaic is that it can improve the background of identified objects. Multiple images’ data will
be counted in the BatchNorm calculation, significantly enhancing the model’s generalization.

These specific effects are shown in Figure 2.

Figure 2. Illustration of five augmentation methods. (A) Mixup; (B) Cutout; (C) CutMix; (D) SnapMix;
(E) Mosaic.
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3.2. GANsformer Detection Network

Mainstream one-stage object detection models—YOLO [28,29,53,54] and SSD [25,26]
are frequently utilized in target detection and have demonstrated outstanding performance
on MS COCO [55] and Pascal VOC [56] datasets. However, the characteristics of YOLO
series are not suitable for detecting aerial images.

As mentioned in the analysis of the dataset characteristics, there are high-density
small object detection scenarios in practical applications. The general approaches to solve
the small object detection problem include: increasing the resolution of the input image,
which increases the computational complexity, and multi-scale feature representation,
which makes the results uncontrollable. At present, the mainstream detection network
incorporates the feature pyramid network (FPN) [57]. After the backbone extracts the fea-
tures, the FPN contains the neck network with the fusion of deep feature maps and shallow
feature maps. This structure improves the network’s detection ability for different scales
of objects. Nevertheless, it also complicates the network and has the possibility of overfit-
ting. Therefore, this paper proposes a Multi-GANs structure, aiming to improve the above
problem and enhance the model performance of the detection network. The main idea
is to add a generative network model in front of the backbone of the detection network
to augment the dataset. Subsequently, add a feature extractor based on the generative
network model in the backbone of the detection network, improving CNN’s feature extrac-
tion capability. The subsequent neck network and head network function will work more
satisfactorily and efficiently when enough features are extracted.

Compared with the mainstream object detection models, including one-stage and
two-stage, the main innovation of the GANsformer detection network is:

1. Two generative network models are added to the network to address the inade-
quate training of CNNs due to small datasets and improve the ability of deep CNNs
to extract image features.

2. We modified the transformer, by reducing the number of parameters, improving
the training speed, to improve the CNN’s ability to capture global features as a branch
network. Because it inherits and combines the structural and global feature extraction
advantages of CNN and visual transformers, The performance of GANsformer is
significantly better than CNN and vision transformer with comparable parameter
complexity, showing the great potential capability in aerial images detection tasks.

3. Use Mixup, Cutout, CutMix, SnapMix, and Mosaic data augmentation methods
to reduce overfitting and render the detection network to identify smaller-scale ob-
jects better.

4. Using label smoothing techniques and optimizing the loss function to improve the per-
formance of GANsformer detection network.

5. Improve the NMS algorithm in the detection network by adding weight coefficients
to fuse the bounding boxes.

Figure 3 illustrates the structure of the GANsformer detection network.
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Figure 3. Structure of the GANsformer detection network.

3.2.1. Multi-GANs

Multi-GANs comprise two GAN modules: the pre-GAN and the post-GAN, as shown
in Figure 3. Pre-GAN is placed before the backbone of the one-stage detection network
to expand aerial images. The GAN module here can be implemented using various
algorithms. Algorithm 1 shows the process of implementing pre-GAN using WGAN
in the form of pseudo-code.

Algorithm 1 WGAN. α = 0.00005, c = 0.01, m = 64, ncritic = 5

1: Input: dataset D
2: Output: dataset D′

3: Require: α, the learning rate. c, the clipping parameter. m, the batch size. ncritic,
the number of iterations of the critic per generator iteration.

4: Require: ω0, initial critic parameters. θ0, initial generator’s parameters.
5: while θ has not converged do
6: for t = 0, · · · , ncritic do
7: Sample {x(i)}m

i=1 ∼ Pr a batch from the real data.
8: Sample {z(i)}m

i=1 ∼ p(z) a batch of prior samples.
9: gw ← 5ω{ 1

m ∑m
i=1 fω(x(i))− 1

m ∑m
i=1 fω(gθ(z(i)))}

10: ω ← ω + α · RMSProp(ω, gω)
11: ω ← clip(ω,−c, c)
12: end for
13: Sample {z(i)m

i=1 ∼ p(z)} a batch of prior samples.
14: gθ ← 5ω

1
m fω(gθ(z(i)))

15: θ ← θ − α · RMSProp(θ, gθ)
16: end while
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The Wasserstein generative adversarial network (WGAN) [58,59] differs from the
original GAN in that it uses the Wasserstein distance instead of the Jensen–Shannon
difference to evaluate the difference in distribution between the actual and generated
samples. This change makes the training faster and the training process more stable.
The lack of stability in the training process is one of the drawbacks of the original GAN.
To address the issues of the original GAN, WGAN gives four targeted improvement points.

1. The last layer of the discriminator removes the sigmoid.
2. The values of the generator and discriminator are not calculated logarithmically.
3. Truncate the absolute value after each discriminator parameter update, limiting it

to a fixed constant c and not greater than it.
4. Use the RMSProp and SGD algorithms instead of momentum optimization algorithms,

including momentum and Adam.

Another probable implementation of pre-GAN is the balancing GAN [60], introduced
by IBM, which is a specific improvement on ACGAN [61], specifically designed to solve
the problem of small sample size in unbalanced datasets. Figure 4 reflects the network
structure of BAGAN.

Figure 4. Network structure of BAGAN.

The post-GAN locates in the attention mechanism module, as depicted in Figure 3.
Its principal function is to add a noise mask to the feature maps taken from the backbone
to enhance the model’s robustness. The following Result Section 5 section displays that
introducing noise can considerably enhance model performance. The post-GAN module
can be built in a variety of ways. SAGAN, for example, is used as indicated in Figure 5.

Figure 5. Flow chart of SAGAN.
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Figure 6 shows the visualization of the feature maps and attention feature maps
optimized by post-GAN.

Figure 6. Comparison of feature maps with attention feature maps. (A) Feature maps; (B) attention
feature maps optimized by post-GAN.

This Multi-GANs module enhances the detection network’s robustness by adding
asymmetric Multi-GANs detection network branches to regularize the results. In order
to prevent the gradient from disappearing in the convolutional layer for inputs data more
minor than zero, we changed the activation function for each block in the original model
from ReLU to LeakyReLU. Meanwhile, since instance normalization layer works more
satisfactorily on generative tasks than batch normalization layer, the batch normalization
layers of Multi-GANs module was replaced with instance normalization layers.

3.2.2. Transformer

In 2020, the transformer achieved extraordinary classification, detection, and segmen-
tation results. However, the drawbacks are apparent:

1. Its training time is exceedingly long;
2. It is not conducive to deployment acceleration;
3. It requires a vast dataset;

Therefore, in this paper, we refer to the idea of the transformer and design it as
a branch network, which exploits its ability to extract global features and relies on the CNN
backbone, avoiding its training time from being too prolonged.

As Figure 3 depicts, CNN backbones still utilize the feature pyramid structure. More-
over, the feature map’s resolution decreases as the depth of the network increases while
the number of channels increases. The transformer branch network is responsible for pro-
viding global features to the backbone. First, the input image is divided into patches, and
then mainly undertake transformation for each patch as a flattening operation. For in-
stance, assuming the input image size is 256× 256, if it is divided into 64 patches, each is
32× 32 in size. The original transformer encoder is composed of alternating multi-heads
self-attention and multi-layer perceptron. Nevertheless, in this paper, to reduce the number
of parameters and training time, this part is transformed into the identical mechanism
as the attention module in the backbone, i.e., attention based on post-GAN optimization.
After being processed through the layer norm layer, all the features are pooled and sent
to the CNN backbone.



Remote Sens. 2022, 14, 923 12 of 29

3.2.3. Loss Function

The Multi-GANs detection network’s loss function is composed of three portions:
regression box loss, CIoU loss, and classification loss. The calculation process is shown
in Equations (5)–(8). Box coordinate error (xi, yi) denotes the predicted box’s center position
coordinate, and (wi, hi) is its width and height. (x̂i, ŷi) and (ŵi, ĥi) denote coordinates and
size of the labeled ground truth box, respectively. Furthermore, λcoord and λnoobj are
constants. K× K represents the grids’ amount. M expounds the predicted boxes’ overall
amount. Besides, Iobj

ij is one when the ith grid detects a target and zero otherwise.

Loss = Lossbounding_box + Lossciou + Lossclassi f ication (5)

Lossbounding_box =λcoord

K×K

∑
i=0

M

∑
j=0

Iobj
ij (2− wi × hi)[(xi − x̂i)

2 + (yi − ŷi)
2]+

λcoord

K×K

∑
i=0

M

∑
j=0

Iobj
ij (2− wi × hi)[(wi − ŵi)

2 + (hi − ĥi)
2]

(6)

Lossciou =
K×K

∑
i=0

M

∑
j=0

Iobj
ij [Ĉilog(Ci) + (1− Ĉilog(1− Ci))]+

λnoobj

K×K

∑
i=0

M

∑
j=0

Inoobj
ij [Ĉilog(Ci) + (1− Ĉilog(1− Ci))]

(7)

Lossclassi f ication =
K×K

∑
i=0

Iobj
ij ∑

c∈classes
[ p̂i(c)log(pi(c)) + (1− p̂i(c)log(1− pi(c))] (8)

In the training process, pred_bbox was divided into positive and negative examples.
For any ground truth, calculate IoU with all pred_bboxes, and the largest IoU was the posi-
tive example. One pred_bbox could only be assigned to one ground truth. For instance,
the first ground truth matched the pred_bbox of a positive example, then the following
ground truth needed to find the largest IoU among the remaining pred_bboxes as a positive
example. Except for the positive examples, if the IoU with all ground truth was less than
the threshold, it was negative. Prediction boxes that were neither positive nor negative
were discarded.

In this way, the loss function could reduce the weight of easy-to-classify samples so that
the model could focus more on difficult-to-classify samples during training. Through this
improvement, the network’s accuracy could be promoted while the inference speed
of the network was maintained.

It could be inferred from Equation (9),

IoU =
|A ∩ B|
|A ∪ B| (9)

if the two prediction boxes do not intersect, their IoU value was 0. Then this value could
not reflect the distance between the two, which was, the degree of coincidence. At the same
time, the corresponding loss was 0, and the gradient of backpropagation was 0, and learning
and training could not be performed. In the CVPR2019 paper [62], GIoU is proposed, and
its calculation is shown in Equation (10),

GIoU = IoU − |Ac −U|
|Ac|

(10)
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where Ac represents the smallest rectangular area that contains both the prediction frame
and ground truth. In the above formula, it could be inferred that when the prediction frame
completely covers the ground truth, GIoU could not well reflect the coincidence of the two.
In order to consider the distance and overlap rate at the same time, DIoU [63] is proposed,
and its calculation process is shown in Equation (11),

DIoU = IoU − ρ2(b, bgt)

c2 + αν (11)

where b and bgt represent the center points of the prediction frame and ground truth,
respectively, and ρ represents the Euclidean distance between these two center points, and c
represents the diagonal distance of the smallest rectangle that could simultaneously contain
the prediction frame and ground truth. However, because the expression method does not
consider the aspect ratio of the outer frame, based on DIoU, CloU is proposed [63], which
is the measurement method used in the loss function in this paper, and the penalty term is
shown in Equation (12).

RCIoU =
ρ2(b, bgt)

c2 + αν (12)

where α is the weight function, and ν, defined as ν = 4
π2 (arctan wgt

hgt − arctan w
h )

2, is used
to measure the similarity of the aspect ratio. The gradient of CIoU loss is similar to DIoU.
Moreover, when the length and width are in [0, 1], the value of w2 + h2 is usually tiny,
which leads to the explosion of the gradient. So when it comes to the implementation,

1
w2+h2 is replaced with 1. The loss function of CIoU is defined as shown in Equation (13).

LCIoU = 1− IoU +
ρ2(b, bgt)

c2 + αν (13)

3.2.4. Fusion Method for Bounding Boxes

We proposed a new fusion algorithm for bounding boxes that gave up the NMS solu-
tion of removing bounding boxes with low confidence and adopted the method of fusing
different bounding boxes of the same object. In fact, the weight coefficients s was intro-
duced in the fusion process, and the weight coefficients of each bounding box are calculated
as shown in Equation (14).

Cs = α× As + (1− α)× Bs (14)

The alpha represents the sub-network weights of the generative sub-network, and
by adjusting the size of α, we can control the degree of influence that the generative sub-
network on the main detection network; (x1, y1), (x2, y2) represent the top left and bottom
right coordinates of a box, respectively; c represents the confidence level of a bounding
box. So, the higher the c box is, the larger s is, and it contributes more in the process
of generating a new box. The shape and position of the new box is closer towards boxes
with larger weights.

Cx1 =
Ax1 × As + Bx1 × Bs

As + Bs
(15)

Cy1 =
Ay1 × As + By1 × Bs

As + Bs
(16)

Cx2 =
Ax2 × As + Bx2 × Bs

As + Bs
(17)

Cy2 =
Ay2 × As + By2 × Bs

As + Bs
(18)
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Equations (15)–(18) show how to get the fused bounding box C by using two bounding
box A and B.

4. Experiment
4.1. Dataset Analysis

As illustrated in Figure.1, the aerial image dataset used in this paper has the follow-
ing characteristics:

1. The dataset contains a relatively large number of detection targets. Most of the images
possess more than one detection target, and some of them, such as cars, represent
a tiny proportion of the overall image.

2. The samples in the dataset are distributed unevenly. To be more specific, the number
of bridge samples is 4.5 times higher than that of baseball field samples.

3. The overall data volume is small, making deep learning training rather tricky.

4.2. Evaluation Metrics

To validate the model’s performance, four metrics are used for the evaluation in this
paper, namely, mAP, Precision (P), Recall (R), and FPS. The Jaccard index, commonly
known as the intersection over union (IoU), is specified as the intersection of predicted
segmentation, which also divides the label. The value of this indicator ranges from 0
to 1: 0 indicates no overlap, and 1 represents complete overlap. It is a true situation
when the IoU ≥ is 0.5; otherwise, it is a false positive situation. The binary classification
calculation formula is:

IoU =
|A ∩ B|
|A ∪ B| =

TP
TP + FP + FN

(19)

where A denotes ground truth and B is predicted segmentation.
Pixel accuracy (PA) is the percentage of an image’s accurately classified pixels, as

known as, the proportion of correctly classified pixels to entire pixels. The formula is
as follows:

PA =
∑n

i=0 pii

∑n
i=0 ∑n

j=0 pij
=

TP + TN
TP + TN + FP + FN

(20)

n indicates the total amount of categories, n + 1 represents the category amount,
containing backdrops. pii indicates the overall real pixels’ amount, in which the label is
i and predicted to be class i. That is, the entire amount of matched pixels for real pixels
(class i). pij expounds the overall amount of real pixels (label i) that are predicted to be class
j, which can be regarded as pixels’ amount (label i) that are classified into class j incorrectly.
Moreover, TP symbolizes true positives’ amount (positive in both labels and predicted
value). TN expounds the amount of true negatives (negative in both labels and predicted
value). FP is the amount of false positives (negative in label and positive in predicted value).
FN describes the amount of false negatives (positive in label and negative in predicted
value). In addition, TP + TN + FP + FN specifies the overall pixels’ amount, TP + TN
specifies pixels’ amount correctly classified.

Mean pixel accuracy (mPA) is a straightforward improvement on PA. mPA computes
the percentage of pixels precisely recognized in every class and average the outcomes,
as indicated in Equation (21).

mAP =
∑k

i=1(APi)

k
(21)

Precision (P) is the percentage of samples categorized as positive samples in the accu-
rately classified samples.

P =
TP

TP + FP
(22)
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Recall (R) demonstrates the percentage of correctly categorized positive samples
in overall positive samples.

R =
TP

TP + FN
(23)

4.3. Experiment Setting

A personal computer (CPU: Intel(R) i9-10900KF; GPU: NVIDIA RTX 3080 10 GB;
Memory: 16 GB; OS: Ubuntu 18.04, 64 bits) was used to carry out the entire model train-
ing and validation process. We chose the Adam optimizer with an initial learning rate,
a0 = 1e−4. The learning rate increment was adjusted using the method specified in
Section 4.5 and the training speed is optimized.

4.4. Label Smoothing

Usually, there are a small number of mislabels in machine learning samples, which
can affect the prediction effect, especially when the sample size is small. Therefore, in this
paper, we adopted the label smoothing technique to improve the situation, which is
based on the following solution: to avoid ‘over-trusting’ the labels of training samples by
assuming that some of the labels may be incorrect at the time of training.

At each iteration, instead of inputting (xi, yi) directly into the training set, an error rate
ε is set, and (xi, yi) is substituted into the training with probability 1− ε, and (xi, 1− yi)
is substituted into the training with probability ε. In this way, the model is trained with
both correct and incorrect label inputs, and it is conceivable that a model so trained will not
match every label ‘to the fullest extent’, but only to a certain extent. This way, the model
will be less impacted if there are indeed incorrect labels.

When we use cross-entropy to describe the loss function, for each sample i, the loss
function is:

Lossi = −yi × P(ŷi = 1|xi)− (1− yi)× P(ŷi = 0|xi) (24)

After randomization, the new labels have the same probability of 1− ε as yi and
a different probability of ε, i.e. 1− yi. Therefore, when the randomized labels are used as
training data, the loss function has the same probability of 1− ε as the above equation, and
the probability of ε as:

Lossi = −(1− yi)× P(ŷi = 1|xi)− yi × P(ŷi = 0|xi) (25)

After weighted averaging Equations (24) and (25) by probability, having y′i = ε× (1−
yi) + (1− ε)× yi, we can obtain:

Lossi = −(1− y′i)× P(ŷi = 1|xi)− y′i × P(ŷi = 0|xi) (26)

Compared with the original cross-entropy expression, only yi is replaced with y′i, while
everything else remains the same. This is actually equivalent to replacing each label yi with
y′i and then performing the regular training process. Therefore, in this paper, randomization
was not conducted before training except replacing each label accordingly.

4.5. Training Strategy

Warm-up [64] is a training strategy. The exp warm-up method is examined in this
article, which involves linearly accelerating the learning from a minuscule value to the pre-
defined learning speed and then fading in terms of the exp function law. This paper also
tried cos warm-up. According to the cos function law, the learning rate increased linearly
from a minimal value to a preset value and then decayed. The principle of cosine decay is
shown in Equation (27).

ηt = ηi
min +

1
2
(ηi

max − ηi
min)(1 + cos(

Tcur

Ti
π)) (27)



Remote Sens. 2022, 14, 923 16 of 29

Among it, i represents the number of iterations, ηi
max and ηi

min represent the maximum
and minimum values of the learning rate, respectively, Tcur represents the number of epochs
currently executed. In contrast, Ti represents the overall number of epochs in the number
i step.

5. Result

In this section, the model introduced in Section 3.2 was implemented for object detec-
tion in aerial images. We trained the datasets with three input sizes, 300 × 300, 512 × 512,
and 608 × 608.

5.1. Validation Results

Table 1 illustrates the statistical results. The best results of the index are marked
red. In Table 1, YOLO v5 [30] has the best speed, with FPS reaching 60.3. The P, R,
and mAP of Faster-RCNN (when the input is 300 × 300) are 82.87%, 78.32%, 90.13%,
which are the worst performances of all models. These P, R, and mAP of YOLO v5 are
the most excellent among all the YOLO series. Meanwhile, they are superior to those of the
Faster-RCNN and SSD series (0.9446, 0.9718, 0.9674, respectively). The most similar model
to YOLO v5 is RefineDet, with P, R, and mAP of 94.91%, 98.49%, and 96.97%, respectively
(when the input is 512 × 512). Nevertheless, its inference speed is significantly lower than
YOLO v5, reaching only 42% of the latter. That is probably due to the stronger performance
of the attention extraction module in YOLO v5. Overall, the YOLO series are the best
models among the comparisons. We split the input into two transmission GANsformers
of 300 × 300 and 512 × 512 for testing, and the results show that the former has better
performance, with the three parameters reaching 96.77%, 98.83%, 97.91%, respectively.
Moreover, its precision and mAP are superior to all the other comparison models. However,
our model is not superior in inference speed, only 53% of YOLO v5. The complexity of the
Multi-GANs module causes it. As depicted above, the GANsformer detection network
reflects the best detection performance on the validation set, according to the results.

Table 1. Comparisons of different detection networks’ performance (in %).

Model Input Size Precision Recall mAP FPS

SSD 300 × 300 83.96 80.23 87.64 33.7
512 × 512 86.43 86.26 91.27 32.3

FSSD 300 × 300 89.76 94.37 94.85 32.9
512 × 512 93.75 96.89 96.31 32.2

RefineDet 300 × 300 94.34 98.28 96.81 27.8
512 × 512 94.91 98.49 96.97 25.3

EfficientDet L2 300 × 300 92.10 95.33 94.98 20.8
512 × 512 93.24 95.98 95.14 20.2

Faster RCNN 300 × 300 82.87 78.32 90.13 25.0
512 × 512 85.29 76.91 92.20 46.7

YOLO v3 608 × 608 94.92 98.43 96.93 52.1
YOLO v4 608 × 608 94.38 98.51 97.42 57.5
YOLO v5 608 × 608 95.98 98.57 97.51 60.3

ours 300 × 300 96.77 98.83 97.91 32.2
512 × 512 96.45 98.86 97.50 30.4

5.2. Detection Results

For further comparison, we extracted four images from the aerial image series of test
set. These images show as many detection scenarios as possible in the dataset, such
as scenarios with multiple detected objects, scenarios where the image color channel
is heavily distorted, and scenarios where the detected objects are too small and sparse.
Figures 7–16 show the detection results. Figure 7 denotes ground truth; the red boxes
in the rest of the images denote the predicted bounding box. It can be witnessed that
Faster-RCNN performs very poorly in these four images, while EfficientDet, SSD series,



Remote Sens. 2022, 14, 923 17 of 29

and YOLO series perform relatively well and detect lesions accurately. However, when
the detected objects are too tiny, all model performances decrease, and part of the models
even have some unlabeled detected objects. This situation is probably related to the
attention extraction module in these networks.

Our model outperforms the previous models by highly accurate object detection,
even when detecting moderately dense objects. Although there is still room for improve-
ment, it has outperformed other models. On the one hand, we augment the image with
the WGAN model before it is fed into the backbone. On the other hand, we add the SAGAN
model to the attention extraction module of the model, which can significantly improve
the model’s robustness.

Figure 7. The ground truth in the dataset.

Figure 8. The detection results of YOLO v3 in the dataset.



Remote Sens. 2022, 14, 923 18 of 29

Figure 9. The detection results of YOLO v4 in the dataset.

Figure 10. The detection results of YOLO v5 in the dataset.
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Figure 11. The detection results of SSD in the dataset.

Figure 12. The detection results of FSSD in the dataset.
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Figure 13. The detection results of RefineDet in the dataset.

Figure 14. The detection results of EfficientDet L2 in the dataset.
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Figure 15. The detection results of Faster RCNN in the dataset.

Figure 16. The detection results of GANsformer detection network in the dataset.

As can be seen from Figure 16, our model performs very well when detecting an
aircraft and car, especially when shadows are included. It indicates that the GANsformer
detection network can effectively improve the model robustness.

5.3. Results Analysis

As Section 5.2 depicted, the detection of objects at different scales and densities has
different outcomes. Table 2 displays the performance of the GANsformer when detecting
the below objects in the dataset.
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Table 2. The detection capability of the GANsformer detection network in each object category (in %).

Object Precision Recall mAP

Bridge 97.35 99.01 98.59
Baseball Field 96.21 98.19 97.32
Basketball Court 96.13 98.60 97.03
Airplane 96.27 98.59 97.28
Track and Field 97.29 98.04 98.55
Oil tank 96.18 98.83 97.89
Tennis Field 97.21 98.89 98.37
Port 96.99 98.89 97.87
Ship 97.23 98.81 97.56
Car 96.91 98.95 97.90

As illustrated in Table 2, our model performs well when recognizing comparatively
large scale objects, such as bridges, tracks, and fields, which are often not dense and have
discerned and clear boundaries in the image. For small-scale objects, such as aircraft and
cars, the detection error is relatively high, as shown in Figure 16.

6. Discussion
6.1. Ablation Experiment of Multi-GANs

This paper uses pre-GAN in backbone and attention extraction modules, while GAN
models have many branches and focus. The primary purpose of the pre-GAN module
in front of the backbone is to enhance the model input. In contrast, the post-GAN module
in the attention extraction module generates an attention mask to enhance the model’s
robustness. Therefore, for the two GAN modules with different purposes, different GAN
models are implemented in this paper, including WGAN, BAGAN, SAGAN, and SPA-
GAN. Several ablation experiments are conducted, and the experimental results are shown
in Table 3.

Table 3. Results of different implements of Multi-GANs (in %).

Method Precision Recall mAP FPS

no GAN (baseline) 94.17 95.22 94.39 47.9
WGAN + SAGAN 96.06 97.69 97.13 34.3
BAGAN + SAGAN 95.18 97.19 96.98 34.1
WGAN + SPA-GAN 96.77 98.83 97.91 32.2
BAGAN + SPA-GAN 96.38 98.55 97.20 32.2

Table 3 reflects that using WGAN and SPA-GAN to implement pre-GAN and post-
GAN, respectively, can optimize the model performance, with the three primary metrics
reaching 96.77%, 98.83%, and 97.91%. As a comparison, WGAN is better than BAGAN
in the choice of pre-GAN. Regardless of the implementation of the post-GAN, this is prob-
ably because BAGAN uses a different formula from WGAN in computing the difference
between the generated data and the original data, failing to maximize the generator’s
and discriminator’s performances. By comparing the baseline model, it is apparent that
the Multi-GANs module, regardless of the implementation approaches, can significantly
improve the model’s performance by 3.52% in terms of mAP parameters. Furthermore, we
tried to visualize the mask of noise generated by two post-GANs, as shown in Figure 17.
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Figure 17. Illustration of noise mask by two post-GANs (A,B).

As can be seen from Figure 17, the feature maps generated by the two post-GAN
implementations differ significantly, but the generated highlights are roughly the same.
Because noise mask acts on the feature maps, it is not straightforward to be understood
in the conventional way humans think and read. However, it can effectively improve
the model’s performance, and the noise generation area is roughly the same. We be-
lieve that the post-GAN module can add noise to the object area and thereby enhance
the model’s robustness.

6.2. Ablation Experiment of Data Augmentation Methods

To verify the effectiveness of the various pre-processing methods proposed in
Section 3.1.2, the ablation experiments were performed on the GANsformer detection
network, selected from the above experiments with the best performance. The experimen-
tal results are shown in Table 4.

Table 4. Ablation experiment result of different pre-processing methods on the GANsformer detection
network (in %).

MixUp CutOut CutMix SnapMix Mosaic Precision Recall mAP

X X X X X 96.77 98.86 97.91
X X X X 96.21 98.51 97.82
X X X 96.53 98.82 97.69
X X X 96.76 98.89 97.93

X X X X 96.23 98.56 97.85

Through the analysis of experimental results, we can find those augmentation methods
are of great assistance in improving the performance of the GANsformer detection network.
The principles of SnapMix and Mixup are similar. It could be seen that the model performs
best when Mixup, CutMix, and Mosaic methods are used simultaneously.

6.3. Validation on Wheat Head Dataset

In this section, we validate the generalization capability of the proposed model GANs-
former. We undertake it on the wheat dataset [65]. Figure 18 illustrates the concerning
experimental results. The experimental results show that the proposed method still has
good performance on the wheat dataset and ascertains that the suggested method can
indeed enhance the network’s ability to extract image features.
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Figure 18. Detection results on wheat dataset.

6.4. Detection Application on macOS

In order to make the proposed method feasible and viable in a macOS platform,
this paper wraps the model based on Swift language and develops a macOS application.
The main functions include: (1) importing the images to be annotated and completing
the detection task at one time; (2) selecting two pruning strategies; (3) saving the recognition
results to a CSV file. The primary functions of this application are shown in Figure 19.

Figure 19. Screenshot of application based on GANsformer detection network.

6.5. Limitation

With the rapid proliferation of UAVs and the increasing pixel quality of filming devices,
the small object detection accuracy of the aerial image is still promising. Even though
our algorithm delivers the best segmentation effect, it is still far from the ideal accuracy.
As shown in Figure 16, our model’s errors are pronounced in the task of small-scale object
detection, so we analyzed the causes of these errors and their improvement methods.

1. Scarcity of datasets. The dataset is inadequate, and the substantial difference in the sam-
ple size of different categories in the dataset are fundamental reasons for the unsatis-
factory performance of the model. The dataset used in this paper contains 800 images
with ten categories of targets, of which 150 are pure background images with no target.
The bridge category accounts for 26% of the ten categories of objects. Although this
paper uses various data augmentation methods and Multi-GANs to expand the data,
the imbalance among samples in the dataset is still not completely solved. One viable
solution to the above problem is to set a parameter α in the loss function construction,
whose value is inversely proportional to the percentage of each category in the total
dataset. Specifically, the smaller the percentage of the category in the loss function,
the more critical it is to balance the sample size gap between categories.

2. Drawbacks of the one-stage structure. Considering the fusion trend of one-stage and
two-stage models and advantages of a one-stage network in terms of the model’s infer-
ence speed and accuracy, this paper constructs a one-stage-based detection network.
However, the one-stage network model has its intrinsic shortcomings, and the feature
extraction ability of the backbone still needs to be improved. Although the backbone’s
ability to process feature maps has been improved by applying the attention extraction
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module of Multi-GANs, the distance between the shallowest and deepest networks
is getting more considerable, and more information is lost as the number of layers
of the network increases. The effectiveness of feature maps fusion is also decreasing
gradually.

3. The definition of the loss function is still deficient. The first point apparently indi-
cates that the definition of the loss function can still be improved to include more
information and balance the imbalance between the samples in the dataset.

7. Conclusions

Object detection in aerial images is a classic topic in computer vision research. Nonethe-
less, impediments in detecting small objects in aerial images should not be neglected,
i.e., (1) aerial images with variable altitudes and illuminance conditions in which small ob-
jects are dense, increasing detection challenges and causing low detection accuracy. (2) The
actual weather will affect capturing of aerial images. Sometimes there will be interference
factors, such as flying birds, insects, or leaves. Additionally, conventional approaches in
this research area are not outstanding enough: (1) traditional machine learning methods
typically focus on inference speed but low accuracy. (2) When using CNNs, there are
demerits in the case of insufficient samples, such as instability, non-convergence, and over-
fitting. (3) Due to the intrinsic drawbacks of conventional CNN models and transformer
structures, such as the lack of global features, extremely long training time, and massive
dataset required, these two techniques are not excellent enough to be solely applied in this
study’s research field.

Therefore, this paper proposes a GANsformer detection network based on a one-stage
detection network, aiming to address these above-mentioned problems. In this paper,
we used a dataset, containing 800 aerial images, with ten types of targets to be detected:
aircraft, ships, oil tanks, baseball fields, basketball courts, athletic fields, ports, bridges,
tennis fields, and vehicles, as shown in Figure 1.

The following demonstrates primary innovations of the GANsformer detection net-
work proposed in this paper:

1. Multi-GANs model: first and foremost, a generative model is added in front
of the backbone to expand the input aerial images, which aims to alleviate the gen-
eral problem of small sample size datasets. Second, GAN models are added to the
attention extraction module to generate attention masks. Figure 6 shows the effect
of adding GAN models on feature maps, and the results of the experimental part also
illustrate that this approach can effectively improve the robustness of the model. Ulti-
mately, on the validation set, the proposed method reaches 96.77%, 98.86% and 97.91%
on precision, recall, and mAP, respectively. This experimental result demonstrates
that the proposed model outperforms all the comparison models.

2. We modified the transformer, by reducing the number of parameters, improving
the training speed, to improve CNN’s ability to capture global features as a branch
network. The performance of the GANsformer—because it inherits and combines
the structural and global feature extraction advantages of CNN and visual
transformers—is significantly better than CNN and vision transformer, with com-
parable parameter complexity, showing great potential capability in aerial image
detection tasks.

3. In order to verify the effectiveness of various implementations of Multi-GANs,
in Section 6, we tested the performance of different combinations of generative models.
Experimental results expound that the SPA-GAN model performs best in the attention
extraction module, while in image augmentation, WGAN performs best.

4. This paper encapsulated the model and developed a corresponding application under
the macOS platform, making the model applicable.

Although the proposed model has surpassed the comparison model, limitations still
exist. Although this paper has used various methods to improve the imbalance problem
of small sample datasets, the detection accuracy is still the worst among all classes in terms
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of detection results. Moreover, the proposed detection network is based on one-stage, but
the one-stage network has its inherent defects. Eventually, the design of the loss function
can still be potentially improved.

Based on the shortcomings proposed in Section 6.5, the authors of this paper will
work on redesigning the model’s loss function in the future to address the imbalance of the
dataset and to further optimize the model from the perspective of a loss function design.

Ultimately, this paper encapsulates the model and develops a corresponding applica-
tion under the macOS platform, making the model applicable.
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