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Abstract: With the continuous use of resources, solar energy is expected to be the most used sustain-
able energy. To improve the solar energy efficiency in Chinese Solar Greenhouses (CSG), the effect of
CSG orientation on intercepted solar radiation was systematically studied. By using a 3D CSG model
and a detailed crop canopy model, the light environment within CSG was optimized. Taking the most
widely used Liao-Shen type Chinese solar greenhouse (CSG-LS) as the prototype, the simulation was
fully verified. The intercepted solar radiation of the maintenance structures and crops was used as
the evaluation index. The results showed that the highest amount of solar radiation intercepted by
the maintenance structures occurred in the CSG orientations of 4–6◦ south to west (S-W) in 36.8◦ N
and 38◦ N areas, 8–10◦ S-W in 41.8◦ N areas, and 2–4◦ south to east (S-E) in 43.6◦ N areas. The solar
radiation intercepted by the crop canopy displayed the highest value at an orientation of 2–4◦ S-W in
36.8◦ N, 38◦ N, 43.6◦ N areas, and 4–6◦ S-W in the 41.8◦ N area. Furthermore, the proposed model
could provide scientific guidance for greenhouse crop modelling.

Keywords: solar greenhouse; virtual canopy; optimal orientation; energy utilization; solar energy
harvesting; GroIMP

1. Introduction

As a typical energy-saving horticultural facility, solar greenhouses ease the anti-
seasonal production of vegetables. To the best of our knowledge, most countries are
currently using solar greenhouses for the production of crops, among which China ranks
first in the world with 28 million hectares of greenhouses [1]. However, it remains a chal-
lenge to produce vegetables in these facilities during winter without additional heating
systems. Thus, the energy efficiency demand generated by a further increasing number
of solar greenhouses is a major environmental and economic problem for crop producers
worldwide [2,3].

To provide a suitable environment for the production of vegetables during the winter
season using CSGs, the efficient use of renewable energy sources, including solar energy is
essential [4,5]. A greenhouse is a permanent structure whose productivity highly depends
on its location, orientation, and shape. Nevertheless, when the location of the greenhouse
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is selected, it is imperative to choose the best shape and orientation to capture the better
solar radiation. In this context, scholars have carried out a significant number of studies
to improve solar energy utilization in greenhouses. El–Maghlany et al. [6] analyzed the
effects of different orientations and shapes on solar energy capture and heating cost and
concluded that greenhouses with an east–west orientation and elliptical surface aspect ratio
of four are the most suitable for the northern tropical areas. Dragićević [7] investigated the
performance of uneven-span single shape greenhouses in Serbia under different climatic
conditions and determined that the greenhouse with the best performance in the whole year
was that with the east–west orientation. Papadakis et al. [8] carried out an experimental
study on the solar transmittance of single-span greenhouses in Greece by using a scale
model. The results recommended that the light environment of greenhouses with an east–
west orientation was better than those with the north–south orientations in the winter of
37◦ N latitude. According to these findings, it can be concluded that the average solar
radiation received by greenhouses with the east–west orientation is better than that with
the north–south orientation. However, these greenhouses are pretty different from the
CSG type.

CSG is designed as energy-saving solar greenhouses that makes full use of solar
energy. As shown in Figure 1, the CSG type is widely used, especially in the north of
China. Compared with other greenhouse types, the CSG type requires unique maintenance
structures such as the back wall, roof, and quilt to guarantee the winter production of
vegetables without any additional heating [9,10]. Previous studies on light optimization
of CSG have mainly focused on greenhouse structures [11–13] and optical properties of
plastic films [14,15], while the orientation of the CSGs has not been considered. Due to the
lack of theoretical information for greenhouse construction, the orientation of the CSGs is
usually determined by either experience or simply following the local topography [16].
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Figure 1. Regional distribution of CSGs in China: (a) geographical location and corresponding scale
of four major greenhouse producing areas; (b) an irregular distribution of greenhouse orientation in
an actual production.

To solve the above problems, Chen et al. [17] used the extreme value theory to deter-
mine the optimal orientation of CSG in northern China and concluded that the orientation
of CSGs should be south to west. Cao et al. [18] measured the temperature on a CSG scale
model and concluded that the indoor temperature of the greenhouse with S-W orientation
was higher than that with due south or S-E orientation. In addition, on cloudy days, the
orientation of CSG has no significant effect on indoor temperatures. Furthermore, to in-
crease the applicability of the optimal orientation and shorten the experimental period, the
simulation model was applied to guide the actual production. Ahamed et al. [19] created
a complete energy budget model for CSGs using the TRNSYS architectural simulation
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software designed by the Solar Energy Laboratory, University of Wisconsin, USA. Herein,
considering different orientations of the greenhouse, the solar radiation module integrated
into TRNSYS software was used to calculate the total solar radiation intercepted by the
lighting roof at each time step. Yang et al. [20] used a self-built radiation model to calculate
the cumulative light interception of greenhouses with different orientations (10◦ S-E, 5◦ S-E,
due south, 5◦ S-W, and 10◦ S-W). The results indicated that the cumulative solar radiation
interception of CSG with a south orientation reached a maximum value, which was only
0.45 MJ higher than the minimum value. It is important to note that the current research on
optimizing greenhouse orientation using scale model experiments or simulations is usually
performed considering empty greenhouses. Thus, the influence of the presence of cops
has not been taken into account. The purpose of optimizing the structure and orientation
of CSGs is to provide a better growing environment for crops. The presence of crops is
bound to produce shading and other effects inside the greenhouse [21]. However, it is still
unknown if crops may affect the optimization process of the greenhouse structure or if the
optimized greenhouse may enhance the lighting effect of crops.

The novelty of this paper is the use of the three-dimensional (3D) interactive modelling
platform GroIMP, developed and described to build a simulation model of CSG light
environment optimization [22,23], which includes the presence of crops according to the
actual planting system. To further determine the best orientation and evaluation index,
a reverse Monte-Carlo ray-tracing method [24] was used to simulate and analyze the
solar radiation intercepted by lighting roof, maintenance structures, and crops in different
orientations of CSG. For comparison, the optimization of greenhouse orientation without
crops was also considered. Moreover, it is expected that the simulation results will provide
new knowledge on the evaluation index of the optimal CSG orientation at different latitudes
and may further lead to a new method for greenhouse architectural designs.

2. Materials and Methods
2.1. Construction of a Virtual Greenhouse

A virtual 3D CSG-LS was completely rebuilt using the open-source 3D modelling
platform GroIMP and the dedicated modelling language XL [22–24]. CSG-LS is the primar-
ily used greenhouse type in northern China. The concrete structure and corresponding
structural parameters of the CSG-LS are given in Figure 2. The building materials used
for the wall were composed of 370 mm-thick fly ash bricks and 110 mm-thick insulation
boards. The roof was composed of the board, a cement layer, and a waterproof layer. The
lighting roof covering material was made of a 0.15 mm polyolefin (PO) film, which provides
optimal optical properties. At night, the lighting roof is covered with a cotton insulation
blanket to keep the accumulated energy inside the greenhouse slowly dissipated. The plant
canopy modelled inside the virtual greenhouse was fabricated based on the CSG-LS, which
was used to verify the simulation model. One of the reference greenhouses was located at
Shenyang Agricultural University (41.8◦ N and 123.6◦ E), displaying an orientation of 7◦

S-W. For this study, oriental melon (Cucumis melo var. makuwa Makino) was chosen as the
testing crop. The melon plants were planted on 10 September 2020, using the most common
field configuration, with plant spacing of 40 cm, wide row spacing of 90 cm, and narrow
row spacing of 70 cm. Another reference greenhouse was located in the Kerqin region
of Tongliao (43.6◦ N and 122.2◦ E), displaying an orientation of 5◦ S-W. The structural
parameters and planting pattern of this greenhouse was highly consistent with that of the
experimental greenhouse in Shenyang.
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Figure 2. Comparison of a real CSG-LS: (a) the real greenhouse in Shenyang; (b) the virtual greenhouse model used in the 
simulation; (c) the melon plants in CSG-LS. Note: The images of the greenhouse and the melon plant were taken on 15 
December 2020 in CSG-LS, which is located at Shenyang Agricultural University. 

At maturity (mid-December), melon plants of similar size (20 plants) inside the ex-
perimental greenhouse of Shenyang were selected for measurements. Internode length, 
petiole inclination, and other morphological parameters were measured (Table 1), and the 
average values were used for the actual reconstruction of the crop population model. As 
shown in Figure 3, the 3D modelling process of melon plants inside a CSG was divided 
into five parts. Firstly, a large number of melon leaves were collected. In the process of 
collection, a ruler was set next to the leaves to calibrate the image scale (Figure 3b), and 
ImageJ (National Institutes of Health, Bethesda, MD, USA) was further used for image 
analysis [25]. Similar to the digitalization process of cucumber leaves [26], it was found 
that selecting 28 landmarks can effectively restore the shape of melon leaves through data 
comparison (Figure 3c). By defining the base of the leaf as the origin, the space coordinates 
of 28 landmarks were obtained to realize the virtual reconstruction of the leaf (Figure 3d). 
Moreover, the spatial position of the leaf was also set by defining the base of the leaf as 
the basic point (Figure 3e). Furthermore, the internodes, petioles, and leaves were recon-
structed according to the measured spatial positions to obtain a representative plant (Fig-
ure 3f). The optical properties of the maintenance structures and melon plants within the 
3D model were set according to measured field values and then simulated using parame-
terized Phong shaders, which were mapped on geometric primitive objects representing 
maintenance structures and plant organs [27]. Furthermore, the orientation of each plant 
was randomly selected to increase the accuracy of the simulation [28]. 

 
Figure 3. Process of 3D modelling of melon plants inside CSG: (a) a real melon plant CSG-LS; (b) 
digital measurement of melon leaf; (c) the meshing process of leaf; (d) 3D virtual restoration of 
leaf; (e) 3D spatial layout of leaf; (f) 3D reconstruction of a representative melon plant. 

Figure 2. Comparison of a real CSG-LS: (a) the real greenhouse in Shenyang; (b) the virtual green-
house model used in the simulation; (c) the melon plants in CSG-LS. Note: The images of the
greenhouse and the melon plant were taken on 15 December 2020 in CSG-LS, which is located at
Shenyang Agricultural University.

At maturity (mid-December), melon plants of similar size (20 plants) inside the ex-
perimental greenhouse of Shenyang were selected for measurements. Internode length,
petiole inclination, and other morphological parameters were measured (Table 1), and the
average values were used for the actual reconstruction of the crop population model. As
shown in Figure 3, the 3D modelling process of melon plants inside a CSG was divided
into five parts. Firstly, a large number of melon leaves were collected. In the process of
collection, a ruler was set next to the leaves to calibrate the image scale (Figure 3b), and
ImageJ (National Institutes of Health, Bethesda, MD, USA) was further used for image
analysis [25]. Similar to the digitalization process of cucumber leaves [26], it was found
that selecting 28 landmarks can effectively restore the shape of melon leaves through data
comparison (Figure 3c). By defining the base of the leaf as the origin, the space coordinates
of 28 landmarks were obtained to realize the virtual reconstruction of the leaf (Figure 3d).
Moreover, the spatial position of the leaf was also set by defining the base of the leaf as the
basic point (Figure 3e). Furthermore, the internodes, petioles, and leaves were reconstructed
according to the measured spatial positions to obtain a representative plant (Figure 3f). The
optical properties of the maintenance structures and melon plants within the 3D model
were set according to measured field values and then simulated using parameterized Phong
shaders, which were mapped on geometric primitive objects representing maintenance
structures and plant organs [27]. Furthermore, the orientation of each plant was randomly
selected to increase the accuracy of the simulation [28].
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Figure 3. Process of 3D modelling of melon plants inside CSG: (a) a real melon plant CSG-LS;
(b) digital measurement of melon leaf; (c) the meshing process of leaf; (d) 3D virtual restoration of
leaf; (e) 3D spatial layout of leaf; (f) 3D reconstruction of a representative melon plant.
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Table 1. Specific parameter values of virtual greenhouse.

Description Value Range Unit

Greenhouse size
Lighting roof (L, W, H) 60, 9.2, 0.00015 meter

Wall (L, W, H) 60, 2.9, 0.48 meter
Ground (L, W, H) 60, 9, 0.5 meter

Roof (L, W, H) 60, 2.5, 0.3 meter
Plant arrangement

Width of the plant wide row 0.9 meter
Width of the plant narrow row 0.7 meter

Melon plant spacing 0.4 meter
Number of rows 74 -

Number of plants per row 20 -
Melon plant

Maximal leaf rank per plant 19 -
Averaged plant height 1.3 meter

Averaged petiole length per rank

0.094, 0.075, 0.07, 0.08, 0.14, 0.12,
0.1, 0.1,

0.11, 0.11, 0.11, 0.12, 0.1, 0.1, 0.11,
0.02,

0.02, 0.02, 0.02

meter

Averaged internode length per rank

0.074, 0.076, 0.056, 0.068, 0.054,
0.063, 0.062, 0.077, 0.056, 0.073,

0.053, 0.08, 0.069, 0.072, 0.083, 0.06,
0.079, 0.082, 0.048

meter

Averaged leaf angle per rank

−20, −26, −25, −18, −21, −24,
−10, −6,

−33, 28, −18, −26, −14, −10,
−23, −28,
−28, −34

◦

Averaged petiole angle per rank
40, 46, 55, 58, 51, 34, 20, 26, 23, 28,

18,
26, 14, 20, 13, 28, 18, 22

◦

2.2. Description of the Solar Radiation Model

To accurately simulate the light distribution within the crops canopy, a virtual sky
hemisphere was selected to simulate the skylight environment [29]. In general, virtual solar
radiation consists of two aspects. One corresponds to the direct solar radiation reaching
the ground in parallel light and the other to the diffuse light whose propagation direction
changes through various particles present in the atmosphere [30]. The assignment of
these two radiation intensities depends on the average level of light measured outdoors.
Moreover, the output power and position of the sun are represented by dynamic functions
of latitude, day of the year, and hour of the day [31]. The direct solar radiation source
consists of 24 points uniformly distributed around the virtual sky hemisphere, representing
the sun’s trajectory. The position of each direct radiation source varies with the length of
the day, the solar azimuth angle, and the solar altitude angle. That is, the orbit of the direct
radiation source varied with time [32].

To simulate the diffuse light environment, the sky area was divided into 72 radiation
sources. These sources were arranged according to the shape of the hemisphere, which
was further divided into six concentric rings with different altitude angles. Each ring
contained 12 radiation sources, and the light from these sources is also parallel. According
to the azimuth angle, each ring evenly distributed the radiation sources. The parallel light
converges from all directions to the center to simulate diffuse radiation [33]. Then, the
reverse Monte-Carlo ray tracing was used to calculate the emission, propagation, and
absorption of light (Figure 4), specifically, the light received by virtual sensor objects in
3D scenarios. In these cases, the light pathway and potential absorption, reflection, or
transmission depend on the optical properties, shape of the geometric objects, and the
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distribution of objects. To achieve realistic and reproducible light distribution within the
virtual scene, the number of light rays used during light simulation (ray-tracing) was set to
60 million using a maximal recursion depth of 15 reflections [34,35].
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72 radiation sources of the diffuse sky model.

2.3. Validation of Model

To verify the accuracy of the optimization using the CSG model, the light environ-
ment inside the verification field greenhouses was measured on representative days before
and after the winter solstice (21 December to 23 December). The total solar radiation
was measured using an MP-200 handheld pyranometer manufactured by Apogee Instru-
ment, Inc, Logan, UT, USA. The measurement range corresponded to 280–1120 nm, range
0–1999 W/m2, calibration error ±5%, and response time < 1 ms. The solar radiation inter-
cepted by the ground and wall was monitored for three consecutive days, starting when
the system for quilt was open until its closure. The layout of the specific measurement
points was shown in Figure 5.

In addition, the solar radiation intercepted by the melon canopy inside CSG-LS of
Shenyang was measured on the winter solstice. Measurements were performed at heights
of 0.4, 0.8, and 1.2 m. As shown in Figure 5, each height contained four horizontal positions.
As the simulation time interval, the measured data were recorded once every hour, and the
order of measurement went from south to north and back again. To eliminate errors caused
by time differences, average values are used during calculations.
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Figure 5. Schematic profile of a greenhouse, highlighting the positions of the field measurement
points. Red circles mark the positions of the pyranometer to verify the light interception of crops
(horizontal upper part of the leaf). The sun symbols indicate the locations of the arrangement of
pyranometer used for continuous monitoring the light interception of the ground and wall.

As shown in Figure 6, the overall trend of the simulated value calculated by the model
is consistent with the measured value. Furthermore, the evaluation coefficient (R2) of the
evaluation index was calculated. The evaluation coefficients (R2) of the ground and wall
inside the CSGs of Shenyang varied from 0.9472 to 0.9878 and 0.9852 to 0.9911, respectively.
The evaluation coefficients (R2) of ground and wall inside CSG of Tongliao varied from
0.9598 to 0.9895 and 0.9843 to 0.9905, respectively. Moreover, the evaluation coefficients
(R2) of crops inside the CSGs of Shenyang varied from 0.9847 to 0.9884. All the value of
evaluation coefficients were greater than 0.9 and close to 1, indicating that a high reliability
of the orientation optimization model built for CSG.
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3. Results

The purpose of the present investigation is to identify the optimal greenhouse orienta-
tion that captures the maximum solar radiation during winter, especially when the solar
radiation intensity is relatively low. Reaching this goal may improve the slow growth of
crops in greenhouses caused by low temperatures. Sunlight enters the CSG first through
the lighting roof and afterward becomes intercepted by the maintenance structures and
crops. Thus, the interception of the lighting roof, the light distribution on the opaque
maintenance structures, and the light interception of crops are essential parameters that
should be included in the evaluation of the greenhouse orientation.
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3.1. Interception of Solar Energy on Lighting Roof of CSG with Different Orientations

The lighting roof is the only channel through which CSG intercepts solar radiation.
The radiance of the lighting roof and the transparency of the plastic film are the dominant
factors that determine the performance of greenhouse light absorption and resulting energy
performance. Previous studies on the optical properties of the lighting roof have achieved
remarkable outcomes and recommended that the diffuse light plastic films can improve
the homogeneity of the canopy light distribution and increase crop production [14,36].
However, only a few studies have investigated the effect of greenhouse orientation on
light interception [16]. To determine the influence of greenhouse orientation on solar
radiation interception by lighting roof, the widely used CSG of the Liao-Shen type was
used. Furthermore, the city of Shenyang (Φ = 41.8◦ N) in the northeast province Liaoning of
China was chosen as an example in the present research (Figure 1). The most representative
orientations (10◦ S-E, 5◦ S-E, due south, 5◦ S-W, and 10◦ S-W) of the CSG-LS [20] were
selected to simulate and calculate light interception during the winter solstice.

As shown in Figure 7a, the diurnal variation of the solar radiation interception of light-
ing roof in all orientations presented a normal distribution. Additionally, every orientation
reached the peak value of solar radiation at noon. The maximum difference between the
lowest and highest radiation was only 4.4 W/m2. To analyze the impact of orientation on
light interception, the amount of intercepted solar radiation was cumulatively registered.
As shown in Figure 7b, the south-oriented CSG displayed the highest total intercepted solar
radiation. It was also observed that the total solar radiation intercepted by CSG with the
same deflection angles and different orientations was approximately symmetrical, with
a maximum difference of only 0.87%. These results were in line with those reported by
Yang et al. [20]. Thus, the solar radiation interception of the lighting roof should not be the
only parameter used to evaluate the orientation of greenhouses.
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3.2. Interception of Solar Energy by CSG Maintenance Structures with Different Orientations

Solar radiation entering the greenhouse through the lighting roof is strongly affected
by orientations. For this reason, the distribution of the radiation in each maintenance
structure is different, indirectly affecting the lighting and heat inside the CSG. Moreover,
the presence of crops in the CSG produces a shading phenomenon on the ground and walls
and also modifies the light distribution. In this investigation, five different orientations of
greenhouses were selected to simulate the light interception of CSG maintenance structures
in the presence and absence of crops. As shown in Figure 8, with the change in orientation,
the diurnal variation of the light interception on the wall of the CSG with and without
crops was approximately the same. When the crops were present, the light interception
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was slightly lower than that in the empty greenhouse. In addition, the variation with time
of light interception by the wall was different from that of the lighting roof. Regardless
of the presence of crops in the greenhouse facing east, the value of the light interception
reached its peak at 11:00 A.M. On the other hand, the one facing west presented the peak
value of light interception at noon. The results also indicated that the change of orientation
did not affect the cumulative solar radiation intercepted by the wall of greenhouses where
crops were present. However, the contrary was observed on the structures when no crops
were present. The difference in average cumulative solar radiation between these two walls
was about 120 W/m2. This difference indirectly indicated that the shading rate of the crops
on the wall was about 3.86%.
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In the actual production process, the greenhouse where crops are grown displays
more shade than the wall, as shown in Figure 9a. Unlike the light interception of the wall,
the changing trend of solar radiation interception of the ground with or without crops
was not regular. To determine the influence of crops on the solar radiation interception of
the ground, the obtained values for different orientations were summed up. As shown in
Figure 9b, the cumulative solar radiation interception of ground with and without crops
presented slightly different trends in orientation. The difference in light interception was
about 125%.
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In addition to the wall and ground, the roof is another important maintenance structure
for a CSG, which is located above the wall and connected to the lighting roof. The presence
of crops has no direct shading effect on the light interception on the roof. As shown
in Figure 10, the light interception on the roof of the empty greenhouse with different
orientations was slightly higher, compared to the CSG where crops were planted. This most
probably occurred because of the presence of crops affected the reflection of light on the
ground. Considering the cumulative solar radiation interception, the change in orientation
produced consistent variations in the roof light interception in the CSG, regardless of the
presence or absence of crops. The maximum amount of light interception was observed on
the roof when the CSG orientation was between zero and five degrees S-W.
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The results reported herein indicated that the change of orientation and the presence of
crops presented different degrees of influence on the light interception of each maintenance
structure inside the greenhouse. Moreover, it was not trivial to determine the optimal CSG
orientation when light interception was calculated considering single structures. Therefore,
a comprehensive parameter to determine the reasonable orientation of CSG was proposed.
The solar radiation entering CSG has two functions. The first one is to participate in the
photosynthetic process of the crops. Another one is that solar radiation is the energy source
of the greenhouse during the winter season. In terms of thermal energy, the roof is made
of wood, which presents insufficient thermal storage capacity. Thus, it has no significant
effect on the thermal stability of the CSG [10]. Consequently, the light interception on the
roof could be neglected. To further evaluate the orientation of CSG, the interception of
solar radiation on the wall and the ground was accumulated. As shown in Figure 11, the
simulation results based on the empty greenhouse showed an optimal orientation between
zero and five degrees S-W. In addition, when crops were present, the optimal orientation
was slightly shifted by 5 degrees to 5 to 10 degrees S-W.
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Figure 11. Comparison of cumulative solar radiation in CSG with and without crops. The cumulative
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3.3. Interception of Solar Energy on Crops of CSG with Different Orientations

The primary function of light entering a greenhouse is to promote the photosynthesis
of plants in terms of light energy directly used for photosynthesis but also as the main
source for thermal energy. In most northern areas of China, the intensity of solar radiation
is generally low during the winter. For this reason, the growth and consequent yield of
melons and other heliophiles tend to reduce significantly. The dominant factor affecting
photosynthesis is the light interception of crops, which directly depends on the greenhouse
orientation. Therefore, it is essential to investigate the optimal orientation of CSG in close
combination with the light interception of crops. As shown in Figure 12a, the variation of
light intercepted by the crops per day did not show a significant trend. In addition, the
cumulative solar radiation of crops indicated that the most suitable CSG orientation was
0–5◦ S-W (Figure 12b). Moreover, the maximum difference in the light interception of crops
present in CSG with different orientations was about 3.77%.
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3.4. Optimal CSG Orientation in Different Areas

The obtained results indicated that the optimal CSG orientation in Shenyang should
fall within the range of 9 and 10 degrees S-W. To further determine the best orientation, a
step size of two degree was used to analyze the optimal range. As shown in Figure 13, to
reach the maximum light interception of (a) crops, (b) maintenance structures in CSG with
crops, and (c) maintenance structures in CSG without crops, the orientation of CSG in the
Shenyang area should be 4–6◦ S-W, 8–10◦ S-W, and 2–4◦ S-W, respectively.
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To clear the effect of optimization for greenhouse orientation based on the maintenance
structures and crops, three common evaluation indices for the optimization were compared
(the maximum light interception of crops, the maximum light interception of maintenance
structures in CSG with crops, the maximum light interception of maintenance structures
in CSG without crops), while the best orientation was selected for comparative analysis.
The three selected CSG orientations were 2–4◦, 4–6◦, and 8–10◦ S-W. Meanwhile, the
model of crop population was implemented into the CSG, which considered the maximum
light interception of the maintenance structures inside empty greenhouse to control the
consistency of the three basic CSG environments. The presence of crops was considered in
the analysis process, and the maximum light interception of the structures was used as the
basis of the optimization process. The results indicated that the values of light interception
for maintenance structures in CSG with 8–10◦ S-W were 1.11% and 0.81% higher than
those in CSG with 4–6◦ and 2–4◦ S-W, respectively. As shown in Figure 14, considering
the maximum light interception of crops to determine orientation, results indicated that
the values of the CSG with 4–6◦ S-W orientation were 1.46% and 1.14% higher than those
with 2–4◦ and 8–10◦ S-W, respectively. In summary, the orientation optimization of the
greenhouse should be based on planted greenhouses, and the evaluation of the orientation
should include two aspects: (a) the light interception of the CSG maintenance structures
and (b) the light interception of crops.
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Figure 14. Comparison of optimization effects under three evaluation indices which are the maximum
light interception of crops, and the maximum light interception of maintenance structures in CSG
with or without crops.

4. Discussion

In this paper, the optimization model of CSGs based on the crop light environment
proposed is of universal significance. Considering the fact that the light environment is
different at different geographical latitudes, simulations on four greenhouses areas were
also conducted in the present study. In addition to Shenyang, Shouguang, Shijiazhuang,
and Tongliao (Figure 1) are further investigated; these four cities are the major vegetable-
producing areas in China’s cold regions. Meanwhile, considering that the quilts in the
production process of CSGs in these areas under cloudy conditions in winter are usually
in the half open or closed state, therefore, a typical sunny day is taken as the boundary
condition in the simulation analysis process [18].

As shown in Figure 15, the influence of the different latitudes leads to significantly
different solar radiation intensities of the CSG, and Tongliao has the lowest of among all
the regions. Similarly, to maximize the radiation intercepted by the maintenance structures,
the greenhouse orientations in each region corresponded to 4–6◦ S-W for Shouguang, 4–6◦

S-W for Shijiazhuang, and 2–4◦ S-E for Tongliao. To achieve the maximum intercepted
radiation by the canopy of crops, the orientations of CSGs in each region corresponded to
2–4◦ S-W for Shouguang, 2–4◦ S-W for Shijiazhuang, and 2–4◦ S-W for Tongliao.
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Figure 15. Determination of greenhouse orientation in different latitudes: (a) light interception of the
maintenance structures; (b) light interception of the crops.
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The optimal greenhouse orientations for the three productive regions and those for the
Shenyang region were evaluated. Furthermore, the results were summarized in Table 2 in
comparison with the light interception effect of maintenance structures and crops under the
optimal orientation based on the empty greenhouse. The data indicated that considering the
maximization of light interception of maintenance structures in CSG with the presence of
crops, the light interception of each part of the optimized greenhouse increased by various
degrees except the one corresponding to Shouguang. This indicated that for Shouguang,
the optimal orientation based on the empty greenhouse or maintenance structures was
consistent. In addition, when considering optimizing the lighting environment for crops,
the obtained results showed that the light interception of the maintenance structures inside
CSG decreased slightly, except the Tongliao one. According to this, it can be concluded
that actual field needs can determine the selection of greenhouse orientation. Taking
Shouguang as an example, the data indicated that if the CSG needs more heat storage, the
proper orientation is 4–6◦ S-W. Moreover, if the crops present in the CSG need intense light
radiation, the orientation can be selected as 2–4◦ S-W.

Table 2. Analysis of the optimal CSG orientation in main productive regions at different geographical
latitudes.

Evaluation
Index Empty Greenhouse Maintain Structures Crops

Area Azimuth Structure Crop Azimuth Structure Rate Crop Rate Azimuth Structure Rate Crop Rate
Shouguang

(Φ = 36.8◦ N) W 4–6◦ 4149.4 390.5 W 4–6◦ 4149.4 0.00% 390.5 0.00% W 2–4◦ 4138.5 −0.26% 391.6 0.28%

Shijiazhuang
(Φ = 38.0◦ N) W6–8◦ 4087.6 378.4 W 4–6◦ 4093.9 0.15% 385.9 1.98% W 2–4◦ 4074.4 −0.32% 387.6 2.43%

Shenyang
(Φ = 41.8◦ N) W 2–4◦ 3844.6 352.7 W 8–10◦ 3875.9 0.81% 353.8 1.14% W 4–6◦ 3833.5 −0.29% 357.8 1.46%

Tongliao
(Φ = 43.6◦ N) W 8–10◦ 3727.4 331.7 E 2–4◦ 3802.4 2.01% 333.9 0.66% W 2–4◦ 3744.3 0.45% 338.8 2.14%

The aim of this study is to determine the optimal orientation of solar greenhouse.
A suitable greenhouse orientation can be more suitable for crop growth and effectively
reduce the waste of resources [6,16,17]. Moreover, choosing the optimal orientation will
not increase the cost of solar greenhouse construction. According to the above results, it
is necessary to optimize the orientation of CSG considering the existence of crops. These
obtained results are also very common sense. The significance of the invention of the
greenhouse is to provide a more suitable growing environment for crops. Especially in the
mature stage of greenhouse crops, it not only needs better photosynthesis but also has a
great influence on the distribution of solar radiation in CSG. Most of the previous studies on
the optimization of greenhouse structure have not fully considered the existence of crops.
This is because the spatial structure of crops is more complex than that of greenhouses [37].

In fact, the research on the 3D modelling of crops has been carried out for many
years, and various methods have been proposed [38–40]. It is worth noting that most of
these models were applied to the field crops and rarely consider the interaction between
greenhouse environment and crop populations [41,42]. The significance of constructing 3D
model with GroIMP is to clarify the interaction between CSG and crops, so as to improve the
high-precision production of facility agriculture [35,43]. In addition, the GroIMP modelling
platform can also be used for artificial light supplements for crops and other research [44,45].
Especially in the greenhouse crop photosynthesis simulation accuracy, GroIMP is so far a
more ideal modelling platform [43,46].

Based on determining the optimal structure of solar greenhouses, the layout of internal
facilities and crops can be further quantitatively optimized. This can greatly shorten the
experimental period and improve the precision of agricultural management. However,
there is still much room for improvement in the automation of crop phenotypic data
acquisition. In further research, the rapid acquisition of crop phenotypic data and the
rapid modeling of crops should be focused on. This may be achieved by connecting 3D
scanning software [47,48] to the GroIMP modelling platform. In this way, it can provide
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basic conditions for the simulation study of crop dynamic growth model, so as to realize
higher precision agricultural management.

5. Conclusions

In the presented work, the optimal orientation of CSGs based on the light environment
and planting or the absence of crops are investigated using the open-source advanced 3D
modelling techniques and physics-based light simulation. The data obtained from the field
measurements were used to verify the model’s accuracy to identify its potential application
in practical production processes, and the evaluation coefficients (R2) were above 0.9472.

Through comprehensive simulation, this research compared and determined the differ-
ences between the optimal orientation obtained considering: (a) an empty greenhouse, and
(b) a planted greenhouse. The evaluation index of the optimal orientation was determined
for each scenario. The model was further used to determine the optimal CSG orientation at
different geographical latitudes, considering the light interception of maintenance struc-
tures and crops. Taking Shenyang as an example, the solar interception rate of crops can be
increased by 1.46% after the optimization of CSG orientation.

The positive simulation results further indicate that the model framework may be
applied to optimize other parameters, including the ridge height and cropping systems. In
this way, it can provide basic conditions for the simulation study of crop dynamic growth
model, so as to realize higher precision agricultural production management.
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