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Abstract: The AVHRR aerosol optical depth (AOD) is inverted from measured reflectances in the
red band using a statistical correlation of surface reflectance with mid-infrared channel reflectances
and a modelling climatology of the aerosol type. For such a sensor not specifically designed for
AOD retrieval, propagating uncertainties is crucial because the sensitivity of the retrieved AOD to
the measured signal varies largely with retrieval conditions (AOD itself, surface brightness, aerosol
optical properties/aerosol type, observing geometry). In order to quantify the different contributions
to the AOD uncertainties, we have undertaken a thorough analysis of the retrieval operator and
its sensitivities to the used input and auxiliary variables. Uncertainties are then propagated from
measured reflectances to geophysical retrieved AOD datasets at the super-pixel level and further
to gridded daily and monthly products. The propagation uses uncertainty correlations of separate
uncertainty contributions from the FIDUCEO easyFCDR level1b products (common fully correlated,
independent random, and structured parts) and estimated uncertainty correlation structures of other
major effects in the retrieval (surface brightness, aerosol type ensemble, cloud mask). The pixel-level
uncertainties are statistically validated against true error estimates versus AERONET ground-based
AOD measurements. It is shown that a 10-year time record over Europe compares well to a merged
multi-satellite record and that pixel-level uncertainties provide a meaningful representation of error
distributions. The study demonstrates the benefits of new recipes for uncertainty characterization
from the Horizon-2020 project FIDUCEO (“Fidelity and uncertainty in climate data records from
Earth Observations”) and extends them further with recent additions developed within the ESA
Climate Change Initiative.

Keywords: uncertainty propagation; aerosol optical depth; satellite-based climate data records

1. Introduction

Within the ESA’s Climate Change Initiative (CCI) [1], the provision of uncertainties for
each measurement was established as a standard for its satellite-based climate data records;
in-depth discussions for the large set of different essential climate variables led to common
standards for uncertainties in the products as far as suitable [2]. It was also established
that a thorough quantification of uncertainties in the climate data records is essential for
assessing the consistency of different variables and long-term records based on a series
of similar instruments [3]. The discussion also revealed that the common standards for
uncertainties in (laboratory) measurements cannot be directly applied to all satellite-based
datasets, since the inversion steps to derive the thematic climate data records (geophysical
variables) include the use of auxiliary and climatological datasets.

This finding led to close collaboration of Earth observation specialists with metro-
logical experts to adapt the common standards of the GUM (guide for uncertainties in
measurements [4]) for the satellite retrieval products [5]. An adapted fundamental con-
cept for rigorous propagation of uncertainties in satellite-based climate data records was
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developed, “the FIDUCEO approach”. This starts from a systematic analysis of the mea-
surement equation to identify all relevant contributions to the product uncertainties and
then implements a standard approach to document the key characteristics of each effect in
the measurement equation (including the maturity of their quantitative understanding and
their spatio-temporal correlations).

Aerosols in the atmosphere are of global importance for the climate system by reflect-
ing solar radiation back into space (and in case of dark particles, also regionally absorbing
solar radiation) and by acting as cloud condensation nuclei, which again reflect solar radia-
tion from the Earth. Aerosol observation from space is typically an ill-posed problem that
entails significant uncertainties for the derived data records. Concretizing the standards
of [2], the CCI standards for the derivation and characterization of aerosol climate data
records were developed [6,7] which also included the requirement that pixel-level uncer-
tainties themselves need to be validated. Methodologies for evaluating the propagated
uncertainties were then demonstrated in [8].

This study demonstrates the application of the FIDUCEO recipe (following [5]) to
establish rigorous uncertainty propagation for an example processing chain of a thematic cli-
mate data record for aerosols based on an advanced fundamental climate data record from
the AVHRR sensor. This underlying easyFCDR dataset was also developed by applying the
FIDUCEO recipe to the basic sensor reflectance and brightness temperature measurement
processing [9]. We apply the FIDUCEO recipe for the analysis of the major uncertainty
sources in the processing chain, the development of the uncertainty estimation at pixel
level and the propagation of uncertainty contributions with different correlation structures
to higher aggregated product levels. We use the nomenclature from [5]. For the validation
of uncertainties, we follow the best practices of [8], which we developed further by adding
a quantitative analysis of error histograms derived from the uncertainty distributions.

2. Applying the FIDUCEO Analysis Method to AVHRR AOD Uncertainties
2.1. Overview of the Simple AVHRR AOD Retrieval Method

The advanced very-high-resolution radiometer (AVHRR) is a rather weak instrument
for retrieving aerosol climate data records. On the one hand, it lacks on-board calibration
capabilities in the visible and has only few and spectrally broad channels, which limit the
information content over land for aerosols to just the total loading. On the other hand, the
satellite overpass times shift significantly during and between the lifetimes of the different
platforms. However, the series of AVHRR instruments offers the potential for a long-term
time series dating back to the early 1980s. To make those time series valuable, a proper
quantitative characterization of their uncertainties is mandatory.

The measured signal RTOA = π L
µ0 E0

(with µ0 = cos(θ0), and θ0 solar zenith angle, L
calibrated radiance, E0 solar irradiance) is proportional to the scattering by aerosols (and
molecules) in the atmospheric column of height zmaxmaxm = 100 km. Atmospheric aerosol
loading is typically described by the aerosol optical depth, AOD, defined as the vertical
integral of aerosol extinction σe: AOD =

∫ zmax
0 σe(z) dz. However, this signal contribution

is also proportional to two more properties of the atmospheric aerosol, namely the single
scattering albedo ω0 (which gives the scattering part of the aerosol extinction and is defined as
ω0 = σe−σa

σe
, with σe extinction coefficient and σa absorption coefficient) and the phase function

p(ψ) of the scattering angle ψ for the observing geometry (ψ = cos−1(sin θ0 sin θS cos ∆ϕ−
cosθ0 cos θS)), which quantifies the directional dependence of scattering. Furthermore, the
measured signal is “disturbed” (often dominated) by a second term, which is proportional to
the surface albedo Albsurf and the exponential weakening by extinction through aerosols (but
also molecules and gases). Together, this can be described as

RTOA ∼ AOD ω0 p(Ψ)+Albsurf exp(−AOD
µ0

) (1)

Molecule (Rayleigh) scattering can be described analytically as a function of surface
elevation/pressure. Due to their relatively low concentrations, trace gas contributions to
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scattering are negligible, but they may exhibit significant absorption; however, due to the
choice of radiometer window channels in spectral parts outside the major gas absorption
lines, their impact on the signal is small. Both the atmospheric scatter term and the surface
term interplay through multiple scattering. The inversion of AOD from measurements of
RTOA then provides the satellite AOD retrieval, which is typically mathematically ill-posed,
i.e., the number of linear independent observables is less than the number of parameters
needed to describe the abundance and characteristics of atmospheric aerosol and the under-
lying surface. Therefore, the retrieval needs to work with intelligent assumptions/auxiliary
information, which bring additional sources of uncertainties adding to the propagated
uncertainties of the calibrated reflectances RTOA. AOD is retrieved in the red band (cen-
tered at 630 nm) and converted to the commonly used mid-visible reporting wavelength of
550 nm (once the aerosol size distribution is specified as part of the aerosol type a unique
conversion factor between AOD at different wavelengths is defined).

Through this interplay of the atmospheric and the surface term, the measured signal
RTOA is a non-linear function of both AOD550 and Albsurf; the function depends on the
observing geometry between satellite and solar position and the optical properties of the
atmospheric aerosol (named aerosol type). For the retrieval of AOD over land from AVHRR
single-channel measurements, the poor radiometric calibration poses a first difficulty,
which can lead to slightly negative AOD values in the lowest processing level L2A (which
are allowed to avoid breaking the distribution of AOD values artificially at the wrongly
calibrated zero value). The second major challenge lies in the estimation of directional
surface albedo, so that in the inversion the signal contribution from aerosols and from the
surface can be separated. This is still the largest challenge for this simple method (and needs
more work beyond this demonstration case study). The third challenge lies in propagating
uncertainties through the processing levels while being able to take into account their
different correlation structures—here, the FIDUCEO easyFCDR L1B dataset [9] used as
input provides all necessary information to perform this propagation rigorously.

The dark field inversion approach uses a simplified approach from AATSR [10], where
the main functional dependence of AOD for a selected observing geometry and for a
selected aerosol type is parameterized by stepwise second-order polynomials in RTOA
interpolated linearly between two discrete values of Albsurf. The coefficients are pre-
calculated in look-up tables with accurate forward radiative transfer calculations for a
distinct grid of values of Albsurf (0.05 . . . 0.95 in steps of 0.005), for a distinct grid of the
three observing angles θS, θ0, ∆φ (5◦ zenith angles, 10◦ azimuth angle) and for a distinct set
of 36 pre-defined aerosol types, which are meant to describe the range and variability of the
optical characteristics of aerosol in the atmosphere. To minimize the surface contribution, a
so-called “dark field method” is applied, where only pixels with low Albsurf are exploited,
since the signal sensitivity to the aerosol content decreases with increasing Albsurf.

A surface albedo estimation method is applied (adapted from [11]), which relies
over land on a correlation of surface reflectances between the channels at 3.7 µm and
630 nm. In order to estimate the surface reflectance at 630 nm, the correlation between
the reflectances at 3.7 µm and 630 nm was analyzed and validated by a database of
atmospherically corrected AATSR datasets (using adjacent AERONET stations to prescribe
AOD). Evidently, this surface-brightness-estimation approach cannot be used over bright
surface (e.g., deserts), but it is applicable over fully and partly vegetation covered surfaces.
Therefore, a threshold of Alb630

surf < 0.075 is used to avoid dark fields with low sensitivity
to aerosol optical depth (partly vegetated dark fields are searched with R3.7

TOA < 0.14 and
NDVI (Normalized Differential Vegetation Index) > 0.2). Bi-directionality treatment over
land is performed by use of a fixed indicatrix for the entire year (normalized BRDF which is
then adjusted to each pixel brightness) “FOREST” based on airborne measurements. Note
that the reflectance at 3.7 µm needs to be calculated from the brightness temperatures at
3.7 µm (AVHRR channel 3B) using the temperature of the 11 µm band (AVHRR channel 4)
to determine the thermal radiance.
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A linear parameterization was deduced from the AATSR atmospherically corrected
datasets, which allows estimating the surface albedo at 630 nm from top of atmosphere
reflectance at 3.7 µm and the NDVI. Comparing this parameterization to the exact surface
albedo values yields an albedo difference histogram with a width of ~0.01, which is used
as the uncertainty of the estimated surface albedo. The quantities that are used to estimate
Alb630

surf are assumed independent of AOD. This is true only in the first order. At 3.7 µm,
most aerosol types have only very small extinction; for large particles and large AOD, a
remaining effect can no longer be neglected. The NDVI as a ratio of two channels also
provides a first-order correction of its AOD dependence, but the aerosol signal at the two
wavelengths 630 nm and 870 nm is different for many aerosol types. Therefore, an iterative
correction for AOD impact on R3.7

TOA and NDVI is conducted.
Within Aerosol_cci, an analysis of different aerosol component definitions by the

various algorithm teams and also by external (e.g., NASA teams) was made, and a sim-
ple common definition of four basic components was agreed upon [6,12] that reflects the
expected information content of mid-visible retrievals. In terms of absorption, the two
fine-mode components are extremes where reality can be described as a combination of
these two components. For coarse mode aerosols, two alternatives, sea salt and mineral
dust, are considered. Analyzing AERONET ground-based sun photometer data, the most
frequent effective radius was determined near 0.14 µm for the fine mode and near 1.94 µm
for the coarse mode. A climatology of monthly averaged mixing fractions between those
four components is derived from an ensemble of models (AEROCOM community) and
AERONET ground-based sun photometer measurements (to determine aerosol absorp-
tion) [13]. From this climatology, the mixing fractions of total AOD550 between fine and
coarse mode, within the fine mode (less absorbing of total fine mode) and within the coarse
mode (dust of total coarse mode) are then used for monthly 1-degree grid cells to determine
the most likely aerosol type.

Based on the four basic Aerosol_cci components, 36 mixtures with typically bi- or
tri-modal size distributions are defined to cover the range and variability of realistic aerosol
compositions in the atmosphere [11]. Calculating optical aerosol component properties
relies on Mie calculations (i.e., spherical particles are assumed) for the fine mode and sea
salt, whereas mineral dust optical properties were calculated with a T matrix (thus taking
non-spherical patterns with an assumed shape) into account. The stratospheric aerosol is
fixed at 0.01 AOD550 with a stratospheric background component; the free troposphere
AOD above the boundary layers is fixed at 0.02 with a tropospheric background component
(sulfate only). The treatment of relative humidity in the fine mode is implicit through using
two components with different absorption which cover the range of realistic values by
mixing water into the particles; however, the size is not altered.

Cloud masking is a key pre-requisite of any aerosol retrieval algorithm since any
misclassifications of clouds as cloud-free (and vice versa) may lead to significant er-
rors of retrieved AOD. For this purpose, a combination of threshold tests applied to
all bands from the visible over the mid-infrared to the thermal infrared spectral range
combined with spatial coherence tests and using Bayesian statistics has proven most suit-
able (APOLLO_NG, [14]). Its result is a pixel level cloud probability value. Using a
low-probability threshold (15%) guarantees a minimum cloud contamination.

A demonstration was implemented, where a regional AVHRR AOD Climate Data
Record (CDR) of 10 years (2003–2012) over land covering Europe and Northern Africa
was produced [15]. The processing chain consists of different levels. The major inversion
of the input FIDUCEO easyFCDR Level1B RTOA product into Level2A AOD results is
performed on single pixels, but only for an automatically selected best-suited subset of
them (cloud-free dark fields). From these, aggregated super-pixels (3 × 3 pixel cells) in
sensor projection are averaged to provide the basic AOD product (Level 2B). Further
aggregation to gridded cells (1-degree latitude, longitude, daily and monthly) is finally
achieved with level 3 processing.
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2.2. Analysis of the Simple AVHRR AOD Retrieval

The measurement Equation (2) shows how AOD can be inverted from top-of-atmosphere
(TOA) reflectance measurements in the red band, (directional) surface albedo estimated from
the mid-infrared channel at 3.7 µm and by assuming optical properties of atmospheric aerosol
(aerosol type)—note the colour coding used throughout this manuscript to identify the domi-
nant effects:

AOD630 = g
(

R630
TOA; θS, θ0, ∆ϕ; Albsurf, aerosoltype

)
+ 0 (2)

where AOD630 is the resulting aerosol optical depth at 630 nm;

g is the retrieval operator;
R630

TOA is the input top-of-atmosphere reflectance at 630 nm (channel 1);
θS, θ0, ∆ϕ are the observation angles (sun and observer zenith, relative azimuth);
Albsurf is the (directional) surface albedo;

aerosoltype is a combination of aerosol optical properties;
and 0 is all other dependencies which on average are minor.

R630
TOA is the measured AVHRR channel 1 reflectance; Albsurf is estimated from the

reflectance part of the AVHRR channel 3B (using a linear conversion determined by the veg-
etation index). The aerosoltype is provided by a climatology (1-degree latitude/longitude,
monthly) of mixing factors of four basic aerosol components (fine-mode weakly absorbing,
fine-mode strongly absorbing, desert dust, sea salt). Look-up tables (LUT) of radiative
transfer calculations are stored as second-order polynomials for each of 36 aerosol mix-
tures representing a realistic range of true atmospheric aerosol compositions. All other
contributions which, on average, are considered as minor are notified in the 0-term.

Figure 1 shows the FIDUCEO traceability chain of this processing. AOD is retrieved
in the red band (630 nm, AVHRR channel 1) for selected single “dark pixels” of the AVHRR
GAC product of 4 × 4 km2 (internal L2A product) and then aggregated to super pixels (3
× 3) of about 12 × 12 km2 (L2B product); additional gridded products (L3) on 1-degree
latitude/longitude are produced by averaging all super-pixels per day and then all daily
values during a month. The main input is from AVHRR channel 1, but other channels are

also needed for calculating NDVI = R870
TOA – R670

TOA
R870

TOA+R670
TOA

, estimating the surface albedo, and for

cloud mask tests. Dark pixels are determined (upper-left branch in the block diagram)
by cloud masking (to avoid cloud contamination) and by filtering all cloud-free pixels for
(partial) vegetation cover and for darkness in the mid-infrared band. AOD is retrieved by
inversion according to the measurement Equation (2) (central right branch in the block
diagram). In order to model the dependence of the results to different aerosol types, the
retrieval is repeated for an ensemble of 36 realizations, and the most likely aerosol type is
extracted from a climatological modelling dataset. For each process, the input parameters
(from the L1B product variables or from interim output of a predecessor step) are shown—
this introduces possible sources of uncertainty to be propagated through each step and
introduces auxiliary input (aerosol component database, aerosol type climatology).
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2.3. Estimating Single Measurement Uncertainties

Estimating uncertainties of the retrieved AOD on pixel-level u(AOD) is crucial to
understand the reliability of the results. This is particularly important since the sensitivity
of the retrieved AOD to the measured signal varies largely with retrieval conditions (AOD
itself, surface brightness, aerosol optical properties/aerosol type, observing geometry).
Given the weak retrieval from AVHRR, we choose a pragmatic approach for the estima-
tion of pixel-level AOD uncertainties, which is based on lessons learned during the ESA
Aerosol_cci project and focuses on the uncertainty equation with dominant terms (also
called effects):

u(AOD) =

√
(

∂AOD
∂RTOA

u(RTOA))
2
+ (

∂AOD
∂Albsurf

u(Albsurf))
2
+ (u(AOD)ensemble)

2 + u2(0) (3)

where u(AOD) is the AOD uncertainty,
∂AOD
∂RTOA

is the sensitivity of AOD to RTOA,
u(RTOA) is the uncertainty of RTOA,
∂AOD

∂Albsurf
is the uncertainty of Albsurf,

u(Albsurf) is the uncertainty of Albsurf,
u(AOD)ensemble is the spread of an ensemble of different aerosol types,

and u2(0) is the sum of weaker or ill-defined uncertainties, considered significantly
smaller or assumed to be fully independent, so that they average out on larger spa-
tial/temporal scales.
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Neglected uncertainties summarized in the term u2(0) do contain trace gas absorption
correction (small due to setup of window channels), altitude-dependent Rayleigh scattering
correction, vertical layering of AOD (both small in the red band), look-up table errors versus
full radiative transfer calculations, including interpolation errors between distinct angular
values (both proven small with full radiative transfer calculations), and interpolation values
between distinct aerosol types.

The uncertainty Equation (3) shows that the uncertainties in the AOD CDR not only
originate from propagation of uncertainties in measured reflectances but assumptions,
simplifications, and lacking knowledge in the retrieval also add major contributions. For
applying Equation (3), we assume that the effects are independent of each other; we note
that there may be some correlation between RTOA and Albsurf due to the use of the NDVI
which has a common channel (R630), but further complex studies are needed to quantify
the consequences.

To derive AOD uncertainties, the following FIDUCEO uncertainty tree for the single
pixel AOD inversion (L2A) was prepared (Figure 2), which determines how each of the
uncertainty components can be calculated. In this diagram, the calculation of the uncer-
tainty of each of the three dominant terms of the right side of the measurement function
in the center is depicted. The (red) uncertainty of the reflectance inversion is derived as
product of the reflectance uncertainty u(RTOA) and the AOD sensitivity to the measured
reflectance ∂AOD

∂RTOA
. Additionally, the (brown) uncertainty of the surface albedo is calculated

as a product of the albedo uncertainty u(Albsurf) and the AOD sensitivity to the albedo
∂AOD

∂Albsurf
. However, in this case, the albedo uncertainty needs to be calculated by propagating

the uncertainties of NDVI (and ultimately R630 and R870) and R3.7 through the linear con-
version function used. Furthermore, a constant global uncertainty value of 0.01 is added
which reflects the uncertainty of using the linear regression. The aerosol type uncertainty
(green) cannot be calculated with a similar product, but this is replaced by the spread of an
ensemble of 36 different aerosol mixtures.

Those uncertainties are calculated based on the reflectance uncertainties contained in
the FIDUCEO easyFCDR AVHRR L1B product. This easyFCDR product provides three
separate uncertainty components for each channel reflectance (or brightness temperature):

• common (globally fully correlated uncertainties);
• independent (random, globally uncorrelated);
• structured (correlated along defined distances, with correlation length and function.

Each component is propagated separately, and at the end of the L2A processing, all
contributions with the same correlation structure (i.e., all common, all independent, all
structured) are summed up (according to the GUM [4], as the square root of the squared
contributions) according to Equation (4)—this summing up of uncertainty contributions
with different correlation structures has to be performed at each aggregation level after
having propagated each contributions separately according to its correlation structures.

u(AOD) =

√(
∂AOD
∂RTOA

u
(

Rindependent
TOA

))2
+

(
∂AOD
∂RTOA

u
(

Rstructured
TOA

))2
+

(
∂AOD
∂RTOA

u
(

Rcommon
TOA

))2
(4)
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2.4. Characterization of the Major Uncertainty Contributions

According to the FIDUCEO recipe, each uncertainty contribution in Equation (3)
needs to be characterized as well as possible regarding the maturity of understanding and
quantifying it at the measurement (=pixel) level and regarding its correlation structures
in space and time. To systematize this analysis and cover both quantitative information
(where detailed studies have been conducted) as well as qualitative initial assessments
(where no detailed analysis has yet been made), the FIDUCEO recipe has defined “effects
tables”, as will be discussed in the following sub-sections. Note that the following tables
apply the same colour coding as in Equations (2) and (3) and in Figures 1 and 2.

2.4.1. Direct Reflectance Inversion (L2A, Process 1)

The direct radiance inversion uses a pre-calculated look-up table for one aerosol type
(specific choice of optical properties) to invert a top-of-atmosphere reflectance in the red
band into an AOD value. The uncertainties of this process are characterised as shown in
Table 1, the main source of uncertainty being the propagated reflectance uncertainties in
the red channel (taken from the level 1 input product) with sensitivities defined by partial
derivatives of the LUT vs. reflectance.

The sensitivity of the AOD to the measurement quantity RTOA depends on several
parameters (e.g., geometry). While scattering by aerosols increases the top-of-atmosphere
reflectance with growing AOD, extinction of the reflection from the underlying surface
by aerosols also decreases the top-of-atmosphere reflectance with growing AOD. By the
counter-play of these two effects, the sensitivity depends on the surface brightness and can
become very low or even zero at a certain medium value of Albsurf. Such conditions with
weak sensitivity of RTOA on AOD lead to very large uncertainties and must be avoided.
This is the main purpose of using a dark-field approach (for dark surfaces with Albsurf close
to zero, the sensitivity is the highest and the respective AOD uncertainty is the lowest).
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Table 1. Effects table for direct reflectance inversion.

Table Descriptor (k = 1) Quantity Notes
Name of effect Direct reflectance inversion
Affected term in measurement function AOD = f (RTOA)

Maturity of analysis Maturity of uncertainty
estimate 3—rigorous analysis Online analysis from partial

Maturity of correlation scale
estimate 3—Strong evidence (L1B)

derivatives along one albedo
line of look-up tables (LUT)
and propagated L1B
uncertainties

If maturity of estimate is 0 or
1, how significant do you
expect this effect to be?

significant

Correlation type and form From level 1 As in FIDUCEO easyFCDR Easy FCDR: separated in 2
bulk contributions
(unstructured random and
globally structured)

Larger scale temporal [time]
Larger scale spatial
[geospatial coordinates]

Correlation scale From level 1 As in FIDUCEO easyFCDR
Larger scale temporal [time]
Larger scale spatial
[geospatial coordinates]

Uncertainty PDF shape from FIDUCEO easyFCDR
units Units of RTOA

magnitude From FIDUCEO easyFCDR
RTOA

Sensitivity coefficient c1 = ∂AOD670
∂R670

TOA
Partial derivatives of LUT

2.4.2. Albedo Dependence in Inversion (L2A, Process 2)

The albedo dependence in the inversion leads to selecting two suitable lines (interpo-
lating between them) in a pre-calculated look-up table for one aerosol type (specific choice
of optical properties) to invert a top-of-atmosphere reflectance in the red band into an AOD
value for the appropriate surface albedo. The uncertainties of this process are characterised
as shown in Table 2, the main source of uncertainty being propagated reflectance uncertain-
ties (NDVI and mid-infrared channel) with sensitivities defined by partial derivatives of
the LUT between two polynomials of adjacent surface albedo values. It should be noted
that in our analysis, no cross-band correlations are considered, which could impact the
NDVI uncertainties (calculated from red and near-infrared reflectances).

2.4.3. Aerosol Type Ensemble Uncertainty (L2A, Process 3)

The inversion depends on a combination of several optical aerosol properties (σe
(λ), ω0, p(ψ) from Equation (1), together named aerosol type). The choice of aerosol type
determines which pre-calculated look-up table is selected to invert a top-of-atmosphere
reflectance in the red band into an AOD value for the appropriate surface albedo. The
uncertainties associated with the choice are characterized in Table 3. In this case, no
separation into input uncertainty and sensitivity is made, but an ensemble approach is
applied, where the inversion is repeated 36 times for a set of pre-defined aerosol types
(aimed to cover all realistic mixing possibilities in the atmosphere) and a model-based
mixing fraction climatology is used as the auxiliary dataset to prescribe the most likely
aerosol type, while the spread (weighted with closeness to this selected aerosol type) gives
an indication of the uncertainty due to lacking knowledge of the aerosol type.
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Table 2. Effects table for the albedo dependence in the inversion.

Table Descriptor (k = 2) Quantity Notes
Name of effect Albedo dependence in inversion

Affected term in measurement function
AOD = f (Albsurf)

Albsurf =
f (NDVI, R1.6) parameterization

Maturity of analysis
Maturity of uncertainty
estimate 2—Some analysis performed to estimate values Online analysis from partial

Maturity of correlation scale
estimate 2—Based on analysis, unsure about correlation shape (Albsurf)

derivatives between two albedo
lines of look-up tables (LUT)
and estimated surface albedo
uncertainties

If maturity of estimate is 0 or
1, how significant do you
expect this effect to be?

significant Albedo estimated with NDVI
and R1.6

Correlation type and form
From level 1 As in FIDUCEO easyFCDR rectangle_ absolute
Larger scale temporal [time]
Larger scale spatial
[geospatial coordinates]

Correlation scale From level 1 As in FIDUCEO easyFCDR
Larger scale temporal [time] global
Larger scale spatial
[geospatial coordinates] global

Uncertainty
PDF shape from FIDUCEO easyFCDR rectangle
units Units of Albsurf

magnitude

Random: ∂Albsur f =√√√√√√√
(

∂Albsur f
∂NDVI · u(NDVI)

)2

+

(
∂Albsur f
∂R1.6

TOA
· u(R1.6

TOA)

)2

0.01
u (NDVI) and u (R1.6)
propagated from FIDUCEO
easyFCDR R670, R870, and R1.6

Sensitivity coefficient c1 = ∂AOD
∂Albsurf

Partial derivatives of LUT

Table 3. Effects table for the aerosol type dependence in the inversion.

Table Descriptor (k = 3) Quantity Notes
Name of effect Aerosol type ensemble
Affected term in measurement function AOD = f (aerosol type)
Maturity of analysis Maturity of uncertainty estimate 2—Some analysis performed

Maturity of correlation scale estimate 1—Estimated
If maturity of estimate is 0 or 1, how
significant do you expect this effect to
be?

significant

Aerosol type determines choice of
appropriate LUT
Estimated with an ensemble of AOD
solutions encompassing pre-defined
aerosol type set weighted by distance
in mixing fraction space xi, yi, zi to a
climatology most probable type (per
month and 1 deg lat-lon); climatology
contains best knowledge median from
~10 AEROCOM aerosol models

Correlation type and form
From level 1 Uncertainty of model-based mixing

fraction climatology is not quantified
Uncertainty due to spread of AOD
solutions with different aerosol types
is rigorously calculated with the
ensemble

Larger scale temporal [time] Rectangle_absolute
Larger scale spatial [geospatial
coordinates] Rectangle_absolute

Correlation scale
From level 1
Larger scale temporal [time] 1 week
Larger scale spatial [geospatial
coordinates] 1 degree Scales of the grid of the aerosol type

climatology

Uncertainty
PDF shape rectangle
units Units of AOD

magnitude u(AODensemble) =
√

∑
i

w2
i ∆AOD,i

2

∆AODi = AODi −AOD;

wmix =

1

(Di)
2

∑j
1(

Dj
)2

;

D2
i = (xi − xClim)

2 + (yi − yClim)
2 +

(zi − zClim)
2

Sensitivity coefficient 1 uncertainty and sensitivity coefficient
cannot be separated

In order to estimate an appropriate error correlation length scale, the question needs
to be answered how the error (the difference between the assumption made about aerosol
type and the true aerosol type) is common from one pixel/super-pixel to the next. The
error correlation length scale is then the scale on which the difference between the assumed
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aerosol type and the unknown true aerosol type is highly consistent. Firstly, for the error
correlation scale, we consider that of the underlying climatology grid. In the spatial
dimension, aerosol type is common over relatively large areas, and the dominant error
correlation scale is that of the climatology grid, namely 1◦. Temporally, the climatology
is provided as monthly averages. In practice, the aerosol type will typically change over
smaller timescales of ~1 week. Therefore, an error correlation scale of 1 week is used.

2.4.4. Cloud Mask-Induced Uncertainty (L2B, Process 4)

Assessing uncertainties due to uncertainties in the cloud masking is performed by
repeating the super-pixel aggregation with a set of dark fields obtained under two different
values of the cloud probability threshold. The difference of those two super-pixel aggregates
is used as estimate of the cloud-mask-induced AOD uncertainty. In spatially homogeneous
conditions, this uncertainty will be close to 0, while it is expected to show larger values for
inhomogeneous conditions (broken clouds, edge of large cloud area, but also high optical
depth aerosol plumes). The uncertainties of this process are characterized as shown in Table 4.

Table 4. Effects table for cloud-mask induced uncertainty.

Table Descriptor (k = 4) Quantity Notes

Name of effect Cloud mask uncertainty induced
AOD uncertainty

Affected term in measurement function Can only be estimated on L2B
superpixel level (10 × 10 km2)

Maturity of analysis Maturity of uncertainty estimate 1—Rough estimates only
Maturity of correlation scale
estimate 1—Estimated

If maturity of estimate is 0 or 1,
how significant do you expect this
effect to be?

significant

Is estimated by using 2 different
thresholds for cloud probability
and then calculating mean AOD
with remaining selected pixels

Setting of the two thresholds
needs to be optimized

Correlation type and form From level 1
Larger scale temporal [time] Random

Clouds are changing extremely
fast

Larger scale spatial [geospatial
coordinates] random

Correlation scale From level 1
Larger scale temporal [time] -

Clouds are changing extremely
fast

Larger scale spatial [geospatial
coordinates] -

Uncertainty PDF shape Random (temporal)
random (spatial)

units Units of AOD

magnitude
u(AODcloud mask) =
AODmean

3×3 (threshold1)−
AODmean

3×3 (threshold2)
Sensitivity coefficient 1

2.4.5. Look-Up Table Noise

Look-up tables have been obtained with high accuracy radiative transfer forward
calculations for a large set of parameters (AOD, surface albedo, geometries, aerosol types)
and then fitting second-order polynomials to them. The steps in the discretization have
been chosen to keep the errors of the fitting curves small against the exact calculations—
here, we quantify an average uncertainty of 0.01 AOD for this small LUT interpolation
uncertainty as elaborated in Table 5. The underlying radiative transfer calculations are
regarded as error-free (or at least one order of magnitude smaller).
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Table 5. Effects table for LUT interpolation.

Table Descriptor (k = 0) Quantity Notes
Name of effect Look-up table noise

Affected term in measurement function AOD = f(R670; Albsurf, aerosol
type)

Maturity of analysis Maturity of uncertainty estimate 2—Some analysis performed to
estimate values One LUT for each aerosol type

Maturity of correlation scale
estimate 1—Estimated

If maturity of estimate is 0 or 1,
how significant do you expect this
effect to be?

Minor

Correlation type and form From level 1
Larger scale temporal [time] Exponential_decay
Larger scale spatial [geospatial
coordinates] Exponential_decay

Correlation scale From level 1
Larger scale temporal [time] 5 days
Larger scale spatial [geospatial
coordinates] 100 km Typical aerosol lifetime / plume

size—correlated within LUT
Uncertainty PDF shape exponential

units Units of AOD
magnitude 0.01

Sensitivity coefficient 1

2.4.6. Minor Uncertainty Contributions

Analysis of the literature and radiative transfer simulations have been used to identify
the major sources of uncertainties in passive aerosol remote-sensing, which are treated
in the uncertainty propagation discussed in the earlier sections of this chapter. Table 6
lists other potential sources of uncertainty which are regarded as minor (included into the
second-order uncertainty term u2(0)) with a short description and a quantitative estimate
of their relevance at pixel and grid/monthly average level.

Table 6. Effects which are regarded as minor or negligible.

Source of Uncertainty Description Likely Sensitivity of Output to This
(Measurement Function Term
Affected, if Appropriate) On Small Scales On Large Scales

Vertical aerosol profile σe (z)
Different assumptions are made for
different aerosol types but sensitivity
at TOA is small for VIS/IR sensors

low for mid-visible bands low for mid-visible bands

Directional reflectance ratio
γsurf (θs, θ0, ∆ϕ)

Directionality of surface reflectance
(treated by estimating surface albedo
from mid-infrared signal which is in
first order exhibiting the same
directionality)

Medium, but difficult to quantify from
nadir only observations

Low-medium, since it averages out by
averaging different surface types

Trace gas concentration profiles and
absorbing cross sections (from
laboratory) τi

Critical absorption bands are usually
avoided so that total band absorption
even for high concentration/low
angles is on the order of few percent
(and its uncertainty mostly below 1%)

Low Low-medium in case of long-term
trends of trace gas concentrations

Radiative transfer forward model
Typical accuracy of simulated
reflectance < 1% (and thus smaller
than propagated L1B uncertainties)

Low Low

Overpass time
Polar orbiting sensors provide
typically one or two sun-synchronous
overpass times per day

High when linking sensors of different
platforms, when there is a significant
time shift

High when linking sensors of different
platforms, when there is a significant
time shift

altitude hsurf dependent Rayleigh
scattering correction

The small reflectance due to molecular
scattering is reduced with increasing
altitude

Low in red band Low in red band
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Table 6. Cont.

Source of Uncertainty Description Likely Sensitivity of Output to This
(Measurement Function Term
Affected, if Appropriate) On Small Scales On Large Scales

Response function uncertainties

Change trace gas absorption and
effective wavelength used for
Rayleigh and for aerosol radiative
transfer calculations

Low for red band where radiative
transfer calculations are made

Low for red band where radiative
transfer calculations are made

AOD conversion 630 -> 550 nm

Is accurately determined once aerosol
type is specified; remaining
uncertainties by discretization of
aerosol types (interpolation between
them) and by definition of aerosol
components (specified to encompass
natural variability)

Low, since uncertainty of aerosol type
ensemble is assessed

Low, since uncertainty of aerosol type
ensemble is assessed

2.5. Uncertainty Propagation to Higher CDR Product Levels

The propagation of uncertainties from L2A to L2B (and similar to L3) is then deter-
mined by the FIDUCEO analysis tree (L2B, Figure 3). Here, the correlation structures
are now taken into account. The independent contributions (no correlation at all) can be
squared (Equation (5a)); thus, this noise term is reduced by 1/

√
N with an increasing num-

ber of pixels N. In contradiction, the common contributions are simply averaged (Equation
(5b)) and achieve no reduction with growing number N. In between those two extremes,
the structured contributions (Equation (5c)) depend on the correlation cij (which typically
decrease with growing distance of elements I and j). In the end, the total super-pixel
uncertainty is then summed up from these three parts with Equation (4) (squared, as they
are independent from each other):

u
(

AODindependent
3×3

)
=

1
Ndark f ields

·
√

∑
dark f ields

u
(

AODdark f ield i

)2
(5a)

u
(
AODcommon

3×3
)
=

1
Ndark f ields

· ∑
dark f ields

u
(

AODdark f ield i

)
(5b)

u
(

AODstructured
3×3

)
=

1
Ndark f ields

·
√

∑
dark f ields

u
(

AODdark f ield i

)2
+ 2 ∑

i>j
∑ cij u

(
AODdark f ield i

)
u
(

AODdark f ield j

)
(5c)

One particular element of the super-pixel uncertainty is the contribution due to uncer-
tainties of the cloud masking. This effect can only be estimated from the L2B super-pixel
level, as shown in Figure 3. The cloud retrieval algorithm APOLLO_NG [14] used results in
a Bayesian cloud probability, so we can derive two different cloud masks (weak and strong)
by defining two different probability thresholds (5% and 50%). The AOD retrieval is then
used for all cloud-free pixels of either cloud mask, and the average AOD per super-pixel
cell is calculated. The AOD difference between conservative and relaxed cloud-masking is
then used as a proxy for the cloud-mask-induced uncertainty.

The gridded L3 AOD values are then determined with a simple aggregation of all
super-pixel values within the grid cell, as shown in Figure 4. We provide daily and monthly
1-degree latitude/longitude gridded data.
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In propagating the structured contributions, the correlation functions of the errors
(their probability distribution form and their length scale) in space and time dimension
need to be known or estimated for each effect—note that this is not the correlation of the
physical quantities but the correlation of their errors. The choices identified according to
the FIDUCEO approach are shown in Table 7. Note that this information is directly used
from the L1B product for the reflectance and surface albedo effects, while it needs to be
estimated from physical understanding of aerosol plumes and cloud systems.

The AOD for each super-pixel and grid cell is determined as described in Figures 3 and 4.
Aggregated AOD is calculated as the mean of AOD values of all (dark field) pixels. In the aver-
aging, no weighting with dark-field uncertainties is conducted since these uncertainties depend
strongly on AOD values themselves and could therefore introduce a bias to a subfraction of
retrieved AOD values (either high or low, depending on the geometry, surface brightness, and
albedo). In addition, at this processing level, the uncertainty induced by uncertainties in the
cloud masking is estimated from the AOD difference obtained with two different thresholds of
cloud probability. Due to the simplicity of these equations, a measurement-function-centred
diagram is not provided for this step. The sources of uncertainty are given in Table 8.

Table 7. Averaging the different effects to super-pixels and gridded products.

Effect Uncertainty Correlation
Structure

Spatial Correlation
Daily Gridded Data

Temporal Correlation
Monthly Gridded Data

TOA reflectance
Common within line
Structured across lines
Uncorrelated in time

pdf from FIDUCEO
easyFCDR Level1b
(R0.63)

-

Surface albedo
Common within line
independent across lines
Uncorrelated in time

pdf from FIDUCEO
easyFCDR Level1b
(R3.7, NDVI)

-

Aerosol type Climatology grid
Typical aerosol lifetime 1◦/rectangular 1 week/rectangular

Cloud mask None
(extremely short cloud lifetime) - -

Table 8. Sources of uncertainty.

Measurement Function Term Source of Uncertainty Sensitivity Coefficient Comment

AOD3×3

Propagated uncertainty from L2B,
separate for independent, structured
and common contributions

1
N There are N such terms

+0 Representativeness of measured
pixels within the area 1

3. Evaluation of Propagated AVHRR AOD Uncertainties

For a demonstration of uncertainty propagation from the easyFCDR L1B input, a
10-year AOD record over Europe and North Africa was processed from two subsequent
AVHRR/3 instruments onboard NOAA-16 and NOAA-18, as shown in Table 9. The
geographic coverage of the record consists only of pixels contained in the orbit L1B files
over land within the rectangular area between latitudes of 30 and 75 degrees north and
longitudes of 10 degrees west and 75 degrees east (see Figure 5).

Table 9. Temporal coverage and satellites that are included in this AVHRR aerosol demonstration
CDR.

Satellite Initial Equator Crossing Time Period Processed

NOAA-16 14:30 1 January 2003–31 December 2005
NOAA-18 13:30 6 June 2005–31 December 2012
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3.1. Evaluation of the Propagated AOD Uncertainties

For the validation of the FIDUCEO AVHRR AOD uncertainties, we use the common
standard in the aerosol retrieval community, which is comparison to ground-based sun
photometer measurements. These can directly measure exactly the same quantity, namely
the aerosol optical depth (AOD), with very high accuracy (~0.01) by directly looking at
the sun. A continuous network is coordinated by NASA (AERONET [17]), from which the
latest processed version v3 of quality-controlled sun photometer measurements at ~200
permanent stations back to the mid-1990s can be obtained. This provides a unique reference
dataset. However, even this unique reference has its limitations in global coverage (less so
in Europe and the USA), and for larger pixels or grid cells, there is a representativity issue
of a point station measurement against a large area covered from satellite—this becomes
a significant limitation for 1-degree latitude–longitude grid cells (imagine how different
environmental conditions can be within a rectangular area of ~110 km size). We statistically
analyse matches between AVHRR and AERONET (within the commonly used matching
window of ±30 min and ±50 km from a pixel/grid cell center).

As a first assessment of how far the uncertainties match the true errors, the ratio of
error (AVHRR AOD–AERONET AOD) over uncertainties is calculated (named “normalized
error”) after [7] and probability distributions of the normalized error are plotted as shown
in Figure 6. We plot the probability distributions and the cumulative distributions in
comparison to a Gaussian distribution with the same standard deviation (0.145). This
analysis shows a reasonable agreement of the real AVHRR uncertainty distributions with
the theoretical Gaussian distributions (except for larger normalized errors in the long tails)
and proves a reasonable statistical agreement of uncertainties and errors.
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identical width in normalized errors (1.5) are plotted in red.

For a quantitative analysis, we developed a new approach to assess the uncertainties
by comparing probability functions of the difference between AVHRR and AERONET
AOD (a very good estimate of the true error) with the distributions of errors derived from
the propagated uncertainties through the processing chains levels (L2A, L2B, L3_daily).
It should be noted that an uncertainty is not one concrete realization of an error but
represents the standard width of an error distribution. Therefore, by super-imposing those
(normalized) Gaussian error distributions of each measurement with a width given by
its pixel uncertainty, we obtain these derived error histograms from the uncertainties.
Figure 7 shows a good agreement of the true error distribution (standard deviation of
0.16) with the uncertainty-derived distribution, where the error distribution shows a small
negative bias (standard deviation of 0.164). For illustration, we also compare with two
hypothetic distributions which were achieved by propagating all uncertainties, assuming
either their full correlation between pixels (all common, standard deviation of 0.18) or
full independence (all random, standard deviation of 0.10), leading to a wider/much
smaller distribution.

In order to assess the suitability of uncertainties to differentiate pixels with likely small
from likely large errors, in Figure 8, we plot three percentile values (38%, 68%, 95%) of the
absolute error distributions for each (binned) value of the uncertainties (following [8])—this
is representative of plotting the full error histograms along the y-axis along each value
of the associated propagated uncertainty at the x-axis. These three percentage values
should lie along linear functions with gradients of 0.5, 1, and 2. Most points with u(AOD)
between 0.05 and 0.25 lie close to the expected 1:0.5 and 1:1 lines, which indicates that their
uncertainties are a meaningful predictor for the expected size of the errors. However, the
points at the edges (left and right, and upper) are further away from them. The latter fact
can be explained by low numbers in bins with very low (u(AOD) < 0.05) and very high
(u(AOD) > 0.25 uncertainty, as shown in Figure 7, and for normalized errors above 2 (the
blue symbols in Figure 8); all these lead to high binning errors in the percentile values.
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Figure 8. Assessment of the information content of uncertainties in the L2B product for 2008: 3
percentile values (for 38%, 68%, and 95% in black, red, and blue) of the retrieval error as function of
the predicted uncertainty; expected functionality is depicted with the dashed lines of gradient 0.5,
1.0, and 2.0.

Finally, in Figure 9, we assess the distributions of propagated uncertainties for 2008 for
different product levels: L2A (single pixels, standard deviation of 0.16), L2B (super-pixels
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from 3 × 3 single pixels, standard deviation of 0.145), and L3 daily (1-degree, standard
deviation of 0.12) versus their true error distributions (in all cases using the same matching
criteria and thus neglecting the effects of sampling/representativity). All three plots show
a good agreement of the true error and uncertainty-derived distributions (with a small
negative bias for the true error histograms), which indicates that the propagation to higher
product levels provides meaningful uncertainties.
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Figure 9. Probability distributions of the estimated true error vs. AERONET (in red) and errors
derived from uncertainties (in blue) for different product levels of the AVHRR AOD dataset (2008):
(from left to right) pixel level, super-pixel level, daily gridded level.

3.2. Comparison of the AOD CDR and Its Uncertainties to a Reference CDR

We show the monthly mean time series aggregated for the whole of Europe (over land
only, 10W–50E, 35–60 N, excluding parts of Algeria and Morocco in this rectangle) and
its propagated AOD uncertainty in Figure 10. We compare with a multi-sensor merged
dataset exactly for the same area including the period 2003–2012 [16]. Figure 10 shows
the good agreement (with lower minima for AVHRR, possibly due to different coverage),
and also good agreement in the seasonal cycle; even a double peak in summer is visible,
while the intra-annual maxima/minima variation disagrees (likely due to the different
sampling). We can also see that the overlap of the AVHRR record parts from the two
platforms NOAA-16 (black) and NOAA-18 (red) in 2005 (7 months) in Figure 10 is very
good. Finally, the agreement between the merged and the AVHRR AOD records lies largely
within the AVHRR propagated AOD uncertainty range.
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4. Discussion

This paper provides a demonstration dataset of the aerosol optical depth (AOD) over
land over Europe and North Africa inferred from the AVHRR instrument to illustrate the
propagation of uncertainties benefitting from the methodology and the easyFCDR L1B
dataset, which were both developed in the Horizon2020 project FIDUCEO. In terms of
AOD retrieval, this demonstration dataset, which can only exploit one single channel over
land, is, as expected, comparatively weak (against other more sophisticated sensors with
many more observables usable for aerosol properties). However, despite the very large
scatter of the pixel results, we can show good skill of a 10-year climate data record for
Europe which agrees well in its seasonality and patterns with a community-merged data
record within the ranges of the propagated AVHHR AOD uncertainties.

The significant strength of this demonstration dataset is that its uncertainties could be
propagated taking into account detailed correlation structures. This was enabled by using
the FIDUCEO easyFCDR L1B AVHRR dataset as the input, which provides uncertainties
separated into three bulk contributions: independent (uncorrelated, random), structured
(regionally correlated, e.g., within one sensor line or column, with a correlation function
along the distance), and common (globally correlated). Consequently, the uncertainties
on averaged product levels (L2B and L3 daily) see some reduction due to averaging,
but significantly less as if all uncertainties were considered random. This is due to the
fact that within the visible bands of the AVHRR FCDR product, the common (globally
correlated) contribution dominates, and also the uncertainties introduced by the surface
albedo estimation as the most difficult part of the retrieval are non-zero and significant.

The FIDUCEO systematic methodology to analyse the processing chain and the prop-
agation of uncertainties through it proved very useful to structure this analysis including
the direct propagation of uncertainties from the input L1B products and also the estimation
of uncertainties from other dominant sources within the measurement equation for which
auxiliary information is used. The FIDUCEO methodology provides guidance to at least
estimate (if not enough time is available to conduct comprehensive sensitivity studies) all
needed properties for uncertainty propagation for the dominant effects and their correlation
structures in space and time.

The uncertainties in the FIDUCEO L1b AVHRR reflectances/brightness temperature
easyFCDR product which contain all uncertainties grouped into three contributions with
different correlation structures (uncorrelated “independent”, globally correlated “common”
and regionally/periodically correlated “structured”) are able to manage uncertainty propa-
gation through the different processing levels. This practical input uncertainty information
is appropriate for downstream usage—the fullFCDR product contains many different
detailed uncertainty contributions which would be much more demanding for a user to
handle. The L1B uncertainty information provided was shown to be suitable to model,
during spatial/temporal aggregation, the right balance between uncertainties that exhibit a
noise reduction and uncertainties that are pertained.

We validate the distributions of propagated uncertainties at different product levels
against best estimates of the true error (difference with the almost error-free AERONET
measurements) to prove good agreement and a reduction in uncertainties through the
processing chains levels (L2A, L2B, L3_daily) by averaging.

The use of the CDR uncertainties can be directly derived from the intrinsic use of the
uncertainties during the propagation of the different processing levels where in each appli-
cation a user needs to take similar steps. On all levels of the AVHRR AOD product, the user
receives total uncertainties (which can be used directly, for example, in a data-assimilation
scheme or to ascertain a confident range around values). However, the contributions follow-
ing up from the input L1B component are also provided, which allow a user to take their
different correlation structures into account when averaging spatially or temporally. The
independent contribution is fully random and can be added up by calculating the square
root of the sum of squared pixel uncertainties divided over the number of pixels (this leads
to the noise reduction increasing with the number of averaged pixels or grid cells). The
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common contribution is always assumed to be globally correlated so that uncertainties
from different pixels can be simply averaged (no noise reduction can thus be achieved). For
propagation of the structured contributions, their inherited correlations from the input L1B
data need to be applied. For the gridded datasets, all structured contributions lose their
correlations and are treated as independent, with one exception: the aerosol-type ensemble
uncertainty is fully correlated within a 1-degree grid cell and within a week.

We have also analysed the feasibility of using uncertainty to select best pixels (as was
requested at AEROSAT/AEROCOM meetings by model users). The key issue is whether a
filtering with low uncertainty entails the risk of suppressing high AOD values. As part of
the product files, we provide a variable AODBEST filtered with AOD uncertainty <0.15
for the gridded processing levels (L3 daily, monthly). This filtering typically keeps the
key AOD features (slightly reducing parts) but somewhat reduces the coverage (not too
critically) and erases highly uncertain data.

Finally, we want to point to another property of the product, which is the ensemble of
AOD solutions for 36 different aerosol types (mixtures of four basic components which are
meant to span the realistic range of optical aerosol properties). A user can also propagate
all 36 solutions through an application and afterwards calculate the spread of solutions
for this ensemble (either evenly distributed which means no knowledge on the aerosol
type is assumed) or by using the climatology mix/AOD for the most likely aerosol mix
which are also provided in the product files. As performed for calculating the uncertainty
due to the uncertain aerosol type, a user can calculate a weighted mean (weighted with
the squared distance to the most likely climatology mix in the domain of the three mixing
fractions), or a user can select/prescribe one aerosol mix based on available measurements
for a case study.

Furthermore, the demonstration dataset also includes a quantitative estimate of un-
certainties induced by errors in the cloud masking after the first spatial aggregation level.
For this, a probabilistic cloud mask is used to calculate AOD differences with two different
cloud probability thresholds for a weak and a strict cloud masking—these thresholds were
experimentally optimized to allow a reasonable trade-off between sufficient coverage and
(in the final output product) sufficiently strict cloud-masking.

We also include a simple estimate of uncertainties due to sampling (the product of half
of the difference between minimum and maximum of input AOD values and the fraction
of missing pixels in a grid cell).

More work is needed to assess many details of the uncertainty propagation. Over-
all, uncertainties seem to be slightly over-estimated which may be due to slightly over-
estimated input uncertainties or to missed correlations between two effects (reflectance
inversion, albedo estimation), which are based on inverting the same look-up tables. In
particular, two of all the inputs make the largest contributions to the final uncertainties on
all levels: the uncertainty of the significantly uncertain albedo estimation in the retrieval
(and in particular, its common part, which is not reduced by averaging); and the common
contribution of the L1B input dataset, which is by far the largest part of the total L1B
uncertainty and, again, is not reduced by averaging; it may be possible that the relative
part of this common contribution is too large.

5. Conclusions

We show here a demonstration dataset of the aerosol optical depth (AOD) over land
over Europe and North Africa inferred from the AVHRR instrument onboard two sub-
sequent platforms (NOAA-16 and NOAA-18). The main purpose of this demonstration
dataset is to illustrate the propagation of uncertainties benefitting from the methodology
and the easyFCDR L1B dataset, which were both developed in the Horizon2020 project
FIDUCEO. Despite the very large scatter of the pixel results, we can show good skill of
a 10-year climate data record for Europe which agrees well in its seasonality and pat-
terns with a community-merged data record within the ranges of the propagated AVHHR
AOD uncertainties.
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The significant strength of this demonstration dataset is that its uncertainties could be
propagated taking into account detailed correlation structures. The FIDUCEO systematic
methodology to analyse the processing chain and the propagation of uncertainties through
it proved very useful to structure this analysis. We validate the distributions of propagated
uncertainties at different product levels against best estimates of the true error to prove
good agreement and a reduction in uncertainties through the processing-chain levels (L2A,
L2B, L3_daily) by averaging.

We want to point to specific properties of the product, which are the ensemble of AOD
solutions for 36 different aerosol types, a simple estimate of uncertainties due to sampling,
and a quantitative estimate of uncertainties induced by errors in the cloud masking.

In conclusion, the new FIDUCEO easyFCDR level 1B input product with its reflectance
uncertainties separated into three components with different correlations structures (in-
dependent random, common globally correlated, and structured regionally correlated)
enabled a mathematically stringent propagation of uncertainties to gridded climate data
records of AOD.
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