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Abstract: Inspired by the tremendous success of deep learning (DL) and the increased availability of
remote sensing data, DL-based image semantic segmentation has attracted growing interest in the
remote sensing community. The ideal scenario of DL application requires a vast number of annotation
data with the same feature distribution as the area of interest. However, obtaining such enormous
training sets that suit the data distribution of the target area is highly time-consuming and costly.
Consistency-regularization-based semi-supervised learning (SSL) methods have gained growing
popularity thanks to their ease of implementation and remarkable performance. However, there have
been limited applications of SSL in remote sensing. This study comprehensively analyzed several
advanced SSL methods based on consistency regularization from the perspective of data- and model-
level perturbation. Then, an end-to-end SSL approach based on a hybrid perturbation paradigm was
introduced to improve the DL model’s performance with a limited number of labels. The proposed
method integrates the semantic boundary information to generate more meaningful mixing images
when performing data-level perturbation. Additionally, by using implicit pseudo-supervision based
on model-level perturbation, it eliminates the need to set extra threshold parameters in training.
Furthermore, it can be flexibly paired with the DL model in an end-to-end manner, as opposed to
the separated training stages used in the traditional pseudo-labeling. Experimental results for five
remote sensing benchmark datasets in the application of segmentation of roads, buildings, and land
cover demonstrated the effectiveness and robustness of the proposed approach. It is particularly
encouraging that the ratio of accuracy obtained using the proposed method with 5% labels to that
using the purely supervised method with 100% labels was more than 89% on all benchmark datasets.

Keywords: deep learning; remote sensing semantic segmentation; transfer learning; semi-supervised
learning; consistency regularization; hybrid perturbation

1. Introduction

With the recent increase in the number and availability of high-resolution remote
sensing data, rapid and accurate extraction of semantic information from such data has
received considerable focus in urban planning, agricultural monitoring, and disaster surveil-
lance [1,2]. Traditional thresholding- and region-based methods can perform the image
segmentation without requiring a large amount of labeled data, despite their coarse re-
sults [3]. Inspired by the success of deep learning (DL) in the computer vision field, the
remote sensing community has also introduced this state-of-the-art technique into pixel-
wise classification—also called semantic segmentation. Compared with traditional machine
learning techniques—e.g., random forests or support-vector machines—DL is superior in
that it automatically exploits feature representations solely from massive data, instead of
handcrafting features based on domain-specific knowledge [4].
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In general, supervised learning on massive labeled training data is the mainstream
solution in DL due to its high accuracy and robustness [5]. However, the creation of labeled
data is often time-consuming and expensive. Acquiring high-quality pixel-level labels for
semantic segmentation in remote sensing applications is particularly challenging due to the
great scene complexity. For example, Ji et al. [6] spent approximately six months creating
their WHU building datasets (8188 labeled aerial images and 3742 labeled satellite images
with 512 x 512 pixels), while Luo et al. [7] took nearly four months to annotate their aerial
imagery shadow dataset (514 labeled images varied from 256 x 256 to 1688 x 1688 pixels).
Both examples reflect the difficulty of labeling work for semantic segmentation in remote
sensing, especially when faced with a growing number of Earth observation data from
various platforms, such as satellites, airplanes, and UAVs.

To respond the challenge of labeled training data, an increasing number of studies
have started investigating how to reduce labels while maintaining DL model performance—
some of which have attempted to perform purely unsupervised learning based on time
consistency between multitemporal remote sensing data [8,9]. These methods have a higher
computing efficiency, but a lower accuracy in comparison to the methods using labeled
training data. Moreover, a few studies [10,11] have paid more attention to image synthesis
and translation within the scope of remote sensing, so as to produce more labeling data in a
synthetic manner. However, the feature distribution of synthetic data is often inconsistent
with that of real data due to a lack of specific control over the synthesis process. Moreover,
low-quality reference data from OpenStreetMap [12] or cadastral maps [13] have also
been used as labels for DL model training, although their performance is relatively poor.
Recently, self-supervised learning paradigms such as contrastive learning have sought
to characterize the latent space by decreasing and increasing the distances of intra- and
interclass representations, respectively, from a mass of unlabeled data, and then apply this to
downstream tasks, achieving impressive results in a range of applications despite requiring
a huge amount of computational resources [14,15]. In addition to the abovementioned
approaches, there are several widely used solutions with decent performance, e.g., transfer
learning (TL), weakly supervised learning (WSL), and semi-supervised learning (SSL),
which emphasize transferring the model capability from related tasks, or employing weak
or few labels from the target of interest in training.

TL focuses on transferring knowledge learned from one annotation-rich domain
(source domain) to a related but annotation-scarce domain (target domain), so as to improve
the model’s availability across domains [16]. Typically, domain adaptation (DA) and param-
eter transfer are two popular schemes of TL in neural-network-based approaches [17,18].
DA aims to reduce the domain shifts of features in order to enable a pretrained model in the
source data applicable to the unlabeled target data. Although DA has achieved progress
recently, it remains challenging due to its relatively weak performance. Parameter transfer
supposes that individual models for different but related tasks can share some parameters,
thus allowing them to transfer across domains. In practice, parameter transfer is more
extensively utilized because of its easy implementation and high effectiveness. Based on
this strategy, remote sensing researchers have carried out a variety of applications such as
land cover classification [19], scene classification [20], poverty mapping [21], and building
extraction [22], in conjunction with limited task-dependent training data. Parameter-based
TL has been widely used to alleviate labeled data deficiency, whereas challenges remain in
overfitting and negative transfer [17]. As a result, parameter-based TL is usually paired
with other techniques, such as WSL and SSL, to encourage the better performance of the
DL model while using very few labels.

In the training process, WSL attempts to replace pixel-level labels with coarse an-
notations, such as box labels or image-level labels, in order to decrease human labeling
effort. Chen et al. [23] proposed a WSL method using image-level labels as supervision
information for building detection. Moreover, a weakly supervised feature-fusion network
(WSE-Net) based on image-level annotations was developed to perform segmentation on
water and cloud datasets [24]. These studies leveraged weak labels and achieved compara-
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ble results to purely supervised methods, thus exhibiting the utility of WSL methods in
remote sensing image segmentation. WSL appears to be capable of reducing the annotation
work to some extent. However, a mass of weak labels is still required during training, and
pixel-level annotations can outperform weak ones in actual applications.

Unlike TL and WSL, SSL aims to train a model using datasets that have labels for only
a fraction of their samples [5]. Most SSL approaches concentrate on either enlarging the data
distribution to improve model generalizability, or learning latent features from the mass of
unlabeled data to enable the decision boundary to be located in low-density regions [5,25].
It is worth noting that recent SSL approaches, such as Mean Teacher [26], CutMix [27], and
FixMatch [28], have progressively pushed image classification performance to a high level
in the computer vision field. In the meantime, the remote sensing community has also tried
to investigate SSL in response to label deficiency in a wide range of applications, such as
land cover classification [19], scene classification [29], and building extraction [15]. Notably,
Hua et al. [30] presented a semi-supervised approach with sparse annotations for semantic
segmentation of remote sensing images. In this method, the unsupervised loss was es-
tablished based on the feature and spatial relational regularization, while the supervised
loss was calculated using sparse annotation pixels in the form of points, lines, or polygons.
This method achieved a decent trade-off between model performance and labeling efforts,
despite the fact that the sparse annotations ignore the class boundary information. Fol-
lowing the classic dense-annotation pipeline, Wang et al. [31] proposed an SSL method
(CRAUP) for remote sensing image segmentation that combines consistency regularization
with random color jitter (similar to FixMatch) and average updates of pseudo-labels. To
further improve the performance of SSL, Wang et al. [32] adopted the RanPaste algorithm
(similar to CutMix) to enhance the data perturbation and incorporate Mean Teacher with
pseudo-labeling methods in training, which can outperform the CRAUP method on dif-
ferent datasets. Note that these two studies involve the pseudo-labeling and consistency
regularization scheme. Pseudo-labeling directly utilizes the predicted labels with high
confidence from unlabeled data to guide the training process, which is a plug-and-play
method that can be easily integrated with existing DL models [25]. However, determining
the threshold of confident predictions remains an open question, and no universal method
has been developed thus far. Furthermore, the training process of the pseudo-labeling
method is unstable and cumbersome, leading to poorer results on multiclass segmentation
tasks [31]. In contrast, the key idea behind consistency regularization is to encourage the
model to give consistent predictions for unlabeled inputs perturbed in various ways [33].
Typically, this works by ensuring that the same input data with slight perturbations have
a consistent output via the same model (data-level perturbation), or that the model with
small perturbations generates consistent outputs for the same input data (model-level
perturbation). For instance, slight changes in image contrast, color, and brightness should
not have a significant impact on the final predictions for a deep semantic segmentation
model, and models with the same architecture but different initiation parameters should
obtain similar predictions on the same input. Generally, a good DL model should be robust
and demonstrate strong generalization capability towards slight perturbations. Based on
this strategy, the consistency loss can be constructed according to the differences between
the outputs from the original inputs and their perturbed variants, allowing the unlabeled
data to be used in the training process. Notably, this family of algorithms can leverage the
pseudo-label information implicitly in the training stage, rather than explicitly using it in
terms of the confidence value of the predictions, thereby avoiding the intractable step of
confidence threshold setting and the negative effects of unhelpful predictions.

In order to explore the potential of the perturbation-based SSL pipeline on the basis
of a dense-annotation paradigm, and to promote the model’s performance in remote
sensing image semantic segmentation, we first illustrated several representative consistency
learning schemes from the perspective of data- and model-level perturbation. Then, based
on these schemes, we adapted an end-to-end semi-supervised semantic segmentation
framework integrating cross pseudo supervision and ClassMix. The proposed approach
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was evaluated using five remote sensing benchmark datasets, and compared with several
related perturbation-based schemes.
The major contributions of this study are as follows:

(1)  We comprehensively analyzed several prominent consistency-regularization-based
approaches from the perspective of data- and model-level perturbation for deep semi-
supervised semantic segmentation. To our knowledge, we are not aware of any study
that has explored the consistency-regularization-based SSL approaches in remote
sensing from this angle;

(2) An end-to-end semi-supervised semantic segmentation framework adopting a hybrid
perturbation paradigm—i.e., ClassHyPer—was introduced to improve the DL model’s
performance for remote sensing image segmentation in the case of a limited number
of labels;

(3) Through the extensive experiments on five remote sensing benchmark datasets in-
volving the segmentation of roads, buildings, and land cover, we demonstrated the
effectiveness and robustness of ClassHyPer in remote sensing applications;

(4) To further motivate the exploration and investigation in this field, we plan to make the
related code publicly available at https://github.com/Y]-He/ClassHyPer (accessed
on 2 January 2022).

2. Related Works
2.1. Semantic Segmentation for Remote Sensing

Thus far, the majority of DL-based semantic segmentation approaches perform pixel-
wise dense predictions based on the fully convolutional network (FCN) architecture [34]
and its multiple variants. Because of their superior performance in the computer vision
field, FCN-based models were also introduced into pixel-level remote sensing image
segmentation by the remote sensing community. With an increasing number of remote
sensing annotation data and continuous improvement of computing power, there are a
growing number of studies using FCN-based semantic segmentation approaches to extract
buildings [6], roads [35], land cover [36], shadows [7], and clouds [37]. Ji et al. [6] developed
a Siamese U-Net to extract buildings based on a self-created large remote sensing image
dataset (WHU building dataset). The study’s findings demonstrated the high quality of the
dataset and good performance of the new model, prompting many researchers to develop a
vast number of FCN-based semantic segmentation models. A D-LinkNet [35] was proposed
for road extraction, integrating the dilated convolution to enlarge the receptive field and
ensemble multiscale features. The results from the DeepGlobe 2018 Road Extraction
Challenge demonstrated its competitive performance. To improve the performance of the
DL model in the complex urban scene, Zheng et al. [36] presented an EaNet for semantic
segmentation, combining the edge-aware loss and large kernel pyramid pooling module.
This approach accurately captures the multiscale semantic features in both ground and
aerial urban scene datasets, such as Cityscapes [38], ISPRS Vaihingen [39], and the WHU
Aerial Building dataset [6]. Furthermore, a deeply supervised convolutional neural network
for shadow detection (DSSDNet) [7] was developed to extract shadows based on an aerial
imagery dataset for shadow detection (AISD). Additionally, a pixel-wise cloud dataset [37]
based on 18 Landsat-8 satellite images was created to evaluate the DL-based segmentation
algorithms. It is clear that there has been an increase in the number of studies focusing on
datasets created for DL-based semantic segmentation approaches. In turn, the increase in
the number of datasets facilitates the continuous improvement of various algorithms. The
development of algorithms and datasets keeps DL-related research and applications active
and prosperous. All of these studies, however, rely on large amounts of labeled training
data for good performance, which is still challenging in actual remote sensing applications.

2.2. Semi-Supervised Semantic Segmentation for Remote Sensing

Recently, some studies have attempted to improve the DL models’ performance by
leveraging large amounts of unlabeled data in conjunction with a small fraction of labels
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based on the SSL pipeline for remote sensing image segmentation. The most critical compo-
nent of SSL is the construction of unsupervised loss based on specific assumptions, which
directs the training process with unlabeled data. Various unsupervised learning tasks have
been designed to perform SSL. For example, the feature and spatial relations of pixels
have been used to build the contrastive loss in remote sensing semantic segmentation with
sparse annotations [30]. Protopapadakis et al. [40] adopted stacked autoencoders to learn
the latent representations from a large number of unlabeled images. In addition, pseudo-
labeling [41] works by iteratively leveraging the pseudo-labels for the unlabeled data
needed to guide the training process. The unsupervised loss is formulated via the supervi-
sion from pseudo-labels to predictions. Evidently, pseudo-labeling is easy to implement
by integrating existing DL models. Hence, this technique has been applied to numerous
remote sensing applications. For example, Tong et al. [19] utilized pseudo-labeling to
improve the transferability of deep models for land cover classification on satellite im-
agery. Li et al. [42] designed an SSL classification framework based on pseudo-labeling and
conditional random fields for hyperspectral image classification and segmentation. Experi-
mental results showed the effectiveness of pseudo-labeling in remote sensing applications.
Nevertheless, extra methods are required in order to determine the threshold of confident
predictions, and there is no one-size-fits-all method to date. Additionally, the training
process might become unstable when the model generates many unhelpful predictions for
unlabeled data with high confidence [43].

Consistency regularization is another class of algorithm developed for SSL, and
contributes to the objective function by encouraging the predictions of the network to
be consistent in the vicinity of the observed samples [5]. Due to its remarkable perfor-
mance, the perturbation-based scheme has become one of the most effective consistency-
regularization approaches. Regarding the task of image-level classification in the computer
vision field, various approaches have been developed, including data-level perturbation
(e.g., Cutout [44], MixUp [45], FixMatch [28]) and model-level perturbation (e.g., temporal
ensembling [46] and Mean Teacher [26]). Meanwhile, data-level perturbation approaches
(e.g., CutMix [27], CowMix [33], ClassMix [47], ComplexMix [48]), and model-level per-
turbation methods (e.g., guided collaborative training [49], cross-consistency training [50],
cross pseudo supervision [51]) are booming in the semantic segmentation applications.
With the significant advancement of SSL algorithms, a few remote sensing studies have
tried to combine different techniques in SSL. For instance, Wang et al. [31] proposed a
FixMatch-like approach incorporating pseudo-labeling and Mean Teacher for SSL-based
remote sensing image segmentation. Subsequently, Wang et al. [32] further improved
model performance on the basis of previous work [31], by integrating a CutMix-like scheme
and pseudo-labeling. Although these studies have achieved progress in remote sens-
ing semantic segmentation based on SSL, the use of pseudo-labeling schemes in their
approaches makes the training process discrete and complex. Unlike pseudo-labeling
methods, perturbation-based methods are more flexible and easier to integrate with the
DL model in an end-to-end manner. In general, perturbation-based methods embed the
consistency loss into the total cost function and optimize via training, rather than carrying
out a separate process of training and retraining. Additionally, they do not require the
determination of the confidence threshold, reducing the complexity and difficulty of the
training process.

Reviewing the latest SSL methods for semantic segmentation, we find that
augmentation-based approaches such as CutMix and ClassMix are prominent data-level
perturbation schemes. At the same time, Mean Teacher and cross pseudo supervision
are two typical representatives of the model-level perturbation pipelines. Inspired by
these notable methods, we introduced an end-to-end hybrid perturbation approach, i.e.,
ClassHyPer, for semantic segmentation of remote sensing images, with dense annotations.
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3. Methodology
3.1. Problem Definition

Given a set D; = {(xll,y1>, e, (xé\,,yN)} of N labeled images and a set
D, = {xi‘, .. .,x%} of P unlabeled images (P >> N), xj' refers to the i-th unlabeled im-
age, while (xf, yi) represents the i-th labeled image with spatial dimensions H x W and

its corresponding pixel-level label y; € RE*H*W where C is the number of classes. The
SSL semantic segmentation task aims to train a model by incorporating a small number of
labeled data from D; and a large amount of unlabeled data from D,,, so that we can obtain
a better model over the one using only labeled data.

Generally, traditional supervised learning for semantic segmentation only contains
the supervision loss formulated by pixel-wise cross-entropy loss based on labeled images:

Ls = 1 ) CrossEntropy(yi,fg (xf)) 1)

D1l xLyieD,

where 6 denotes the parameters of the DL model f.

During SSL, an unsupervised loss £, is added based on the consistency regularization
pipeline. As previously introduced, there are two classes of approaches: one is the data-level
perturbation approach based on the perturbation of input data and their predictions, while
the other is the model-level perturbation approach based on the perturbation of model
parameters, whose loss terms can be formulated as Equations (2) and (3), respectively:

Ly = |Z§u| oy d(fo(s(xt ) g (folxt), folx)) ) @)
L= L d(fo() ey (<)) ®

xjf ,le.‘ €D,

where d (.,.) is a distance function that measures the differences between pre- and post-
perturbation, and we can use cross-entropy or the mean squared error function, depending
on specific situations; g (.) represents the function perturbing the predictions from unla-
beled images; 17 denotes small perturbations adding to the model parameters. Finally, the
integrated loss function £ for SSL is the summation of supervised and unsupervised losses
as Equation (4):

L= Es + /\Eu (4)

where A > 0 denotes the trade-off weight, which controls the relative importance of the
unsupervised term in the overall loss; we will set it to 1 empirically in later experiments.
Based on the loss term £, we can optimize the model parameters by utilizing gradient
descent and backpropagation algorithms.

This study focuses on investigating four prominent consistency-regularization-based
SSL approaches: two for data-level perturbation, and two for model-level perturbation. An
end-to-end SSL method is then introduced based on a hybrid perturbation scheme.

3.2. Data-Level Perturbation
3.2.1. CutMix

CutMix [27] integrates the Cutout [44] and MixUp [45] methods, which cut one or
more rectangular areas with random aspect and position from image A and paste them
over image B to synthesize a new mixed image (Figure 1). Generally, CutMix is used as a
data augmentation method in DL to expand training data size by producing more synthetic
data. Here, it is used as a consistency-regularization-based method in the context of SSL by
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imposing perturbation on the unlabeled images and their predictions. The operation can
be formulated as follows:
f:MQXA+(17M)®.XB (5)

Yy=MO fo(xa) + (1 - M) O fo(xp) (6)

where (X, ) denote the synthetic image and prediction, respectively, based on unlabeled
images x4 and xp; M € {0, 1}WX Hisa binary mask indicating where to cut out and fill in
within two images; © denotes element-wise multiplication, while 1 denotes a mask that is
completely filled with ones; fy(x4) and fy(xp) denote outputs from the images x4 and xp
through DL model fy, respectively, and 6 represents the model parameters.

M

fo(x4)

fo

fo(x)

x= Mix(x4,xp)

Mix fo

fo

Figure 1. Illustration of CutMix for SSL semantic segmentation: x 4 and xp are two unlabeled images,
and fy is a DL model for semantic segmentation. We input x4 and xp to the model and obtain the
respective predictions fy(x4) and fg(xp), then mix them based on a mask M and achieve a mixed
prediction i = Mix(fy(x4), fo(xp)). At the same time, we mix x 4 and xp into ¥ = Mix(x4, xp) based
on the same mask M, and feed it to the model to get the predictions fy(X). Finally, the consistency
loss Lcons can be calculated in terms of the differences between fy(X) and ¥.

Thus, as shown in Equation (7), the consistency loss is calculated based on the differ-
ences between the mixed image’s prediction fy(¥) and the mixed prediction y. Then, the
consistency loss Lcons is integrated with the supervised loss L to train the model together
using a gradient descent algorithm.

»Cu = »Ccons =

Y Ay fe(%)) )

x4,XgEDy

Dl

3.2.2. ClassMix

ClassMix [47] can be regarded as the generalization of CutMix; the only difference
between the two is how the mask M is generated. Instead of cutting and pasting rectangular
areas, ClassMix cuts part of the predicted classes from image A and pastes it over image
B, thus forming a synthetic image that can better preserve the semantic boundaries of the
objects in image A. As shown in Figure 2, the mask is derived from the semantic boundary,
making the mixed image more meaningful. In this way, the trained model can be robust
not only to the change in the image’s context, but also to the diverse image occlusions.
This approach has been applied to the Cityscapes dataset [38], which was created for
algorithm testing of autonomous vehicle driving, and achieved better results than CutMix.
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The improvement can be attributed to two factors: (1) The diversity of the created masks,
which stems from the fact that each image contains different classes and each class includes
multiple objects, resulting in the varied masks in training. The increased diversity is helpful
to enhance data distribution and promote the model’s generalization ability. (2) The masks
are based on the semantics of the images, which respect the sematic boundaries of the
original objects. Since the mixed borders lie closer to the actual semantic boundaries, the
mixed images approach the real data distribution, making them more meaningful for
training and prediction.

fo(xa)

Mix

Figure 2. Illustration of ClassMix for SSL semantic segmentation. The only difference from CutMix is
that the mask M is generated by the prediction of x4 instead of a random combination of rectangular
areas.

ClassMix is suitable for remote-sensing-related tasks due to its inherent consideration
of semantic boundaries. Like CutMix, the consistency loss is based on the prediction of the
mixed image fp(¥) and the mixed prediction y. Regarding the mixture scheme, x4 and xp
are defined as the foreground and background images, respectively, which means that part
of x4 needs to be cut and pasted to xp. Specifically, if there are more than two classes in x 4,
half of the predicted classes are cut and pasted to xp. If x4 contains two classes, only the
non-background class is cut out and pasted. If x4 only contains the background class, then
the mix will be ignored.

3.3. Model-Level Perturbation
3.3.1. Mean Teacher (MT)

Mean Teacher [26] was initially proposed for the image-level classification task, which
performs SSL by building a consistency loss based on the predictions from the teacher
model and student model (Figure 3). The key idea of MT is that an average of consecutive
student models can represent a more accurate model than using the final weights directly.
This technique has been used in remote sensing image semantic segmentation [31,32], and
achieved considerable performance. Technically, the parameters of the teacher model are
calculated based on the consecutive average of parameters of the student model given in
Equation (8):

07 = ab;_1 + (1 —a)6; ®)

where « € [0,1] is a smoothing coefficient, which is generally set to 0.99, while 6; and 6,
represent the parameters of the student and teacher models in training step ¢, respectively.
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Exponential Moving Average
0, =abi_1+(1—-a)b,

for //

Figure 3. Illustration of MT for SSL semantic segmentation: There is a student model fj, and a teacher
model fy in training. The student model is the main model trained with the training data. As the
training goes on, the teacher model is updated with an exponential moving average of the student
model’s parameters, so that a consistency loss can be established based on the respective predictions
from the teacher and student models. Note that the parameters of the teacher model do not take part
in the process of error backpropagation, and the symbol “//” signifies the stop-gradient.

Intuitively, the teacher and student models should produce consistent results, since
there is only a tiny difference between their parameters. Hence, pseudo-labels from the
teacher model can be used to supervise the predictions from the student model. Based on
the MT scheme, a consistency loss is formed as Equation (9):

1

ﬁu - Econs - |D ‘
u

Y d(fo, (), fy () )

x€Dy,

3.3.2. Cross Pseudo Supervision (CPS)

Cross pseudo supervision [51] is a recently proposed method that uses two models
with the same architecture but different initialization parameters, and imposes mutual
supervision to perform SSL (Figure 4). This approach aims to maintain consistency between
two similar models with slight parameter perturbations. Two cross-consistency losses are
built in the training process according to the cross-supervision operations as Equations
(10) and (11). Thus, the unsupervised learning loss is calculated with the summation of
two cross-consistency losses, as shown in Equation (12). This framework contains two
supervised losses Lg and Ly, for two trainable submodels that can be optimized. The
total loss is formulated as Equation (13):

1
Lepsi 2= Dy XGZZ; CrossEntropy (Y1(x), fo,(x)) (10)
1
Lo = gy L CrosEntropy (12(2). i () ay
cu - ccpsLZ + ccpsZJ (12)
L= Ls+ Lo+ ALy (13)

where 61 and 6, denote the respective parameters of two models with the same architecture
f,and they are initialized with different values. Y; and Y, represent the one-hot label maps
(called pseudo-segmentation maps) computed from the confidence probability results

fo,(x) and fy, (x), respectively.
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fo,

fo,

Figure 4. Illustration of CPS for SSL semantic segmentation: We input image x into the model f, and
fo,, then get the corresponding probability maps fp, (x) and fp, (x) and pseudo-labels Y7 (x) and Y5 (x).
Subsequently, let Y7 (x) supervise fy, (x) and Y;(x) supervise fp, (x), constructing two consistency
losses Lcps1_2 and Lpso_1, respectively. The symbol “//” signifies the stop-gradient.

The model structure of CPS is slightly more complex but geometrically symmetrical,
and implicit pseudo-supervision can be conducted between submodels without setting a
confidence threshold. Note that its computation work is increased because two submodels
need to be trained. Although this approach has achieved outstanding performance on two
popular semantic segmentation datasets (Cityscapes [38] and PASCAL VOC 2012 [52]) in
the computer science field, we still expect to explore its actual performance from the angle
of remote sensing applications.

3.4. Hybrid Perturbation

Given the respective strengths of the data- and model-level perturbation, we argue
that the combination of both schemes might further enhance model capability. Hence,
to incorporate the benefits of both schemes, we designed a hybrid perturbation-based
approach—i.e., ClassHyPer—by integrating ClassMix with CPS. Specifically, ClassMix is
superior in generating mixed images that respect the semantic boundaries of the objects
in the original images, which is helpful for the task of semantic segmentation. Moreover,
the diversity of the masks broadens the scope of data distribution, thus resulting in the
enhancement of the model’s generalization ability and the alleviation of the overfitting
issue. The benefit of CPS lies in two aspects: One is that the consistency between two
segmentation networks encourages the prediction decision boundary to be located in low-
density regions. The other is that the perturbation of model parameters implicitly leverages
the pseudo-segmentation map as the training signal for them to supervise one another,
thus avoiding the intractable procedure of confidence threshold determination. In addition,
both schemes can be easily embedded into existing DL models in an end-to-end manner,
reducing the complexity and difficulty of model training.

As illustrated in Figure 5, two unlabeled images are fed into two segmentation net-
works, and then the mask is generated according to one of the pseudo-segmentation maps.
Subsequently, mixed inputs and outputs based on the mask are used to build consistency
loss. Finally, a mass of cost-effective unlabeled data is capable of enhancing model perfor-
mance via consistency learning. Beyond that, we also illustrate the method combining MT
and ClassMix in Figure 6, which we used as a contrast method in later experiments. In the
following section, relevant experiments are carried out to validate the effectiveness and
robustness of ClassHyPer on different remote sensing datasets.
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Figure 6. Illustration of the hybrid of MT and ClassMix for SSL semantic segmentation.
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4. Experiments and Results
4.1. Datasets

To evaluate the effectiveness of the hybrid perturbation framework for semantic
segmentation on remote sensing images, we chose five high-resolution remote sensing
benchmark datasets for the experiments. Table 1 gives the overview of each dataset, and
some examples of these datasets are shown in Figure 7.

Table 1. Overview of the datasets used in the experiments.

Labeled Split Size Resolution
Dataset Images (Train:I\)Ial:Test) Classes (Pixels) (m) Bands Data Source
DG_Road 6226 3735:623:1868 2 512 x 512 1 R-G-B Satellite
Massa_Building 1191 1065:36:90 2 512 x 512 1 R-G-B Aerial
WHU_Building 8188 4736:1036:2416 2 512 x 512 0.3 R-G-B Aerial
Potsdam 1368 612:252:504 6 512 x 512 0.1 R-G-B Aerial
Vaihingen 1009 692:68:249 6 512 x 512 0.09 IR-R-G Aerial

(e)

Figure 7. Examples of the (a) DG_Road, (b) Massa_Building, (c) WHU_Building, (d) Potsdam, and (e)
Vaihingen datasets. The left and right columns of each dataset denote the images and corresponding
ground-truth labels, respectively.

DeepGlobe Road Extraction Dataset (DG_Road) [53]: This is an RGB satellite dataset
created for a road and street network extraction challenge, which is to classify every pixel
into binary categories (road and background); it contains 6226 labeled RGB satellite images
with 1024 x 1024 pixels captured over Thailand, India, and Indonesia. In our experiments,
we resized them to 512 x 512 pixels to reduce the computation, as described in [32], since the
objective is to validate the performance of SSL rather than to obtain the best segmentation
results in the challenge contest. Then, we randomly split them into three subsets as a ratio
of 60%:10%:30% for training (3735), validation (623), and testing (1868), respectively;

Massachusetts Building Dataset (Massa_Building) [54]: This dataset contains 151 RGB
aerial images of the Boston area, and corresponding building polygons from OpenStreetMap
as ground truths. Each image is 1500 x 1500 pixels with a 1 m spatial resolution. We fol-
lowed the official data split—137 for training, 4 for validation, and 10 for testing—then
resampled them to 1536 x 1536 pixels using nearest-neighbor interpolation and, finally,
cropped them into 512 x 512-pixel patches without overlap. After removing some images
with blank data, 1065, 36, and 90 labeled images were obtained for training, validation, and
testing, respectively;

WHU Aerial Building Dataset (WHU_Building) [6]: This is a large aerial RGB dataset
for binary-class semantic segmentation (building and background), covering over
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220,000 buildings of 450 km? with 0.3 m spatial resolution in Christchurch, New Zealand.
The creator cropped the imagery into 8188 patches with 512 x 512 pixels seamlessly and
then split them into three subsets: 4736 for training, 1036 for validation, and 2046 for testing.
Due to the large sample volume and high labeling accuracy, this dataset has become one
of the most popular benchmark datasets for DL-based building extraction in the remote
sensing community. For the convenience of training, we followed the official data split
scheme in our experiments;

ISPRS Potsdam 2D Semantic Labeling Dataset (Potsdam) [39]: This dataset is a subset
of the ISPRS semantic labeling contest benchmark datasets, consisting of 38 aerial true
orthophotos with 0.05 m spatial resolution and corresponding six-class ground-truth labels
(i.e., impervious surfaces, buildings, low vegetation, trees, cars, and clutter /background).
The original size of each patch is 6000 x 6000 pixels. Although RGB, IRRG, RGBIR, and
DSM data are provided officially, we only used the three-channel RGB-labeled images
in our experiments. Following the official suggestion, we divided them into training,
validation, and testing subsets with 17, 7, and 14 labeled images, respectively. Due to the
limited computing power, the raw images were resized to 3072 x 3072 pixels, and then
cropped into 512 x 512-pixel patches without overlap. As a result, we obtained 612, 252,
and 504 labeled images for training, validation, and testing, respectively;

ISPRS Vaihingen 2D Semantic Labeling Dataset (Vaihingen) [39]: This is also a subset
of the ISPRS benchmark datasets, containing 33 patches with 0.09 m spatial resolution.
Each patch involves a color-infrared orthophoto, DSM, and corresponding ground-truth
label with six classes (the same as the Potsdam dataset). In our experiments, we only
used the color-infrared orthophotos and corresponding labels. We also followed the
official suggestion and chose 11, 5, and 17 patches as training, validation, and testing sets,
respectively. All patches were cropped into 512 x 512 sub-patches. The only difference was
that training samples were cropped with a 256 x 256 overlap, while the validation and
testing samples were without overlap. Finally, 692, 68, and 249 sub-patches were acquired
for training, validation, and testing, respectively.

4.2. Experimental Setup

All of the experiments were implemented via PyTorch 1.9.0 [55] with CUDA 10.2
in a single NVIDIA GeForce RTX 2080Ti GPU with 11 G memory. Data augmentation
adopted random horizontal and vertical flip. An AdamW optimizer [56] with a weight
decay of 0.0002 and momentum of 0.9 was employed because of its characteristics of fast
convergence. The learning rate was initialized at 0.0001, and a one-cycle learning rate
policy [57] was used for adjusting the learning rate in training. To avoid overfitting, we
adopted the early stopping strategy, which guides training stops when maximum IoU does
not improve over a few epochs. The batch size was set to four for all experiments to fit the
GPU memory and ensure a fair comparison.

Regarding the mask generation in CutMix, we followed the scheme laid out in [5].
Three rectangles covering 50% of the image area with a random aspect ratio and position
were used to create the masks. For the mask generation of ClassMix, a warmup strategy
was adopted. Specifically, the model was first trained for a few epochs—e.g., 1/8 of the total
training epochs—with only labeled data, so as to produce predictions with more accurate
class boundaries in order to obtain more meaningful masks in training.

Following the general rule of thumb in model training, we used the training set to
fit the model parameters, the validation set to evaluate the model and determine the best
model parameters, and the testing set for final model evaluation. Furthermore, to perform
the SSL experiments, we split the training set into two groups, randomly sub-sampling
5, 10, 20, or 50% of the whole set as the labeled subset, and the remaining data as the
unlabeled subset. To reduce the randomness and ensure the reliability of the results, we
repeated the random data sub-sampling three times for each dataset, and used the average
value of evaluation metrics to evaluate the final model performance.
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In addition, in order to avoid the unfair comparison between fully supervised and
semi-supervised learning approaches, we followed the training rules described in [49].
First, we defined the total number of training samples as:

N=ExTxB (14)

where E represents the total training epochs, T denotes the number of iterations in each
epoch, and B is the batch size—set to 4 in all experiments due to the limited GPU memory.
The detailed training rules were as follows:

(1) All purely supervised experiments were trained for 50 epochs, with 20-epoch early
stopping. T decreased with the decrease in the number of labeled data in the context
of SSL, but to prevent overfitting, we did not increase E;

(2) Ewasadjusted to ensure that N was the same as the fully supervised baseline using all
labeled data. Since each batch in the SSL experiment involved labeled and unlabeled
data, we defined an “epoch” in SSL experiments as going through the unlabeled
data once, while the labeled subset was repeated a few times to match the number of
unlabeled samples within an epoch;

(3) Empirically, we used the adaptive early stopping strategy in SSL experiments to avoid
collapsed training and overfitting. The epochs of early stopping were calculated by
0.4 x E.

4.3. Base Segmentation Model

Regarding the semantic segmentation model, a simple but classic FCN model (Figure 8)
was chosen as the base model architecture; its encoder was replaced with the encoder of
VGGI16 [58], so that we could directly use the VGG16 model parameters trained on the
ImageNet dataset [59]. This dataset is a very large benchmark dataset for 1000-class
image recognition, containing over 1.2 million labeled images. Although it was created
for image-level classification instead of pixel-level semantic segmentation, its encoder of
the pretrained model can still extract the general features from images [20]. Through this
parameter TL strategy, we can accelerate the training process and achieve better model
performance, especially in the case of very few labeled data. Note that the designed SSL
framework in this study can be integrated with other prominent DL semantic segmentation
architectures. Nevertheless, considering that our objective was to evaluate the effectiveness
of the proposed SSL approach, we only conducted experiments based on this model
architecture in the study, due to the extremely time-consuming experimental work (see
time efficiency in Section 5.1).

=S\ ®}
SwS—

Skip Connection

T I

Conv 3 x 3 + ReLU BN Max-pool 2 x 2 TransposedConv 3 x 3 Conv 1 x 1
+

RelLU

Figure 8. The architecture of the modified FCN model.
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4.4. Evaluation Metrics

Commonly, there are several main quantitative evaluation metrics—e.g., precision,
recall, F1-score, and intersection over union (IoU)—for pixel-level semantic segmentation.
These metrics are related to four classifying conditions in prediction: true positive (TP),
false positive (FP), true negative (TN), and false negative (FN), where TP is the correctly
classified pixels, FP is the incorrectly classified pixels, TN is the correctly rejected pixels,
and FN is the incorrectly rejected pixels.

TP

U= 15 N

(15)

Among them, IoU represents the intersection of the prediction and ground truth
over the union of the whole image set, whose value ranges from 0 to 1; it can robustly
evaluate the segmentation results even with the unbalanced number of classes in the
datasets. For example, non-building pixels are far more numerous than building pixels
in the Massa_Building dataset; IoU can still robustly measure the detection results in
this unbalanced classification situation, which can take both the detection precision and
completeness into consideration. Hence, IoU is used to evaluate the model performance in
later experiments.

4.5. Experimental Results

To comprehensively assess ClassHyPer and other perturbation-based SSL approaches,
we conducted experiments using purely supervised learning methods (Sup) and semi-
supervised learning methods (SSL) with different proportions of labeled samples on mul-
tiple remote sensing datasets. Baseline denotes the method that uses the modified FCN
model introduced in Section 4.3. TL means that the parameter transfer learning strategy
was used. Specifically, the pretrained parameters of VGG 16 were transferred to the baseline
model. Note that the TL strategy was applied to all SSL methods as well. Since the class
imbalance problem usually exists for binary-class datasets (e.g., DG_Road, Massa_Building,
and WHU_Building), we only considered the IoU of the target object (such as roads or
buildings) for performance evaluation, without regard to the background. For multiclass
datasets (e.g., Potsdam and Vaihingen), mean IoU (MloU) was adopted for accuracy assess-
ment, which is the average value of the IoU of all classes. To simplify the expression, we
use IoU to represent the accuracy uniformly later, whether the dataset is for binary-class
segmentation or not.

45.1. DG_Road

DG_Road is a road extraction dataset based on satellite imagery with two classes: road
and background. From the quantitative results shown in Table 2, we can see that both
TL and SSL can improve the model performance over the baseline. There is a relatively
higher accuracy promotion, especially when using very few labeled data. When using 5%
labeled data (186 labeled images), TL and the best SSL approach (CPS+CutMix) increase
the average IoU from 46.65 to 52.88 and 58.88%, respectively, which is a huge improvement
in the semantic segmentation task. In addition, the data-level perturbation approaches
(CutMix and ClassMix) can significantly improve the model accuracy over TL with very
few labels. In contrast, the model-level perturbation approaches (MT and CPS) cannot do
the same thing, despite their higher accuracy than baseline. CPS-based hybrid perturbation
approaches have better performance, but MT-based hybrid perturbation approaches cannot
even outperform data-level perturbation approaches alone. Among the CPS-based hybrid
approaches, the accuracy of ClassHyPer is slightly lower than that of CPS+CutMix. This
might be attributed to the fact that the ClassMix-based method is not appropriate for road
extraction, due to the extremely sparse distribution of road targets with linear characteristics.
Furthermore, it is worth noting that our model’s performance is much better than the recent
RanPaste method [32] on this dataset. For instance, ClassHyPer achieved around 60% IoU
with 373 labels, while RanPaste obtained 54.24% IoU with 400 labels. As seen from Figure 9,
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the visualization result also correlates well with the quantitative analysis. CPS+CutMix
had the fewest false negative (yellow color) and false positive (red color) pixels compared

with other approaches.

Table 2. Accuracy (IoU, %) comparison of different methods on the DG_Road dataset, where the

values in bold are the best for each proportion.

Method 5% (186) 10% (373) 20% (747) 50% (1867) 100% (3735)
Sup Baseline 46.65 £ 0.54 50.72 £0.83 55.80 £ 0.27 60.15 £ 0.25 62.97 £ 0.07
TL 52.88 £ 0.39 56.76 = 0.11 59.34 +0.25 62.49 +0.21 64.73 £ 0.38
CutMix 55.63 £ 0.33 58.33 £ 0.33 60.62 £ 0.11 62.52 +0.27
ClassMix 55.06 £ 0.49 58.05 £ 0.42 59.96 £ 0.26 61.85 £ 0.02
MT 51.70 = 0.87 54.66 £+ 0.68 58.01 £ 0.66 61.60 = 0.13
MT+CutMix 55.85 £ 0.47 58.74 £ 0.24 60.75 £ 0.07 62.10 £ 0.13
SSL MT+ClassMix 54.23 £ 0.60 57.50 £ 0.83 59.87 £ 0.20 60.75 £ 0.36
CPS 52.10 £ 1.16 56.77 £ 1.00 59.27 £ 0.60 62.00 £ 0.12
CPS+CutMix 58.88 1 0.46 60.53 1 0.48 61.77 £ 0.18 63.19 & 0.27
ClassHyPer 57.92 £0.26 60.03 + 0.28 61.14 £ 0.13 62.56 £ 0.09

(h1) MT+CutMix

.
(i1) MT+ClassMix

(j1) CPS

(k1) CPS+CutMix

(11) ClassHyPer

(a2) Image 2 (b2) Ground truth (e2) CutMix (£2) ClassMix

)

(82) MT (k2) CPS+CutMix

(h2) MT+CutMix  (i2) MT+ClassMix (j2) CPS (12) ClassHyPer

Figure 9. Visualization results of semantic segmentation using 5% labels from the DG_Road dataset.
From (c) to (1), green, yellow, and red color true positive, false negative, and false positive pixels,
respectively.
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4.5.2. Massa_Building

Massa_Building is an aerial imagery building extraction dataset with 1 m spatial
resolution, and involves two classes: building and background. As shown in Table 3, the
quantitative results are similar to those from the DG_Road dataset. Baseline has the lowest
accuracy at each proportion of labeled data, while TL and SSL can improve the accuracy
using very few labels. When using 5% labeled data (53 labeled images), TL and the best
SSL approach (ClassHyPer) significantly increase the IoU, from 57.35 to 65.05 and 69.85%,
respectively. The data-level perturbation methods can achieve better results than model-
level perturbation methods. Furthermore, the TL approach using 100% labeled data has
the best performance (73.15%), while the accuracy of ClassHyPer using 50% labeled data
(72.31%) is not far behind. However, unlike the results of the DG_Road dataset, ClassMix
is more effective than CutMix on this dataset. ClassHyPer obtains the best accuracy in all
proportion subsets, indicating that the increasing diversity of scenes and the consideration
of class boundary information can motivate the potential of SSL algorithms. Visually,
Figure 10 also demonstrates the superiority of SSL approaches on this dataset with only 5%
labels, in which ClassHyPer achieves the best extraction results (more green, less yellow
and red pixels).

(h2) MT+CutMix (i2) MT+ClassMix (j2) CPS (k2) CPS+CutMix  (I12) ClassHyPer

Figure 10. Visualization results of semantic segmentation using 5% labels from the Massa_Building
dataset. From (c) to (I), green, yellow, and red represent true positive, false negative, and false positive
pixels, respectively.
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Table 3. Accuracy (IoU, %) comparison of different methods on the Massa_Building dataset, where
the values in bold are the best.

Method 5% (53) 10% (106) 20% (212) 50% (532) 100% (1065)
Sup Baseline 57.35 +1.31 63.60 = 0.75 65.71 £ 0.06 69.51 = 0.28 71.73 £0.28
TL 65.05 &= 0.98 68.21 4= 0.32 69.78 &= 0.36 71.48 £ 0.57 73.15 + 0.12
CutMix 66.32 - 1.49 70.07 £ 0.83 70.98 £ 0.61 71.67 £0.37
ClassMix 68.98 1= 0.40 69.94 £+ 0.77 70.60 £ 0.38 7139 £1.21
MT 63.27 = 2.36 67.35 1 0.68 69.64 £ 0.86 71.18 £ 0.87
S MT+CutMix 66.54 + 1.52 70.05 + 0.86 70.73 + 0.39 72.18 4 0.45
MT+ClassMix 67.98 = 1.38 70.35 £ 0.03 70.79 £ 0.57 71.82 £0.49
CPS 66.75 & 0.64 69.17 &= 1.05 70.54 £ 0.54 70.84 £ 0.40
CPS+CutMix 69.03 + 1.26 71.08 & 0.55 71.77 +0.34 71.92 + 0.57
ClassHyPer 69.85 1 0.25 71.62 £ 0.51 72.17 £ 0.47 72.31 £ 0.38
4.5.3. WHU_Building
WHU_Building is a large building extraction dataset with 0.3 m spatial resolution,
containing two classes (building and background). The quantitative results are shown in
Table 4. This dataset can reach nearly 90% IoU, and there is a relatively small standard
deviation in multiple repeated experiments between different sub-samplings, representing
this dataset’s robustness and high quality. When 5% labeled data (236 labels) are used, the
IoU of TL and ClassHyPer improves from 81.65 to 86.37 and 88.37%, respectively, compared
to the baseline. Relatively speaking, CPS-based approaches obtain better performance
than others. Impressively, only using 5% labeled data, the CPS-based methods can obtain
high accuracy that is close to that achieved by TL with 100% labels. As a result of its
intrinsically high labeling accuracy, this dataset is insensitive to the amount of training data.
Hence, CutMix and ClassMix achieve similar results, such that we cannot find significant
differences between them. Furthermore, when using 4736 labels, the IoU (89.64%) can
outperform some reported methods—e.g., SiU-Net [6] and SRI-Net [60]—exhibiting the
availability and effectiveness of our modified FCN model. Likewise, as seen from the
visualization results shown in Figure 11, it is difficult to tell the visual differences between
these SSL approaches due to their relatively high accuracy.
Table 4. Accuracy (IoU, %) comparison of different methods on the WHU_Building dataset, where
the values in bold are the best.
Method 5% (236) 10% (473) 20% (947) 50% (2368) 100% (4736)
Sup Baseline 81.65 & 0.52 84.48 + 0.08 86.71 & 0.35 88.48 + 0.35 89.40 & 0.06
TL 86.37 £ 0.27 86.46 & 0.53 88.15 +0.35 89.49 + 0.34 89.64 £+ 0.04
CutMix 87.38 £ 0.24 87.87 +0.30 88.63 = 0.26 89.16 = 0.29
ClassMix 87.54 £0.22 88.16 = 0.31 88.68 £ 0.15 89.17 £ 0.20
MT 87.37 £0.51 87.67 £ 0.46 88.78 £ 0.30 89.31 £ 0.21
SsL MT+CutMi>.< 86.98 & 0.38 88.33 £ 0.17 88.84 £ 0.37 89.36 = 0.15
MT+ClassMix 87.22 £ 0.05 88.08 £ 0.13 88.62 £0.10 88.71 £ 0.13
CPS 88.44 + 0.11 88.75 + 0.57 89.17 - 0.08 89.50 & 0.07
CPS+CutMix 88.25 = 0.28 88.79 +0.12 89.14 = 0.19 89.53 + 0.33
ClassHyPer 88.37 £ 0.07 88.98 + 0.19 89.30 + 0.16 89.44 +0.21
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(al) Image 1

(a2) Image 2

(g2) MT

(b1) Ground truth

(b2) Ground truth

(h2) MT+CutMix  (i2) MT+ClassMix (j2) CPS (k2) CPS+CutMix  (12) ClassHyPer

Figure 11. Visualization results of semantic segmentation using 5% labels from the WHU_Building
dataset. From (c) to (1), green, yellow, and red represent true positive, false negative, and false positive
pixels, respectively.

4.5.4. Potsdam

Unlike the previous three datasets, the Potsdam dataset was created for multiclass
semantic segmentation; moreover, it has an extremely high spatial resolution, so the scene
complexity is significantly greater than that of previous datasets. We expected to use this
dataset to verify the applicability of ClassHyPer on multiclass segmentation. As seen
from Table 5, ClassHyPer can outperform other perturbation-based approaches in all data
proportions. When using 5% labeled data (31 labels), ClassHyPer obtained a consider-
able improvement in accuracy over TL, increasing from 63.09 to 67.13%. However, SSL
approaches do not improve accuracy significantly compared to TL when the proportion of
labels increases by over 20%. Furthermore, MT is not helpful to the model performance,
whether it is combined with data-level perturbations or not. Figure 12 shows the visual-
ization results based on 5% labels; we can see that it is hard to classify all pixels into six
classes, since some categories may possess relatively homogeneous characteristics. For
example, distinguishing low vegetation from trees is challenging in practice due to their
similar features. However, ClassHyPer can still improve the accuracy and achieve visually
smoother predictions.
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Table 5. Accuracy (IoU, %) comparison of different methods on the Potsdam dataset, where the

values in bold are the best.

Method 5% (31) 10% (61) 20% (122) 50% (306) 100% (612)
Sup Baseline 46.63 + 0.98 50.31 + 1.91 57.01 + 0.28 64.34 + 0.31 68.86 + 0.12
TL 63.09 + 0.85 66.41 + 0.42 70.23 + 0.26 71.65 + 0.33 73.49 + 0.36
CutMix 65.45 + 0.25 67.54 + 0.80 70.14 + 0.58 7151 + 0.15
ClassMix 65.62 + 0.91 67.89 + 0.55 70.42 + 0.34 71.73 + 027
MT 61.84 + 0.82 63.9 + 0.73 68.02 + 0.83 70.61 + 0.33
MT-+CutMix 61.38 + 0.79 65.59 + 0.67 68.49 + 0.94 71.06 + 0.31
SSL MT+ClassMix ~ 64.83 4 0.72 66.38 + 0.93 69.11 + 0.38 70.51 + 0.26
cPs 62.72 + 0.89 65.48 + 023 70.09 + 0.50 71.05 + 0.41
CPS+CutMix  66.27 + 0.69 68.17 + 0.55 70.28 + 0.31 71.75 + 0.65
ClassHyPer 67.13 + 0.40 68.63 - 0.60 70.54 + 0.30 71.87 + 0.23

(al) Image 1

r

(b1) Ground truth

(i1) MT+ClassMix

(c1) Baseline

(j1) CPS

(d1) TL

(e1) CutMix

(f1) ClassMix

(11) ClassHyPer

H

b2) Ground truth

(d2) TL

(f2) ClassMix

(h2) MT+CutMix

(i2) MT+ClassMix

(j2) CPS

(k2) CPS+CutMix

(12) ClassHyPer

Figure 12. Visualization results of semantic segmentation using 5% labels from the Potsdam dataset.

From (c) to (1), the different colors represent the pixels with different categories, i.e., white (impervious

surfaces), blue (building), cyan (low vegetation), green (tree), yellow (car), red (clutter /background).

4.5.5. Vaihingen

Although the Vaihingen dataset also has six classes like the Potsdam dataset, it consists

of color-infrared images instead of RGB images, in contrast to the previous four datasets.
As shown in Table 6, ClassHyPer can achieve the best accuracy on all data partitions.
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All SSL approaches can improve the model performance over the baseline with very
few labels, proving their applicability on three-band color-infrared images for multiclass
semantic segmentation. The most interesting result is that the IoU of ClassHyPer with
50% labels (68.08%) even outperforms the purely supervised approach with 100% labels
(67.39%), revealing the great potential of SSL approaches. The visualization results based
on 5% labels (Figure 13) show that the ground-truth label may have some unexpected
errors. For example, in Figure 13(al), the area surrounded by the orange rectangle contains
some impervious surface pixels, but we cannot find them from the ground-truth label (b1).
Furthermore, the rectangle in Figure 13(a2) shows an area with an impervious surface, while
it actually turned out to be low vegetation via manual inspection. For a clearer comparison,
Figure 14 provides an enlarged visualization of the area surrounded by the orange rectangle
in Figure 13. It is impressive that SSL approaches are able to recognize these areas, which
also demonstrates the powerful capability of DL methods and the excellent performance of
the SSL paradigm, even with a limited number of labeled training data.

L.

(al) Image 1

(g1) MT

(a2) Image 2

(g2) MT

(b1) Ground truth (c1) Baseline

(h1) MT+CutMix

(11) ClassHyPer

(b2) Ground truth (c2) Baseline (d2) TL (e2) CutMix (£2) ClassMix

s N

(h2) MT+CutMix  (i2) MT+ClassMix (j2) CPS (k2) CPS+CutMix  (12) ClassHyPer

Figure 13. Visualization results of semantic segmentation using 5% labeled data from the Vaihin-
gen dataset. From (c) to (1), the different colors represent the pixels with different categories, i.e.,
white (impervious surfaces), blue (building), cyan (low vegetation), green (tree), yellow (car), red
(clutter /background).
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Table 6. Accuracy (IoU, %) comparison of different methods on the Vaihingen dataset, where the

values in bold are the best.

Method 5% (34) 10% (69) 20% (138) 50% (346) 100% (692)
Sup Baseline 44.92 + 0.86 4854408 50.15 + 0.26 55.47 + 1.03 61.63 + 0.56
TL 55.27 + 0.93 59.28 + 1.56 60.98 + 0.91 65.81 + 0.10 67.39 + 0.49
CutMix 58.86 & 1.71 62.87 + 1.22 64.61 & 1.37 65.81 & 1.59
ClassMix 60.33 + 0.83 65.19 + 155 66.39 + 0.49 66.82 + 0.65
MT 50.46 + 0.87 62.46 + 158 64.85 + 2.84 66.33 + 0.40
MT+CutMix 60.46 + 1.51 64.85 + 1.14 65.35 & 1.27 66.63 + 1.32
SSL MT+ClassMix  60.57 4 1.40 64.21 + 1.15 65.46 + 0.70 67.60 + 0.69
cPs 62.70 + 1.26 65.88 + 1.63 66.98 + 0.80 67.40 + 0.85
CPS+CutMix  63.16 + 1.46 66.17 + 0.80 67.00 + 1.10 67.15 + 0.99
ClassHyPer 63.49 + 1.95 66.31 & 1.67 67.03 + 118 68.08 & 0.47

V

(g1) MT
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Figure 14. Enlarged results of the area surrounded by the orange rectangle in Figure 13. From (c) to

(1), the different colors represent the pixels with different categories, i.e., white (impervious surfaces),

blue (building), cyan (low vegetation), green (tree), yellow (car), red (clutter /background).

4.6. Overall Comparison between Datasets
4.6.1. Comparison of ClassHyPer with Different Proportions of Labels

To analyze and compare the results of the proposed method between different datasets,
we present the accuracy of results using ClassHyPer in Table 7.
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Table 7. Accuracy (IoU, %) comparison of ClassHyPer on different datasets.

Training ClassHyPer TL with
Dataset
Labels 5% 10% 20% 50% 100% Labels
DG_Road 3735 5792 £ 0.26 60.03 + 0.28 61.14 + 0.13 63.19 £ 0.27 64.73 + 0.38
Massa_Building 1065 69.85 4+ 0.25 71.62 £ 0.51 72.17 +0.47 72.31 £ 0.38 73.15 + 0.12
WHU_Building 4736 88.37 + 0.07 88.98 + 0.19 89.30 + 0.16 89.44 4+ 0.21 89.64 £+ 0.04
Potsdam 612 67.13 + 0.40 68.63 + 0.60 70.54 + 0.30 71.87 £ 0.23 73.49 + 0.36
Vaihingen 692 63.49 +1.95 66.31 + 1.67 67.03 = 1.18 68.08 + 0.47 67.39 + 0.49

As shown in Tables 1 and 7, these five datasets have heterogeneous characteristics in
multiple dimensions, such as the number of training labels, spatial resolution, categories,
and the best training accuracy. Overall, except for the WHU_Building dataset, the accuracy
of the other datasets gradually increased with the growing number of training labels.
For example, if treating the accuracy from TL with 100% labels as the upper boundary
of accuracy, the IoU with 50% labels from each dataset is close to the upper boundary.
Interestingly, the accuracy of the Vaihingen dataset with 50% labels even outperformed the
upper boundary, showing the powerful capability of the proposed approaches. In addition,
when only using 5% training labels, ClassHyPer can achieve considerable accuracy against
that with 100% labels, as shown in Table 11.

Moreover, we found that different levels of accuracy were achieved on different
datasets. Specifically, the WHU_Building dataset had the most labeled training images
(4736), and achieved the highest accuracy in all proportions. Through reviewing the
WHU_Building data, we can see that it has a very high spatial resolution (0.3 m), enabling
it to delineate more accurate building boundaries and have a higher labeling accuracy. The
creators of this dataset also highlighted that around six months were taken to create the
dataset, and strict manual checking ensured its final labeling accuracy. In addition, the
dataset was created for binary classification, reducing its task complexity and enabling
relatively high accuracy.

Although the DG_Road dataset used 3735 labels for training, its accuracy was the
lowest amongst all datasets in every proportion. There are two possible explanations
for this: (1) its labeling accuracy is limited by its relatively lower spatial resolution and
heterogeneous imaging quality. For instance, as this dataset consists of images from
multiple satellites with different characteristics, it is hard to label some specific regions even
for humans. (2) The issue of class imbalance is severe in this dataset, which significantly
affects the final model performance. For example, the road pixels in this dataset only
account for 4.21% of all training labels, as shown in Table 8.

The building labels in the Massa_Building dataset are directly referenced from the
OpenStreetMap database without manual correction, which involves many unexpected
errors. At the same time, its ratio of building pixels (15.53%) is greater than that of road
pixels in the DG_Road dataset. Hence, we can obtain an accuracy that occupies a middle
ground between the WHU_Building and DG_Road datasets.

Both the Potsdam and Vaihingen datasets possess extremely high spatial resolution,
thus containing more details and noise information. The multiclass classification task is
more difficult due to severe unbalanced class issues among the different categories. As
Table 8 shows, both datasets have a limited number of car pixels, which only account for 1.69
and 1.26% of all training pixels, respectively, making it hard to classify such a rare category.
Furthermore, as we mentioned previously, the more classes, the greater chance that different
categories will possess similar characteristics. For instance, it is challenging to distinguish low
vegetation from trees due to their similar spectral characteristics, even with many training
samples. Therefore, the accuracy of these two datasets on all proportions only ranges from 63
to 73%, although the accuracy of Potsdam is higher than that of Vaihingen.
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Table 8. Statistics of pixels in different categories of each dataset based on ground-truth data.
Dataset Classes Train val Test
Ratio Pixels Ratio Pixels Ratio Pixels
DG Road Background 95.79% 937,917,468 95.62% 156,165,832 95.75% 468,869,474
—noa Road 4.21% 41,190,372 4.38% 7,149,880 4.25% 20,815,518
Massa Buildin Background 84.47% 235,820,198 87.39% 8,246,907 78.84% 18,601,348
- & Building 15.53% 43,363,162 12.61% 1,190,277 21.16% 4,991,612
WHU Buildin. Background 81.34% 1,009,799,430 89.00% 241,707,225 88.87% 562,861,562
- & Building 18.66% 231,714,558 11.00% 29,873,959 11.13% 70,478,342
In;gffr;’éssus 28.85% 46,203,252 27.54% 18,265,098 31.47% 41,579,812
Buildings 26.17% 41,919,727 28.05% 18,604,168 23.92% 31,601,996
Potsdam Low vegetation 23.52% 37,670,506 23.58% 15,637,762 21.01% 27,757,373
Trees 15.08% 24,153,823 13.52% 8,969,936 17.04% 22,515,491
Cars 1.69% 2,710,112 1.68% 1,116,603 1.97% 2,596,193
Clutter /Background 4.69% 7,512,564 5.62% 3,728,865 4.59% 6,069,711
Impervious 29.34% 53,219,815 26.48% 4,719,397 27.35% 17,853,972
surfaces
Buildings 26.88% 48,763,596 24.24% 4,321,511 26.49% 17,289,928
Vaihingen Low vegetation 19.56% 35,478,641 21.93% 3,909,070 20.25% 13,219,923
Trees 22.08% 40,052,822 26.04% 4,641,147 23.63% 15,421,237
Cars 1.26% 2,283,335 1.23% 219,078 1.31% 855,221
Clutter /Background 0.89% 1,605,439 0.09% 15,589 0.97% 633,575
4.6.2. Comparison of Different Approaches with 5% Labels
Additionally, in order to further compare the abovementioned approaches with a
limited number of labels, we summarized the accuracy results of all five datasets based on
5% labels, as shown in Table 9. Based on the results, it is clear that data-level perturbation
methods (i.e., CutMix and ClassMix) can obtain greater accuracy improvements than model-
level perturbation methods (i.e., MT and CPS). For the data-level perturbation methods,
ClassMix outperformed CutMix on all datasets except for DG_Road, which proves the
applicability of ClassMix in building extraction and land cover classification other than
road extraction. For the model-level perturbation methods, CPS was superior to MT on
all datasets. Although some studies [31,32] still employed MT in their methods, CPS has
become a novel and competitive SSL paradigm from the perspective of model perturbation.
In fact, the success of CPS can be attributed not only to its increased number of training
parameters, but also to the multi-model ensembling strategy by encouraging mutual
supervision. Regarding the hybrid pipeline, the performance of MT-based approaches
cannot compete with CPS-based methods. Specifically, the CPS-based hybrid schemes can
yield the best performance on all datasets, of which ClassHyPer achieved the best accuracy
on three datasets, while CPS+CutMix also possessed a comparable level of accuracy.
Table 9. Accuracy comparison (IoU, %) on different datasets with 5% labels, where the values in bold
are the best for each dataset.
Dataset Method
CutMix ClassMix MT MT+CutMix  MT+ClassMix CPS CPS+CutMix ClassHyPer
DG_Road 55.63 £0.33 55.06 =049  51.70 £0.87 55.85 £ 0.47 54.23 £ 0.60 5210+ 1.16  58.88 +0.46 57.92+0.26
Massa_Building  66.32 +1.49 6898 £0.40 63.27 +2.36 66.54 + 1.52 67.98 1+ 1.38 6675 £0.64  69.03+126  69.85 £ 0.25
WHU_Building  87.38 £0.24 87.54+£0.22 87.37£0.51 86.98 + 0.38 87.22 +0.05 88.44 + 011 8825+0.28  88.37 £0.07
Potsdam 65.45+0.25 65.62+091  61.84 4 0.82 61.38 +0.79 64.83 +0.72 6272+ 0.89 6627 £0.69  67.13 - 0.40
Vaihingen 58.86 +1.71 6033 +0.83 59.46 £ 0.87 60.46 + 1.51 60.57 & 1.40 6270 £0.26  63.16 +1.46  63.49 £+ 1.95

Through the overall comparison between five datasets involving different tasks and
characteristics, ClassHyPer is capable of being applied to scenarios with very few labeled
training data. Moreover, the hybrid perturbation methods based on consistency regular-
ization integrating CPS and mask-based data augmentation can achieve relatively high
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accuracy. We should choose the proper approach based on corresponding data and their
characteristics in specific applications. Regardless, the use of unlabeled data can be more
cost-effective in the case of a limited number of labels.

5. Discussion

This section further analyzes and discusses the experimental results involving the
time efficiency of the proposed approaches and the label redundancy in training.

5.1. Time Efficiency

To analyze the time efficiency of the proposed approach, we chose two large datasets
(DG_Road and WHU_Building). These two datasets contain more than 3700 labeled data
for training, and they can be good representatives of time consumption with SSL methods
when using a large number of unlabeled data.

As shown in Table 10, for the DG_Road dataset, when we used 5% labeled data for
training, TL took 0.37 h to achieve 52.88% IoU, while ClassHyPer obtained 57.92% IoU in
5.2 h. The TL method is evidently more efficient in terms of time; however, in order to reach
the same accuracy level as ClassHyPer with 5% labels, ~10% more labeled data are required
in TL. In fact, creating 10% more labels (~370 labels) in this dataset will take much more
time than 5 h based on our usual experiences. The same applies to the WHU_Building
dataset; although ClassHyPer took more time (6.64 h) for training, it could obtain higher
accuracy with fewer labels, thus saving more time for labeling work. Moreover, we found
that the accuracy on the WHU_Building dataset was not significantly improved when
increasing the proportion of labeled data from 5 to 10%. This is probably because the high
quality of the dataset makes the accuracy insensitive to small increases in label size.

Table 10. Time efficiency analysis.

TL ClassHyPer
Dataset
Time (h) IoU (%) Time (h) IoU (%)

5% (186) 0.37 52.88 + 0.39 5.20 57.92 + 0.26
10% (373) 047 56.76 + 0.11 5.12 60.03 + 0.28
DG_Road 20% (747) 0.63 59.34 + 0.25 5.24 61.14 + 0.13
50% (1867) 1.17 62.49 + 0.21 5.44 62.56 + 0.09

100% (3735) 2.00 64.73 + 0.38
5% (236) 0.42 86.37 + 0.27 6.64 88.37 + 0.07
10% (473) 0.52 86.46 + 0.53 6.53 88.98 + 0.19
WHU_Building 20% (947) 0.73 88.15 + 0.35 6.76 89.30 + 0.16
50% (2368) 1.45 89.49 + 0.34 7.01 89.44 4+ 0.21

100% (4736) 2.62 89.64 4+ 0.04

When analyzing time efficiency, we found that ClassHyPer takes a longer time for
training. However, it can learn from large amounts of unlabeled data and significantly
improve the segmentation accuracy. Particularly, when only a limited number of labeled
data are at hand, this approach can accelerate problem solving.

5.2. Label Redundency

The proposed approach demonstrated high accuracy in the case of very few labels
based on the above analysis. In the meantime, we found that training accuracy did not im-
prove linearly with the growing number of labeled data. If the result of using 100% labeled
data for fully supervised learning with TL is taken as the upper boundary of accuracy, we
can calculate the ratio of IoU from ClassHyPer (SSL IoU) to the upper boundary IoU (Sup
IoU). Table 11 shows the comparison results across all datasets. It is worth noting that
the ratio of accuracy obtained by ClassHyPer with 5% labels to that obtained by a purely
supervised method with 100% labels was more than 89%. On the one hand, this statistic
emphasizes how the proposed approach can significantly enhance the capability of the DL
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model by leveraging a mass of unlabeled data, which is encouraging for the application
of SSL in remote sensing applications. On the other hand, the accuracy is only improved
by less than 10% based on the remaining 95% of labeled data, which means that there are
many redundant labels in the training data. For example, a 98.58% ratio of IoU was reached
on the WHU_Building dataset with just 5% labels, which is extremely close to the upper
boundary of accuracy. Furthermore, we also observed that a few unexpected errors exist in
the labels, which might be another factor affecting the final accuracy. Therefore, improving
the model performance with few but effective labels is an interesting topic worth studying
in the future.

Table 11. The ratio of IoU from ClassHyPer with different proportions of labeled training data to IoU
from TL with 100% labels.

5% 10% 20% 50% 100%
Dataset SSL IoU SSL IoU SSL IoU SSL IoU
Labels Sup IgU Labels Sup IgU Labels Sup IgU Labels Sup IgU Labels
DG_Road 186 89.48% 373 92.74% 747 94.45% 1867 96.65% 3735
Massa_Building 53 95.49% 106 97.91% 212 98.66% 532 98.85% 1065
WHU_Building 236 98.58% 473 99.26% 947 99.62% 2368 99.78% 4736
Potsdam 30 91.34% 61 93.38% 122 95.98% 306 97.80% 612
Vaihingen 34 94.21% 69 98.40% 138 99.47% 346 101.02% 692

6. Conclusions

In this study, aiming at alleviating the label scarcity problem in remote sensing se-
mantic segmentation applications, we comprehensively analyzed several advanced SSL
methods based on consistency regularization from the perspective of data- and model-level
perturbation. Then, an end-to-end ClassMix-based hybrid perturbation SSL approach—
i.e., ClassHyPer—was introduced to improve the model’s capability when faced with a
limited number of annotations. The experimental results on five datasets demonstrated
that the proposed approach is able to achieve the best performance on three of them by
incorporating 5% labeled data and the remaining 95% unlabeled data; at the same time,
comparatively high accuracy was obtained on the other two datasets. Moreover, such a
method does not require the setting of a confidence threshold, and can be easily paired
with existing DL models. Although more time is required for training, the model can save
time spent on labeling work.

Through various experiments, we noted that there are many redundant labels in training.
Therefore, we will further explore how to reduce label redundancy and improve the effec-
tiveness of labeling work, e.g., by incorporating an active learning scheme. In addition, we
only conducted experiments on remote sensing imagery with three bands (R-G-B or IR-R-G),
so more studies on multispectral imagery (over three bands) are still required in the future.
To this end, the traditional parameter transfer learning pipeline used in this study needs to
be adapted accordingly for the multispectral images of more than three bands. Furthermore,
this method can be extended to specific remote sensing applications—such as disaster and
agriculture monitoring—to exploit its huge potential in practice.
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