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Abstract: In this paper, we study a geometric dilution of a precision (GDOP)-based localization
performance metric for multisite radar adopting a time-of-arrival (TOA)-based localization scheme.
In contrast to the existing literature, we consider an actual uncertain measurement situation where
the detection probabilities of radar nodes are assumed to be less than unity. The aim is to formulate a
general signal-decoupled metric to describe the system localization performance while fully consider-
ing detection and estimation operations. Specifically, to match the uncertain measurements, we first
establish effectively detected time delay measurements (TDMs) for localization and modify the tradi-
tional performance bounds for TDM estimation. Then, by combining the localization performance
with the effective detection (ED) via probability, we propose a novel geometric dilution of precision
with uncertain measurements (GDOP-UM) metric. The proposed metric can truly characterize the
localization performance under the uncertain measurement situation. Finally, the simulation results
show that the proposed GDOP-UM can describe the actual localization performance regardless of
how the detection performance changes.

Keywords: multisite radar; TOA localization; uncertain measurement; geometric dilution of precision

1. Introduction

Multisite radar system (MSRS) is a type of radar equipped with multiple distributed
transmitters and receivers. Benefiting from different signal propagation paths for measure-
ments, MSRSs can obtain gain in target information [1]. In recent decades, MSRSs have
shown considerable advantages over traditional radar systems in various aspects, such as
detection [2–6], parameter estimation [7,8], tracking [9,10], and localization [10–13].

Multiple signal propagation paths allow MSRSs to perform indirect localization [13],
such as time-difference-of-arrival (TDOA), direction-of-arrival (DOA), and time-of-arrival
(TOA)-based localization schemes [14]. Due to the low cost and convenience of data
processing, the TOA-based localization is widely adopted in MSRSs [8].

Benefiting from the development of signal theory, to obtain good low probability of
intercept (LPI) performance, modern radars often use complex and even time-varying
signals to detect targets. Confronted with increasingly complex electromagnetic environ-
ments and mission requirements, the systems require better detection capabilities and
higher resource utilization. Therefore, many researchers aim to perform optimization de-
sign of the system resources or layout, including geometric optimization [15–17], resource
scheduling [9,15,18,19], waveform design [20,21], etc.

However, due to rapid changes in the mission environment, the optimization design
of the system resources or layout needs to be done quickly or even in real time. Accurate
evaluation of the system performance is key for radar system design. For the optimization of
the system resources or layout, confronting complex signals and fast implementation require-
ments, quick and accurate evaluation of the system performance is particularly important.
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Coincidentally, geometric dilution of precision (GDOP) provides us with a power-
ful tool for quickly characterizing the relative accuracy of TOA localization in different
positions with a given system layout over a specific geographic area [13,22]. Due to its
specific derivation directly from a time delay measurement (TDM) set, the GDOP is signal-
decoupled and simple in form. Hence, it can provide a general rapid evaluation of the
localization performance while adapting to different signal forms.

The GDOP was originally adopted in Global Positioning System (GPS) applications to
demonstrate the dependency of the attainable TOA localization accuracy for an arrange-
ment of satellite positions with respect to the target [23,24]. In recent decades, the concept of
GDOP has been introduced to the radar community as a Fisher-information-matrix-related
measure [13,22,25–30]. In [13,25], researchers applied the GDOP to verify the performance
of the algorithm proposed in the papers. In more papers covering the GDOP, researchers
fully utilized the advantage of the GDOP, namely the above mentioned concise form and
independence from signals, to optimize the system resources or layout.

For example, in [27–30], the GDOP was used to optimize the positions of radar nodes.
In [22], the GDOP was applied to ensure the optimal antenna subset selection scheme.
In these aforementioned works, researchers used the GDOP as an off-the-shelf tool, and
hence all these GDOP metrics have similar expressions as adopted in GPS. We call these
GDOP metrics traditional GDOP (T-GDOP).

However, GPS commonly applies a cooperative localization scheme to obtain the
location information of users, and its TDMs are generally obtained deterministically with
fixed system errors [23,24]. In most of the works mentioned earlier, TDMs are also assumed
to be accurately obtained in advance and entirely credible. Nevertheless, different from
GPS, MSRSs commonly apply non-cooperative localization schemes to locate a target.
For MSRSs, TDMs are obtained by the early detection and parameter estimation processes,
and these processes result in the uncertainty of TDMs [13,25].

Specifically, the acquisition of TDMs is probabilistic, and the acquisition probability
and the quality of TDMs closely depend on the signal-to-noise ratio (SNR) of received
signals. In particular, due to the range attenuation of radiation, the SNR of received signals
may be low. The low SNR further results in poor detection and estimation performance
with small probabilities of detection and large estimation errors [13,25,31,32]. Therefore,
considering the actual detection and estimation process, the assumption that all TDMs are
entirely credible is invalid.

Further, the T-GDOP based on this assumption is no longer applicable [24]. In [9,33–37],
several Cramér–Rao lower bounds (CRLBs) considering the uncertainty of measurements
are investigated. However, the signal-decoupled performance evaluation metrics consider-
ing uncertain measurements need to be further improved.

In this paper, we aim to establish a signal-decoupled metric based on GDOP to describe
the TOA localization performance for MSRSs with uncertain measurements. The main
contributions of this paper are concluded as follows:

1. To adapt the uncertainty of signal detection, considering the fact that the actual
detection probability of a target is always less than 1, we establish the first TDM
model under uncertain measurements to describe the TOA localization process more
accurately. To adapt the uncertainty of TDM estimation in low SNR, we propose
a modified performance bound for TDM estimation by introducing the Ziv-Zakai
bound (ZZB).

2. By considering the effect of detection and estimation on the subsequent TOA local-
ization, we combine the detection and localization performance via the probabilities
under different detection results and further propose a novel geometric dilution of pre-
cision with uncertain measurements (GDOP-UM) metric for localization performance
analysis of actual applications.

3. To verify the reasonability and accuracy of the proposed GDOP-UM metric, elaborate
simulations are performed and analyzed under a fixed-node-position scenario. More-
over, we perform simulations under an unfixed-node-position scenario for a typical



Remote Sens. 2022, 14, 910 3 of 20

geometric optimization application, namely, optimizing the system localization per-
formance by adjusting the node positions. The simulations also show the accuracy
and applicability of the GDOP-UM metric.

The proposed GDOP-UM metric can be widely applicable. Similar ideas may be
widely applied to formulate GDOP-like metrics for other time-delay-based or hybrid
indirect localization methods, such as the TDOA localization scheme.

The rest of the paper is organized as follows. The system model and uncertain
measurements are established in Sections 2 and 3, respectively. In Section 4, we modify the
traditional performance bounds for TDM estimation and further formulate the GDOP-UM
metric. Simulations are presented in Section 5, and Section 6 summarizes our conclusions.

2. Mathematical Model

We consider an MSRS equipped with M transmitters and N receivers, and then we
include M× N transmit–receive (T-R) channels. Let us denote θt

m = [xt
m, yt

m]
T ∈ R2×1 and

θr
n = [xr

n, yr
n]
T ∈ R2×1 as the 2D Cartesian position coordinates of the mth transmitter and

the nth receiver, respectively, where m = 1, ..., M and n = 1, ..., N, (·)T is the transpose
operator, and R is the real space. Let Θ = [θt

1, ..., θt
M, θr

1, ..., θr
N ] ∈ R2×(M+N) denote the

position matrix including all the radar nodes. Assume that a target is located at the position
x = [x, y]T ∈ R2×1, and the estimate of the target position is expressed as x̂ = [x̂, ŷ]T. Since
the influence of Doppler on localization performance is not considered, herein we do not
consider the motion state of the target.

Let τm,n denote the theoretical time delay for the (m, n)th T-R channel, i.e., from the
mth transmitter, to the target, to the nth receiver, and then we have

τm,n = Rm,n
/

c, (1)

Rm,n = Rt
m + Rr

n, (2)

Rt
m =

√
(x− xt

m)
2
+(y− yt

m)
2, (3)

Rr
n =

√
(x− xr

n)
2+(y− yr

n)
2, (4)

where c is the speed of light, and Rm,n denotes the bistatic distance corresponding to the
(m, n)th T-R channel.

To an MSRS, the TDMs of all T-R channels are first estimated in the receivers, and the
obtained TDMs are sent to the fusion center to perform TOA localization. If TDMs of all
T-R channels are available and accurately estimated, then there is a group of M× N TDMs,
τ̂ = [τ̂1,1, ..., τ̂m,n, ..., τ̂M,N ]

T, for performing TOA localization of the target. For the (m, n)th
T-R channel, the TDM τ̂m,n can be represented as

τ̂m,n = R̂m,n
/

c, (5)

R̂m,n = Rm,n + εm,n, (6)

where R̂m,n denotes the bistatic distance measurement corresponding to the (m, n)th T-R
channel. εm,n is a zero-mean random Gaussian error with the standard deviation σεm,n , and
σεm,n is given by [17,31,37,38]

σεm,n =
c

2πBrms√χm,n
, (7)

where Brms represents the root-mean-square (RMS) bandwidth of the signal (Herein, we
assume the parameters of the signals from all transmitters are the same. Brms is not
commonly used in radar signal processing as B. However, the mathematical expression of
σεm,n can be greatly simplified by resorting to Brms. Additional, Brms can be derived from
B [31]), defined as [31]
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Brms =

√√√√∫ ∞
−∞ F2|S(F)|2dF∫ ∞
−∞ |S(F)|2dF

, (8)

where S(F) is the signal spectrum and | · | denotes the modulus of a complex number.
Assume the spectrum of the transmitted signals is a rectangular spectrum, and then Brms is
given by [31]

Brms = B
/√

12, (9)

where B denotes the signal bandwidth.
In (7), χm,n is the SNR of the received signal corresponding to the (m, n)th T-R channel.

For a given deterministic signal, χm,n depends on the path loss lm,n, and lm,n ∝ (Rt
mRr

n)
2.

Specifically, χm,n can be calculated as [37]

χm,n =
PmGt

mGr
nσm,nλ2tintFt2Fr2

(4π)3kT0BFn(Rt
m)

2
(Rr

n)
2Ls

, (10)

where Gt
m and Gr

n are the transmitting antenna gain and receiving antenna gain, Ft and Fr

represent pattern propagation factors for the transmitter-to-target path and for receiver-to-
target path, and σm,n denotes the bistatic radar cross section (RCS) of the target. k and T0
are the Boltzmann constant and the standard temperature, respectively. Pm, λ, tint, Fn and
Ls are the transmitted average power, wavelength, integration time, receiver noise figure
and system loss factor, respectively.

3. Localization Measurements with Detection Uncertainty

In the previous literature investigating TOA localization and its performance evalua-
tion [13,22,25–28], for all the T-R channels, it was assumed that the target was effectively
detected and that TDMs were accurately estimated with small estimation errors, illustrated
as Figure 1. Therefore, for the traditional TOA performance evaluation, TDMs of all the
M× N T-R channels, i.e., τ̂ = [τ̂1,1, ..., τ̂m,n, ..., τ̂M,N ]

T, are utilized with the early detection
uncertainty ignored.

Fusion Center

Transmitter

Receiver

Figure 1. Sketch of TOA localization via an MSRS.
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However, TDMs are normally obtained by utilizing the cross-correlation operation
between the target echo and the transmitted signal under a synchronized clock [13,25,32,39].
Hence, the acquisition and performance of TDMs largely depend on SNR [13,25]. Different
from the existing research, this paper considers the TOA localization scenario where the
TDMs are obtained with detection uncertainty. Specifically, when the SNR of the signal
corresponding to one certain channel is extremely low, i.e., the output peak of the matched
filter is below the filtered noise level [31], the TDM for this channel is unreliable and
even unavailable.

Given that such a TDM is regarded as missing or unobservable, it will not be used in the
subsequent TOA localization and corresponding performance evaluation [10]. We notice
that the detection performance of the system heavily depends on SNR [31,40] as well.
Therefore, by performing independent detection for each T-R channel, we assume that,
when the target is effectively detected, the TDM for the corresponding channel is available.
Then, as in [33–36], for the (m, n)th T-R channel, a binary variable dm,n is introduced to
indicate whether the target is effectively detected:

dm,n=

{
1, effectively detected with probability Pdm,n ,
0, ineffectively detected with probability 1−Pdm,n ,

(11)

where Pdm,n is the detection probability of the target corresponding to the (m, n)th T-R
channel, and can be calculated as [8,31,40]

Pdm,n = Q
(√

2χm,n,
√
−2 ln Pf a

)
, (12)

where Q(·) is the Marcum Q-function, and Pf a is the probability of false alarm.
Then, considering all the M× N T-R channels, a detection sequence with L = 2MN

possibilities is established. Let dl = [d1,1,l , d1,2,l , ..., d1,N,l , d2,1,l , ..., dm,n,l , ..., dM,N,l ]
T denote

the lth possible detection sequence, where l = 1, ..., L, and dm,n,l is defined the same as (11).
The occurrence probability of the detection sequence dl can then be calculated as

Pr(dl) =
M

∏
m=1

N

∏
n=1

[
dm,n,l Pdm,n + (1− dm,n,l)

(
1− Pdm,n

)]
, (13)

where Pr(·) represents the probability function, which is fundamental to the proposed
metric. We notice that Pr(dl) is related to the detection results of all the T-R channels,
namely the detection probability Pdm,n . Pdm,n is dependent on SNR via the Marcum Q-
function. Hence, Pr(dl) is also affected by SNR.

Then, for the detection result corresponding to dl , the available TDMs for all the
channels can be further reformulated as τ̂l = τ̂ � dl , where � is the Hadamard product.
The non-zero elements in τ̂l represent the actually available TDMs. Let γl denote the
number of non-zero elements in τ̂l , namely the number of available TDMs for all the
channels corresponding to dl . Clearly, γl can be calculated as γl = ‖dl‖1, where ‖·‖1
denotes the 1-norm of a vector.

Different from the assumption of effective detection by all T-R channels in previous
literature [13,22,25–28], available TDMs of three or more T-R channels can ensure the
uniqueness and reliability of the TOA localization result [12,31]. Therefore, γl ≥ γe is
necessary for effective TOA localization instead of γl = M × N. γe depends on the
localization scheme and the system requirements. In this paper, we investigate the two-
dimensional TOA localization.

Without loss of generality, we assume that there is no available prior information,
and three or more T-R channels can then ensure the uniqueness of the TOA localization
result. To ensure the uniqueness and reliability of the TOA localization result, we let γe = 3.
We further define the detection with γl = M × N as complete detection (CD), i.e., the
target is detected by all the T-R channels and define the detection with 3 ≤ γl ≤ M× N as
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effective detection (ED), i.e., the target is detected by at least three T-R channels. Herein,
the performance evaluation for TOA localization is analyzed under ED.

As stated above, we assume that 3 ≤ γl ≤ M × N is satisfied under the detection
sequence dl . We extract the non-zero TDMs from τ̂l , and we establish an effectively detected
TDM vector τ̂

e f
l as

τ̂
e f
l =

[
τ̂1,l , ..., τ̂q,l , ..., τ̂γl ,l

]T
. (14)

To the TDM τ̂q,l , where q = 1, ..., γl , we assume that the signal is transmitted by the
mq,lth transmitter and received by the nq,lth receiver, where mq,l = 1, ..., M and nq,l =
1, ..., N.

Remark 1. The detection process is a probabilistic random process. Different from the idealized
deterministic localization measurement model adopted in existing researches, the TDM model for
TOA localization established herein is more practical and reasonable, with the actual early detection
process fully considered.

4. GDOP with Uncertain Measurements for MSRSs

Once the effectively detected TDM vectors τ̂
e f
l s are established, the TOA localization

can be performed with τ̂
e f
l s and the corresponding radar positions. Then, we can further

evaluate the localization performance in terms of the GDOP-like metric.
For the detection sequence dl , the theoretical time delay τq,l for the TDM τ̂q,l can be

calculated as [13]

τq,l =
1
c
(Rt

mq,l
+ Rr

nq,l
)

=
1
c

(√
(x−xt

mq,l
)2+(y−yt

mq,l
)2+
√
(x−xr

nq,l
)2+(y−yr

nq,l
)2
)

.
(15)

By derivation, we obtain

dτq,l =
1
c

[
(

x−xt
mq,l

Rt
mq,l

+
x−xr

nq,l

Rr
nq,l

)dx+(
y−yt

mq,l

Rt
mq,l

+
y−yr

nq,l

Rr
nq,l

)dy

]
. (16)

Considering all the effectively detected TDMs of all T-R channels, we can reformu-
late (16) in the matrix form as below:

dτ̂
e f
l = Cldx̂, (17)

with

Cl =
1
c



x− xt
m1,l

Rt
m1,l

+
x− xr

n1,l

Rr
n1,l

y− yt
m1,l

Rt
m1,l

+
y− yr

n1,l

Rr
n1,l

...

x− xt
mq,l

Rt
mq,l

+
x− xr

nq,l

Rr
nq,l

y− yt
mq,l

Rt
mq,l

+
y− yr

nq,l

Rr
nq,l

...

x− xt
mγl ,l

Rt
mγl ,l

+
x− xr

nγl ,l

Rr
nγl ,l

y− yt
mγl ,l

Rt
mγl ,l

+
y− yr

nγl ,l

Rr
nγl ,l



. (18)
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Given the geometric relationship shown as Figure 2, (18) can be reformulated as

Cl =
1
c



cos
(

αt
m1,l

)
+cos

(
αr

n1,l

)
sin
(

αt
m1,l

)
+sin

(
αr

n1,l

)
...

cos
(

αt
mq,l

)
+cos

(
αr

nq,l

)
sin
(

αt
mq,l

)
+sin

(
αr

nq,l

)
...

cos
(

αt
mγl ,l

)
+cos

(
αr

nγl ,l

)
sin
(

αt
mγl ,l

)
+sin

(
αr

nγl ,l

)


. (19)

According to the generalized inverse, (17) can be further rewritten as

dx̂ = (Cl
TCl)

−1Cl
Tdτ̂

e f
l . (20)

Proposition 1. Given the detection sequence dl , the corresponding localization error covariance
matrix Pdx̂,l can be expressed as

Pdx̂,l = BlCl
TE
[

dτ̂
e f
l dτ̂

e f
l
T
]

ClBl
T, (21)

where

Bl = (Cl
TCl)

−1, (22)

E
[

dτ̂
e f
l dτ̂

e f
l
T
]
= diag

(
σ2

τ̂1,l
, ..., σ2

τ̂q,l
, ..., σ2

τ̂γl ,l

)
. (23)

Note that E[·] denotes the expectation operator, diag(·) represents the diagonal matrix, and στ̂q,l is
the standard deviation of error for the TDM τ̂q,l .

, ,

t t( , )
q l q lm mx y, ,

r r( , )
q l q ln nx y

( , )x y

,

t

q lma
,

r

q ln
a

x

y

Figure 2. Geometric relationship between the radar nodes and the target.
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Proof. Recall (20) and let (Cl
TCl)

−1 = Bl , and then dx̂ = BlCl
Tdτ̂

e f
l . Therefore, the

localization error covariance matrix Pdx̂,l can be further given by

Pdx̂,l = E
[
dx̂dx̂T

]
= E

[
BlCl

Tdτ̂
e f
l dτ̂

e f
l
T

ClBl
T
]

= BlCl
TE
[

dτ̂
e f
l dτ̂

e f
l
T
]

ClBl
T,

(24)

with E
[

dτ̂
e f
l dτ̂

e f
l
T
]

defined in (23).

For the T-GDOP, similar as (7), σ2
τ̂q,l

is usually set based on the derivation of the

CRLB with certain measurements [22,25,37] (In some other papers, σ2
τ̂q,l

is simply set as

a constant [26,28]). Clearly, such a σ2
τ̂q,l

cannot match the actual TOA localization with
uncertain measurements.

The ZZB is an estimator bound that matches a priori bound (APB) at low SNR and the
CRLB at high SNR, and thus it can provide a more complete and reasonable description of
the estimation error of TDMs [31,41]. To adapt to the uncertainty of TDM estimation in low
SNR, the ZZB is introduced to modify the performance bounds for the TDM estimation.
Specifically, σ2

τ̂q,l
for uncertain measurements is modified as [31,41]

σ2
τ̂q,l

= αAPB
τ̂q,l
· erfc

(√
χmq,l ,nq,l

4

)
+ βCRLB

τ̂q,l
· Γui

(
3
2

,
χmq,l ,nq,l

4
√

2

)
, (25)

where erfc(·) is the complementary error function and Γui(·, ·) is the upper incomplete
gamma function:

erfc(x) =
2√
π

∫ ∞

x
e−t2

dt, (26)

Γui(x, a) =
1

Γ(a)

∫ ∞

x
ta−1e−tdt, (27)

Γ(a) =
∫ ∞

0
ta−1e−tdt. (28)

In (25), αAPB
τ̂q,l

and βCRLB
τ̂q,l

are the applicable APB and CRLB, given by

αAPB
τ̂q,l

=
T2

12
, (29)

T = 2τs, (30)

βCRLB
τ̂q,l

=
1

4π2χmq,l ,nq,l Brms2 , (31)

where T is the data recording duration and is set as the duration of the matched filter
output, and τs is the pulse width.

In Figure 3, a specific example about ZZB is given with CRLB as the benchmark.
We found that, in the case of high SNR (SNR≥17dB), the ZZB (corresponding to uncertain
measurements) and the CRLB (corresponding to certain measurements) are equal. When
SNR is lower, the CRLB increases to a high level as SNR decreases. In contrast, as SNR
decreases to a certain level, the ZZB approaches the APB. In fact, in actual applications, the
estimation errors of TDMs in low SNR can be limited to a range of possible time delays by



Remote Sens. 2022, 14, 910 9 of 20

utilizing some a priori knowledge [31]. Moreover, compared with actual measurements,
the ZZB is verified to be more accurate for measuring the accuracy of TDMs [13,31].

Figure 3. στ̂ versus SNR for various bounds (the signal parameters are shown in Table 1).

Table 1. Performance parameters of the radar nodes.

Parameters Values

PmGt
m 120 dBW

Gr
n 10 dB

σm,n 2 m2

λ 3 m

tint 1 s

Ft 1

Fr 1

k 1.38×10−23 J/K

T0 290 K

B 150 kHz

Fn 10 dB

Ls 10 dB

τs 50 µs

Then, considering the probabilistic uncertainty of detection sequences occurrence, the
GDOP-UM metric is further given in the following Proposition 2.

Proposition 2. Considering all the effective detection sequences (i.e., 3 ≤ γl ≤ M× N) and their
corresponding probabilities, GDOP-UM can be formulated as

Λ(Θ, x) =
L

∑
{l|3≤γl≤M×N}

Pr(dl)
L
∑

{l|3≤γl≤M×N}
Pr(dl)

× Γl(Θ, x), (32)

where Γl(Θ, x) is the GDOP-like value corresponding to the detection sequence dl , formulated
as [27,28]

Γl(Θ, x) =
√

tr(Pdx̂,l), (33)

where tr(·) denotes the trace of a matrix.
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Proof. Herein, the GDOP-UM is formulated as the weighted sum of the GDOP-like val-
ues corresponding to appropriate detection sequences, weighted by the corresponding
possibilities. Considering the necessity of ED for TOA localization, we have

Λ(Θ, x) =
L

∑
{l|3≤γl≤M×N}

Pr(Γl)× Γl . (34)

It should be noted that, the probabilities of some ineffective detection sequences (i.e.,
γl < 3) may be extremely high. To eliminate the influence of probabilities of ineffective
detection sequences on the integrated GDOP-UM, the detection sequence probabilities as
the weighted values are normalized. Specifically, Pr(Γl) is calculated as

Pr(Γl) = Pr(dl)

/
L

∑
{l|3≤γl≤M×N}

Pr(dl). (35)

Then, substituting (35) into (34) yields (32).

We notice that, the integrated GDOP-UM is directly dependent on the detection and
TDM estimation performance of T-R channels, which depend on the SNR. For a given
deterministic signal, the SNR depends on the path loss lm,n. Hence, the GDOP-UM is
fundamentally dependent on the path loss.

Remark 2. It can be seen from (32) that, similar to the T-GDOP, the proposed GDOP-UM only
depends on the relative angular relationship and the relative distances between the target and radar
nodes. Since the GDOP-UM is related to the system detection performance, it is more sensitive to
the relative distances than the T-GDOP.

Remark 3. We notice that, when the probability of CD is 1, i.e., when the probability of the
detection sequence dl being an (M× N)-dimensional vector made from ones is 1; if the performance
descriptions of TDM estimation are the same, the proposed GDOP-UM is then equivalent to the
T-GDOP. Hence, the T-GDOP can be regarded as a particular case of the GDOP-UM under CD
with high SNR, and clearly the proposed GDOP-UM is more generalized.

We also compare the computational complexity of the GDOP-UM and the T-GDOP.
One addition, subtraction, multiplication and division is defined as a flop, and the com-
putational complexities of vector operations are calculated with the vector dimensions
considered. Then, we give the computational complexity analysis for both algorithms in
Table 2.

Table 2. Computational complexity analysis for the GDOP-UM and the T-GDOP.

The Type of Operation
Flops

GDOP-UM T-GDOP

Addition
L
∑

{l|3≤γl≤MN}
Cγl

MN × (2γl
2 + 10γl + 10) 2M2N2 + 10MN + 10

Subtraction
L
∑

{l|3≤γl≤MN}
Cγl

MN × 4γl 4MN

Multiplication
L
∑

{l|3≤γl≤MN}
Cγl

MN × (2γl
2 + 8γl + 9) 2M2N2 + 8MN + 9

Division
L
∑

{l|3≤γl≤MN}
Cγl

MN × (4γl + 1) 4MN + 1
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We note that, to the GDOP-UM, the last term of the cumulative sum of computational
complexity (namely when γl = MN) is then equivalent to the overall computational load
of the T-GDOP. Therefore, the computational complexity of the GDOP-UM is larger than
that of the T-GDOP. However, since the GDOP-UM performs an accurate evaluation of
localization performance under all possible detection results, such a larger computational
load is inevitable and acceptable. The specific realization process of the GDOP-UM metric
is given as Algorithm 1.

Algorithm 1 Realization of the GDOP-UM Metric.

Initialize the radar positions Θ and the target position x;
Initialize the summation of Pr(dl) with 3 ≤ γl ≤ M× N as sum = 0;
Initialize the value of GDOP-UM as Λ = 0;
for l = 1, ..., 2MN do

if 3 ≤ γl ≤ M× N then
Calculate the occurrence probability of the detection sequence dl , Pr(dl), according

to (13);
sum = sum + Pr(dl);

else
Break;

end if
end for
for l = 1, ..., 2MN do

if 3 ≤ γl ≤ M× N then
Calculate the GDOP-like value Γl corresponding to the detection sequence dl

according to (23), (24), (25) and (33);
Calculate the normalized probability of the detection sequence dl , Pr(Γl), accord-

ing to (35);
Λ = Λ + Pr(Γl)× Γl ;

else
Break;

end if
end for
Output Λ as the final value of the GDOP-UM.

5. Numerical Results

In this section, we perform elaborate numerical simulations to verify the accuracy and
applicability of the proposed GDOP-UM. We separately consider two situations where
the positions of radar nodes are fixed and the node positions are to be optimized. For all
the simulations, we consider a scenario including a radar mission area (RMA) and a radar
placement area (RPA). The RMA is a rectangle region of 800 km× 200 km, and the RPA
is a rectangle region of 800 km× 280 km. These two areas are not overlapping. A target
randomly appears in the RMA. Referring to [31,32,37], without loss of generality, typical
performance parameters of the radar nodes for all the simulations are selected and given in
Table 1.

5.1. Fixed Node Positions

In this subsection, we select several representative radar node placement schemes,
and analyze the corresponding system localization performance by simulation results.

5.1.1. Linearly Placed Away From the RMA

For this simulation, the radar nodes are placed linearly and away from the RMA with
a long baseline. We notice that, neither the T-GDOP nor the derived GDOP-like metrics
reflect absolute physical accuracy, and they only show the distribution of localization
accuracy in a given area.
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Hence, it is difficult to directly compare GDOP-like metrics with some metrics re-
flecting absolute physical accuracy (such as CRLB, etc.), and different GDOP-like metrics
cannot be directly compared by numerical values. Hence, we study the GDOP-UM with
the most commonly used T-GDOP introduced in [13,22,25,27,28] as the benchmark, and
analyze the trend differences of the localization performance characterization shown by
the two metrics. The simulation results of the corresponding localization and detection
performance are shown as Figure 4.

(a) (b)

(c) (d)

Figure 4. Simulation results of the system localization and detection performance. In the follow-
ing simulations, the contour lines with respect to localization represent the values of GDOP-like
components measured in meters, and the values shown in the grids regarding detection represent
the probabilities of detection. The regions where 0 ≤ y ≤ 200 km and 200 ≤ y ≤ 480 km are,
respectively, the RPA and the RMA. (a) The T-GDOP. (b) The GDOP-UM. (c) The probability of ED.
(d) The probability of CD.

Figure 4d shows the probability of CD. We note that, for the small area that is approxi-
mately surrounded by a black triangle located in the middle of the RMA, the probability
of CD is 1, i.e., the target appearing in this area will be effectively detected by all T-R
channels (As we stated before, the detection probability of radar nodes is always less than
1. Therefore, the probability of CD here is 1 because of the truncation error of the computer
system. The actual probability of CD is infinitely close to 1). However, for the much wider
area outside the black triangle in the RMA, the probability of CD is much less than 1 and
even equals 0. This indicates that the system may not necessarily or even completely fail
to achieve CD of the target. Then, the T-GDOP based on the absolute CD assumption is
clearly no longer applicable.

Additionally, we give the results of the probability of ED in Figure 4c. As we mentioned
before, ED is the prerequisite and guarantee for effective TOA localization. We notice that,
in the areas circled by two red ellipses in Figure 4c, the probability of ED is less than 1.
This indicates that the system has poor detection performance in these areas, and it is even
difficult to obtain enough effective TDMs to support TOA localization.

Hence, theoretically, in these two areas, sharp deterioration of the localization perfor-
mance is inevitable [31]. However, we find that, the T-GDOP values shown in Figure 4a



Remote Sens. 2022, 14, 910 13 of 20

keep increasing smoothly even in the poor-detection areas circled by the two red ellipses,
which means that the localization performance deteriorates smoothly as well in these areas.
Therefore, such simulation results also show that the T-GDOP cannot accurately describe
the actual system localization performance, especially in the low-SNR situation.

Figure 4b is the simulation result of the GDOP-UM. As we explained before, the
GDOP-UM is derived based on ED. We found that, in the entire RMA, the values of the
GDOP-UM increase in exactly the same trend as the performance deterioration of ED. We
also noticed that, in the area surrounded by the black triangle in the RMA, the probability
of CD is 1, and the performance descriptions of TDM estimation based on the CRLB and
the ZZB are almost the same in this high-SNR area (shown as Figure 3 with an SNR of
not less than 14 dB). Comparing Figure 4a,b, as analyzed before, the GDOP-UM is nearly
equivalent to the T-GDOP. Different from the T-GDOP, in the poor-detection areas circled
by the two red ellipses, the values of the GDOP-UM increase sharply.

This indicates that the sharp deterioration of the localization performance in poor-
detection areas can also be described accurately by the GDOP-UM. All of these results
conform to the theoretical analysis and our expectations and validate the accuracy of the
proposed GDOP-UM.

Then, focusing on the GDOP-UM and recalling the Formula (32), the GDOP-UM can
be regarded as a weighted sum of several GDOP-like components Γls under appropriate
detection sequences, weighted by the corresponding probabilities. We enumerate Γls
under several detection sequences with higher probabilities at a representative location
(80, 440) km in Table 3. For comparison, the detection sequence corresponding to CD, i.e.,
[1, 1, 1, 1, 1, 1]T, is also selected.

Table 3. Values of the occurrence probabilities and Γls under certain detection sequences at the
location (80, 440) km.

Detection Sequences Occurrence Probabilities Values of Γl for GDOP-UM

[1,1,1,1,1,1]T 0.003 1349.8 m
[1,1,1,0,1,0]T 0.168 916.2 m
[1,1,1,1,0,0]T 0.213 780.9 m
[1,1,1,0,0,0]T 0.309 391.5 m

Theoretically, with the location (80, 440) km, if TDMs from the nodes on the right
of the RPA (e.g., the second receiver and the third transmitter) are used, then a long
propagation path will result in an extremely low SNR of the signal and further lead to poor
performance in detection and localization.

We find from Table 3 that the Γls are much larger when the TDMs of the second
receiver or the third transmitter are used than when the TDMs of these nodes are not
used. In particular, when the TDMs of the second receiver and the third transmitter are
both used, e.g., when the detection sequence is [1,1,1,1,1,1]T, the localization and detection
performance are both quite poor with Γl at 1349.8 m and the detection probability at
0.003. The proposed GDOP-UM is formulated by comprehensively considering all effective
detection sequences.

Hence, Γl under the detection sequence [1,1,1,1,1,1]T will increase the value of the
integrated GDOP-UM to show the impact of some low-quality TDMs on the localization
results. Since the occurrence probability of the detection sequence [1,1,1,1,1,1]T is much
lower than the other listed sequences in Table 3, the final value of the GDOP-UM, 689.6 m,
is more biased towards Γls under the other listed sequences. The above simulations also
show the accuracy of the GDOP-UM in describing the TOA localization performance.
We also give simulation results of the detection and localization performance for two
specific representative detection sequences in Figure 5 to more intuitively corroborate the
above analysis.
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Figure 5. Simulation results of Γls for the GDOP-UM and detection performance under certain
detection sequences (the location of the black “∗” point is (80, 440) km). (a) Γl under [1,1,1,1,1,1]T.
(b) Γl under [1,1,1,0,0,0]T. (c) Detection performance under [1,1,1,1,1,1]T. (d) Detection performance
under [1,1,1,0,0,0]T.

We notice that, although the data fusion of different radar nodes is not our focus,
how to select proper data for TOA localization is worth discussing. In conclusion, the
above simulation results show that, in the high-SNR area, the T-GDOP is nearly equivalent
with the GDOP-UM, and both metrics can truly characterize the localization performance
distribution. However, in the low-SNR area, the T-GDOP fails to characterize the localiza-
tion performance distribution accurately. In contrast, the localization performance of all
considered detection results, the GDOP-UM still shows its accuracy.

5.1.2. Linearly Placed Near the RMA

For this simulation, the radar nodes are placed linearly and near the RMA with a long
baseline. We analyze the system localization performance via the GDOP-UM with the
T-GDOP as the benchmark. The simulation results of the corresponding localization and
detection performance are shown as Figure 6. We find from Figure 6c that, when the nodes
are placed near the RMA, the probability of CD in most areas of the RMA (located in the
middle) is 1.

Similar to the situation when the nodes are linearly placed far away from the RMA,
we find from Figure 6a,b that the GDOP-UM is nearly equivalent to the T-GDOP in these
areas. This phenomenon proves once again that the T-GDOP can be regarded as a particular
case of the GDOP-UM under CD with high SNR. Compared with the T-GDOP, the GDOP-
UM can more clearly show its precise characteristics in low-SNR scenarios. Based on
the above discussion, for more meaningful conclusions, we select some representative
node placement schemes with typical low-SNR scenarios to study the GDOP-UM in the
next subsection.
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Figure 6. Simulation results of the system localization and detection performance. (a) The T-GDOP.
(b) The GDOP-UM. (c) The probability of CD.

5.1.3. Some Other Node Placement Schemes

We also compare the localization performance in terms of the GDOP-UM for different
node placement schemes. Four representative node placement schemes are considered,
and the simulation results are shown in Figure 7. We found that different node placement
schemes present different characteristics in terms of the localization performance. When
nodes are placed in line with a short baseline as shown in Figure 7a, in the area that is
located near the extension of the baseline and close to the RPA, the system localization
performance deteriorates sharply and is even worse than that in the far zone of the RMA.

This phenomenon is due to the utilization of TDMs with low SNRs of some T-R
channels and, more importantly, because of the short equivalent system baseline. We also
notice that, when nodes are placed in an arc or placed in different regions for transmitters
and receivers, as shown in Figure 7b–d, respectively, the growth trend of the system
localization performance is similar. To the placement scheme in an arc as shown in Figure 7b,
since the transmitter in the middle of the RPA is far away from the RMA and since this
leads to a long signal propagation path, the system localization performance is relatively
poor. The localization performance for the other two placement schemes is essentially the
same.

We found that when the transmitters are placed far from the RMA as shown in
Figure 7d, compared to the placement scheme as shown in Figure 7c, the electromagnetic
energy density in the RMA is significantly reduced while maintaining similar localization
performance. Hence, better LPI performance can be obtained [42]. How to ascertain a node
placement scheme to obtain optimal localization performance with good LPI performance
is also an important and meaningful issue to be studied; however, this is not the focus of
this paper.

In conclusion, the above simulation results proved that different node placement
schemes may lead to different localization performance. No matter what node deployment
scheme the radar system adopts, the corresponding localization performance can be finely
characterized with the GDOP-UM.
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Figure 7. Other node placement schemes and the corresponding GDOP-UM. (a) Placement in line
with a short baseline. (b) Placement in an arc. (c) Placement in different regions for transmitters and
receivers (transmitters are close to the RMA). (d) Placement in different regions for transmitters and
receivers (receivers are close to the RMA).

5.2. Unfixed Node Positions

We found from the above simulation that different node placement schemes may
lead to different system localization performance. Additionally, as we mentioned before,
geometric optimization is a typical application of the GDOP-like metrics. Therefore, in
this subsection, we study the optimal node placement scheme with respect to localization
performance via the proposed GDOP-UM metric. We choose the same optimization model
as [16,43] and ignore the distance constraint between the radar nodes.

Both the T-GDOP and the GDOP-UM are considered, and the maximum value of
the GDOP-like metrics in the RMA is used as the objective function. A particle swarm
optimization (PSO) algorithm is applied to solve the non-convex optimization problem,
with the swarm size at 200 and the maximum number of iterations at 200. The other
common parameters of the PSO algorithm are consistent with [16,43].

Figure 8 shows the simulation results of the probability of CD for the node placement
optimization result, with the T-GDOP as the optimization metric. As we mentioned before,
due to the neglect of measurement uncertainty, the T-GDOP metric mainly depends on
the relative angles between the target and the radar nodes but is not sensitive to relative
distances. Hence, we see from Figure 8 that the receivers are placed far away from the RMA
to obtain proper relative angles.

We also notice that, as mentioned earlier, absolute CD is a necessary assumption for
the T-GDOP derivation. However, for such a node placement scheme, a vast area with the
CD probability of less than 1 exists in the RMA. In other words, with the T-GDOP as the
metric, the optimization result cannot ensure the necessary assumption for the T-GDOP
derivation. Therefore, as we discussed in Section 5.1, the T-GDOP is not suitable as the
optimization metric.
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Figure 8. Probability of CD for the node placement optimization result with the T-GDOP as the
optimization metric.

We also give the simulation results of localization performance in terms of the GDOP-
UM as Figure 9, and the node placement schemes are optimized with the T-GDOP and
the GDOP-UM as the optimization metrics, respectively. As we mentioned before, the
GDOP-UM is more sensitive to the relative distances between the radar nodes and the
target. We find from Figure 9b that, using the optimization result with the GDOP-UM as the
metric, most radar nodes are well separated in the border of the RMA and the RPA. Such a
configuration can ensure a higher SNR of the received signal and reduce the influence of
uncertain measurements on localization.

We mentioned before that, when all radar nodes are collinear, the localization perfor-
mance in some areas near the extension of the baseline will deteriorate sharply (similar to
the situation shown in Figure 7a). To avoid such a situation and provide a long equivalent
system baseline length, one receiver is deployed away from the RMA.

For the node placement scheme optimized with the T-GDOP used as the optimization
metric as shown in Figure 9a, the localization performance in the near zone of the RMA
is better due to appropriate relative angles and short signal propagation paths. However,
for the far zone of the RMA, the SNR of the received signal is low because of long signal
paths. Therefore, the localization performance deteriorates sharply with the decrease of the
probability of CD, and the maximum value of the GDOP-UM is 1077.4 m.
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Figure 9. Comparison of optimization results of localization performance shown by the GDOP-UM.
(a) Optimized with the T-GDOP as the optimization metric. (b) Optimized with the GDOP-UM as
the optimization metric.

In contrast, for the placement scheme optimized with the GDOP-UM as the opti-
mization metric, the localization performance is well distributed in the RMA, with the
maximum value of the GDOP-UM at 260.7 m. In conclusion, the above simulation results
show that, compared with the T-GDOP, the GDOP-UM is more accurate and more suitable
to be an optimization metric, and it can lead to an optimization solution with higher quality.
Therefore, the GDOP-UM provides us with a powerful tool for optimizing the resources or
layout of multi-sensor systems.
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6. Conclusions

In this paper, given the uncertainty of the pre-processing for the TOA localization,
a signal-decoupled localization performance evaluation metric considering uncertain mea-
surements was studied. We first proposed an effectively detected TDM model and a modified
performance bound for TDM estimation to match the uncertain measurements. Then, by
comprehensively considering all the detection results for effective localization and the
corresponding localization performance, we proposed a novel GDOP-UM metric.

This metric can truly describe the system localization performance no matter how the
detection performance changes. We performed numerical simulations for two representa-
tive application scenarios. The simulation results show that the T-GDOP can be regarded
as a particular case of the GDOP-UM. The T-GDOP is nearly equivalent to the GDOP-UM
under a fully high-SNR situation but is not available for low-SNR cases. The proposed
GDOP-UM can also truly describe the localization performance under a low-SNR situation.
Additionally, simulation results for a typical node placement optimization application
further verify the accuracy and applicability of the proposed GDOP-UM.
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MSRS Multisite radar system
TOA Time-of-arrival
CRLB Cramér–Rao lower bound
GDOP Geometric dilution of precision
TDM Time delay measurement
SNR Signal-to-noise ratio
T-GDOP Traditional GDOP
ZZB Ziv–Zakai bound
GDOP-UM GDOP with uncertain measurements
CD Complete detection
ED Effective detection
APB A priori bound
RMA Radar mission area
RPA Radar placement area
m Index of transmitter
n Index of receiver
l Index of detection sequence
dl The lth possible detection sequence
γl Number of available TDMs for all T-R channels
τ̂

e f
l Effectively detected TDM vector

Pdx̂,l Localization error covariance matrix
στ̂q,l Standard deviation of error for the TDM
Γl The GDOP-like value corresponding to dl
Λ GDOP-UM metric
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