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Abstract: High-precision coordinate transformation is vital for high-quality data fusion involving
different coordinate systems. The transformation precision is mainly evaluated by the transformation
parameters’ estimation precision, the root mean square error (RMSE) of the conversion of common
points, or the RMSE of the conversion of check points. However, there are a number of issues
associated with the rotation parameters’ precision estimated by the existing transformation methods.
First, the estimated precision is related to the rotation matrix, so it is not suitable for scenarios where
different rotation matrices are used. Second, the RMSE of the conversion of check points may not be
consistent with the RMSE of the conversion of common points, so that the RMSE of the conversion of
common points should not be used as a transformation precision index. In addition, some engineering
applications do not have check points, and many applications need to know which range of points
can meet our requirements. To deal with these limitations, this paper proposes a new way to calculate
the translation parameters and evaluate the transformation precision. A lot of experimental data was
used to verify the effectiveness and applicability of the proposed transformation model.

Keywords: coordinate transformation; seven-parameter transformation model; precision evaluation;
arbitrary rotation angle

1. Introduction

Coordinate transformation is widely used in data fusion involving different coordinate
systems, such as the data conversion between an independent coordinate system and
national coordinate system, the conversion of point clouds between different kinds of Lidar
devices, the image conversion between different photogrammetric coordinate systems, and
so on [1–3]. To perform coordinate transformation, a rigid body transformation model is
first constructed using a number of common points with two sets of coordinates in two
different coordinate systems, then the transformation parameters are determined, and
finally the coordinates of all non-common points under the desired coordinate system are
calculated [4–7].

Coordinate transformation has been widely studied in the literature, with a focus
on modeling and parameter estimation. Several different transformation models exist,
including the small-rotation-angle transformation model (e.g., bursa model, Molodensky
model, and Wuce model) [8,9], and arbitrary-rotation-angle transformation model (e.g.,
Euler angle model, unit-quaternions model, and Rodrigue matrix model) [9–12]. At the
same time, a range of methods for estimating model parameters have been proposed,
including the 7-parameter linear adjustment method [9,11,13,14], 8-parameter linear ad-
justment method [9,13], 13-parameters linear adjustment method [1], nonlinear estimation
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method and its improved method [2,15], Procrusters-based direct solutions [16], analytical
close-form solutions [6], ill-condition model solution [17,18], and total least squares method
based on the errors-in-variables model [13,19,20].

At present, how to determine the coordinate transformation precision of different
transformation schemes when “the root mean square error (RMSE) of the common points
in different schemes is equal”, “no check points can be used to calculate the RMSE of
the check points in different schemes” (where we usually use the RMSE of the common
points or the RMSE of the check points to evaluate the precision of different transformation
schemes), or “the root mean square error (RMSE) of the common points or check points
are not suitable for evaluating the points of different objects ” [21] (where we have proved
that the coordinate transformation error for any point in space is related to its position and
the translation parameters’ estimation precision [22]) has not been studied. Furthermore,
there has been no research on how to reduce the influence of the rotation matrix itself on
the estimation precision of rotation parameters (where the estimation precision of rotation
parameters is proportional to the rotation angle of the rotation matrix). It is therefore
difficult to determine the error caused by transformation and which transformation is the
best regarding the minimum error, and thus it is unknown whether the transformation
results meet the requirements of engineering practice. In this paper, we propose a new
method for evaluating the coordinate transformation precision of different transformation
schemes based on the analysis of the existing coordinate transformation models. The
proposed method is evaluated extensively with simulation experiments and engineering
example and the results demonstrate that the method proposed performs well.

2. Methods

In this part, we present the current transformation model and its parameters estimation,
and some common evaluation indices of the transformation precision. Then, we give the
new transformation model and its implementation procedure.

2.1. Related Works
2.1.1. Rigid Body Transformation

The rigid body transformation in the Cartesian coordinate system is expressed by
Equation (1), in which the coordinates of points in coordinate system-(i + 1) are transformed
into those in coordinate system-i using one scale parameter (k), three translation param-
eters (tx, ty, tz), and three Euler angle parameters (ωx, ωy, ωz) [10,23] or three Rodrigue
parameters (a, b, c) [4,10,11,22]:

pi
j =

 xi
j

yi
j

zi
j

 = kRi+1

 xi+1
j

yi+1
j

zi+1
j

+

 tx
ty
tz

 = kRi+1 pi+1
j + Ti+1, (1)

where pi
j = (xi

j, yi
j, zi

j) and pi+1
j = (xi+1

j , yi+1
j , zi+1

j ) represent the positions of the common
point pj in coordinate system-i and coordinate system-(i + 1), respectively; k is usually

equal to 1; Ti+1 =
[

tx ty tz
]T is the 3× 1 translation vector; Ri+1 is the standard 3× 3

rotation matrix, satisfying RT
i+1 = R−1

i+1 and |Ri+1| = 1, which is given by

Ri+1 =




cos ωy cos ωz cos ωx sin ωz + sin ωx sin ωy cos ωz sin ωx sin ωz − cos ωx sin ωy cos ωz

− cos ωy sin ωz cos ωx cos ωz − sin ωx sin ωy sin ωz sin ωx cos ωz + cos ωx sin ωy sin ωz

sin ωy − sin ωx cos ωy cos ωx cos ωy


or

1
1+a2+b2+c2


1 + a2 − b2 − c2 2(ab + c) 2(ac− b)

2(ab− c) 1− a2 + b2 − c2 2(bc + a)

2(ac + b) 2(bc− a) 1− a2 − b2 + c2


, (2)
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[ a b c ]
T
= tan

δ

2
·⇀n , (3)

where
→
n =

[
nx ny nz

]T is the unit rotation axis of Ri+1, satisfying n2
x + n2

y + n2
z = 1;

and δ is the corresponding rotation angle of Ri+1 given by:

∠Ri+1 = arccos(
tr(Ri+1)− 1

2
), (4)

where tr (.) is the trace of the matrix.

2.1.2. Parameter Estimation of the Current Transformation Model

Assume the approximate values of the rotation matrix Ri+1 are Ri+1,0 (Ri+1 ≈ Ri+1,0,
Ri+1,0 is also a standard 3× 3 rotation matrix); the rotation parameters of Ri+1 are ωx, ωy,
ωz, a, b, c; the approximate values of the rotation parameters are ωx0, ωy0, ωz0, a0, b0, c0;
and the approximate values of the translation parameters and scale parameter are tx0, ty0,
tz0, k0. Based on the orthogonal Procrustes method in Appendix A and Equation (6), we can
obtain the values of ωx0, ωy0, ωz0, a0, b0, c0, tx0, ty0, tz0, k0, and Ri+1,0. With all the common

points
{

pi
j, pi+1

j

}
j=1,··· ,n

, we can construct the error equation of the transformation model

in the following equation:
V = Bx− l, (5)

where V is a 3n× 1 residual matrix, B is a 3n× 7 coefficient matrix (in this paper, we assume
that the coefficient matrix B is no error), x is a 7× 1 error vector of the translation parameters’
approximations, and l is a 3n × 1 matrix (see Equations (A9)–(A16) in Appendix B for
detailed derivation, or Equations (A24)–(A31) in Appendix C for detailed derivation).

Assume P is the weight matrix of l. By using the principle of least squares adjust-
ment [8] and minimizing VT PV, we can obtain the estimation value x̂ of x, the estimation

value
ˆ
X of the transformation parameters, and the estimation value R̂i+1 of Ri+1 as:

x̂ = (BT PB)
−1

BT Pl, (6)

ˆ
X = X0 +

ˆ
x, (7)

R̂i+1 =




cos ω̂y cos ω̂z cos ω̂x sin ω̂z + sin ω̂x sin ω̂y cos ω̂z sin ω̂x sin ω̂z − cos ω̂x sin ω̂y cos ω̂z

− cos ω̂y sin ω̂z cos ω̂x cos ω̂z − sin ω̂x sin ω̂y sin ω̂z sin ω̂x cos ω̂z + cos ω̂x sin ω̂y sin ω̂z

sin ω̂y − sin ω̂x cos ω̂y cos ω̂x cos ω̂y


or

1
1+â2+b̂2+ĉ2


1 + â2 − b̂2 − ĉ2 2(ĉ + âb̂) 2(âĉ− b̂)

2(âb̂− ĉ) 1− â2 + b̂2 − ĉ2 2(â + b̂ĉ)

2(b̂ + âĉ) 2(b̂ĉ− â) 1− â2 − b̂2 + ĉ2


, (8)

where: {
X̂ =

[
t̂x t̂y t̂z ω̂x ω̂y ω̂z k̂

]T

x̂ =
[

dt̂x dt̂y dt̂z dω̂x dω̂y dω̂z dk̂
]T

or{
X̂ =

[
t̂x t̂y t̂z â b̂ ĉ k̂

]T

x̂ =
[

dt̂x dt̂y dt̂z dâ db̂ dĉ dk̂
]T

. (9)
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2.1.3. Evaluation Indices of Transformation Precision

If σ0 is the unit weight variance (usually determined in the initial processing before
transformation), from error propagation [24] and Equation (6), the variance-covariance DX̂
of the estimated transformation parameters X̂ can be expressed as:

DX̂ = σ2
0 QX̂ = σ2

0 Qx̂ = σ2
0 (BT PB)

−1
, (10)

where DX̂, QX̂, Qx̂ are 7× 7 matrices; and QX̂, Qx̂ are the cofactor matrices of X̂ and x̂,
respectively.

From Equation (10), the evaluation index of transformation precision can be expressed as:
σT =

√
DX̂(1, 1) + DX̂(2, 2) + DX̂(3, 3)

σR =
√

DX̂(4, 4) + DX̂(5, 5) + DX̂(6, 6)

σk =
√

DX̂(7, 7)

, (11)


RMSEsame =

√
1
n

n
∑

j1=1
∆2

j1

RMSEcheck =

√
1
m

m
∑

j2=1
∆2

j2

, (12)

where σT , σR, and σk are the evaluation indices of translation parameters’ estimation preci-
sion, rotation parameters’ estimation precision, and scale parameter’ estimation precision,
respectively; RMSEsame and RMSEcheck are the root mean square error of the common
points and the check points, respectively; DX̂(1, 1), DX̂(2, 2), DX̂(3, 3), DX̂(4, 4), DX̂(5, 5),
DX̂(6, 6), DX̂(7, 7) are the diagonal elements of the matrix DX̂ ; n and m are the total number
of the common points and check points, respectively; and ∆j1 and ∆j2 are the transformation
error of the common points and the check points, respectively, and:

∆j1 = pi
j1 − k̂R̂i+1 pi+1

j1
− T̂i+1, ∆j2 = pi

j2 − k̂R̂i+1 pi+1
j2
− T̂i+1, T̂i+1 =

 t̂x
t̂y
t̂z

. (13)

2.2. New Transformation Model

Let Ri+1,s = Ri+1RT
i+1,0, pi+1

j,s = Ri+1,0 pi+1
j . According to Equation (1), we can con-

struct our new transformation model (where the rotation angle of the rotation matrix is
close to zero):

pi
j = kRi+1RT

i+1,0Ri+1,0 pi+1
j + Ti+1 = kRi+1,s pi+1

j,s + Ti+1, (14)

where Ri+1,s ≈ Ri+1,0RT
i+1,0 =

 1
1

1

 = E3×3, ∠Ri+1,s = arccos( tr(Ri+1,s)−1
2 ) ≈ 0.

Given the rotation parameters of Ri+1,s as ωxs, ωys, ωzs, as, bs, and cs, and the approx-
imate values of the rotation parameters as ωxs0, ωys0, ωzs0, as0, bs0, and cs0, we can set
Ri+1,s,0 = E3×3, ωxs0 = 0, ωys0 = 0, ωzs0 = 0, as0 = 0, bs0 = 0, and cs0 = 0.

With all the common points
{

pi
j, pi+1

j

}
j=1,...,n

, we can construct the error equation of

the new transformation model in Equation (15):

Vs = Bsxs − l, (15)
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where Vs is a 3n× 1 residual matrix, Bs is a 3n× 7 coefficient matrix, xs is the errors of the
approximations Xs0 =

[
tx0 ty0 tz0 0 0 0 k0

]T , tx0, ty0, tz0, k0, and l are the same
as Section 2, and:

xs =


[

dtx dty dtz dωxs dωys dωzs dk
]T

or[
dtx dty dtz das dbs dcs dk

]T
, (16)

Vs =

 vs1
...

vsn

, vsj = Bsjxs − lj, j = 1, · · · , n, (17)

Bs =

 Bs1
...

Bsn

 , Bsj =


[

E3×3
∂Ri+1,s

∂ωxs
pi+1

j,s
∂Ri+1,s

∂ωys
pi+1

j,s
∂Ri+1,s

∂ωzs
pi+1

j,s pi+1
j,s

]
or[

E3×3
∂Ri+1,s

∂as
pi+1

j,s
∂Ri+1,s

∂bs
pi+1

j,s
∂Ri+1,s

∂cs
pi+1

j,s pi+1
j,s

] , (18)



∂Ri+1,s
∂ωxs

=

 0 0 0
0 0 1
0 −1 0

, ∂Ri+1,s
∂ωys

=

 0 0 −1
0 0 0
1 0 0

, ∂Ri+1,s
∂ωzs

=

 0 1 0
−1 0 0
0 0 0


or

∂Ri+1,s
∂as

=

 0 0 0
0 0 2
0 −2 0

, ∂Ri+1,s
∂bs

=

 0 0 −2
0 0 0
2 0 0

, ∂Ri+1,s
∂cs

=

 0 2 0
−2 0 0
0 0 0


, (19)

where ∂Ri+1,s
∂ωxs

, ∂Ri+1,s
∂ωys

, ∂Ri+1,s
∂ωzs

, and ∂Ri+1,s
∂as

, ∂Ri+1,s
∂bs

, ∂Ri+1,s
∂cs

are the partial derivation of matrix
Ri+1,s at ωxs0 = 0, ωys0 = 0, ωzs0 = 0 (see Equations (A14)–(A16) in Appendix B for detailed
derivation), and as0 = 0, bs0 = 0, cs0 = 0 (see Equations (A29)–(A31) in Appendix C for
detailed derivation). Using the principle of least squares adjustment [8] and minimizing
VT

s PVs, we can respectively obtain the estimation value x̂s, X̂s, R̂i+1,s and R̂i+1 of xs, Xs,
Ri+1,s, and Ri+1 as:

x̂s = (BT
s PBs)

−1
BT

s Pl, (20)

X̂s = Xs0 + x̂s, (21)

R̂i+1 =




cos ω̂ys cos ω̂zs cos ω̂xs sin ω̂zs + sin ω̂xs sin ω̂ys cos ω̂zs sin ω̂xs sin ω̂zs − cos ω̂xs sin ω̂ys cos ω̂zs

− cos ω̂ys sin ω̂zs cos ω̂xs cos ω̂zs − sin ω̂xs sin ω̂ys sin ω̂zs sin ω̂xs cos ω̂zs + cos ω̂xs sin ω̂ys sin ω̂zs

sin ω̂ys − sin ω̂xs cos ω̂ys cos ω̂xs cos ω̂ys


or

1
1+â2

s +b̂2
s +ĉ2

s


1 + â2

s − b̂2
s − ĉ2

s 2(ĉs + âs b̂s) 2(âs ĉs − b̂s)

2(âs b̂s − ĉs) 1− â2
s + b̂2

s − ĉ2
s 2(âs + b̂s ĉs)

2(b̂s + âs ĉs) 2(b̂s ĉs − âs) 1− â2
s − b̂2

s + ĉ2
s


, (22)

R̂i+1 = R̂i+1,sRi+1,0, (23)

where: {
X̂s =

[
t̂x t̂y t̂z ω̂xs ω̂ys ω̂zs k̂

]T

x̂s =
[

dt̂x dt̂y dt̂z dω̂xs dω̂ys dω̂zs dk̂
]T

or{
X̂s =

[
t̂x t̂y t̂z âs b̂s ĉs k̂

]T

x̂s =
[

dt̂x dt̂y dt̂z dâs db̂s dĉs dk̂
]T

. (24)
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2.3. Implementation Procedure of the New Transformation Model

We may compute the estimated transformation parameters
ˆ
Xs and the corresponding

transformation precision evaluation indices with the following steps:
Step 1: Input the weight matrix P, the coordinates of the common points pi

j1
and pi+1

j1
,

and the check points pi
j2

and pi+1
j2

in coordinate system-i and coordinate system-(i + 1).

X̂s The number of the common points and check points is n and m, and the estimation
threshold values of the translation parameters, the rotation parameters, and the scale
parameters ThrT , ThrR, and Thrk, respectively;

Step 2: Calculate the rotation matrix Ri+1,0 and the transformation parameters: k0,
ωx0, ωy0, ωz0, a0, b0, c0, tx0, ty0, tz0 according to Equations (A1)–(A7) in Appendix A;

Step 3: Let Xs0 =
[

tx0 ty0 tz0 0 0 0 k0
]T ;

Step 4: Let pi+1
j1,s = Ri+1,0 pi+1

j1
,j1 = 1, · · · , n, and pi+1

j2,s = Ri+1,0 pi+1
j2

, and j2 = 1, · · · , m;
Step 5: Constitute the coefficient matrix Bs by Equation (18);
Step 6: Constitute the matrix l by Equation (A11) or Equation (A26);
Step 7: Calculate the estimated transformation parameter vector x̂s by Equation (20);
Step 8: Calculate the estimated rotation matrix R̂i+1,s by Equation (22);
Step 9: If x̂s is less than the given threshold, which is max{abs{x̂s(1 : 3) }} ≤ ThT ,

max{abs{x̂s(4 : 6) }} ≤ ThR, and max{abs{x̂s(7) }} ≤ Thk (here max{ · } is the maximum
value, abs{ · } is the absolute value), continue; if not, Ri+1,0 = R̂i+1,sRi+1,0, Xs0(1 : 3) =
Xs0(1 : 3) + x̂s(1 : 3), Xs0(7) = Xs0(7) + x̂s(7), back to Step 4;

Step 10: Calculate the variance and covariance of the estimated transformation param-
eters σRs ,σT , and σk:

σT =
√

DX̂s
(1, 1) + DX̂s

(2, 2) + DX̂s
(3, 3)

σRs =
√

DX̂s
(4, 4) + DX̂s

(5, 5) + DX̂s
(6, 6)

σk =
√

DX̂s
(7, 7)

, DX̂s
= σ2

0 (BT
s PBs)

−1
; (25)

Step 11: Calculate the RMSE of the common points and the check points RMSEsame
and RMSEcheck by Equation (12).

3. Experiments and Discussion

In this part, we set a series of simulation experiments and a practical engineering
experiment to demonstrate the usability and efficiency of our proposed model. We first
introduce the constraints for the simulation experiments and the simulation method. Then,
we give a practical engineering experimental approach. Finally, we analyze the two
current transformation models and the two new transformation models with the results
of the experiments.

3.1. Constraint Conditions

Without affecting the conclusion of the simulation experiments, we make some as-
sumptions: (1) The errors of the coordinates of common points and check points in coordi-
nate system-(i + 1) are not considered in this paper; (2) unit weight variance σ0 = 5 mm,
since the size of σ0 dose not affect the relative relationship between different values of
different evaluation indices, and many laser scanner acquisition error = 5 mm@50 m [10];
(3) the threshold value Thrk of the translation parameters is 10−4 (equivalent to 0.1 mm),
the threshold value Thrk of the rotation parameters is 10−9 (equivalent to less than 0.001”),
and the threshold value Thrk of the scale parameters is 10−8 (equivalent to less than
0.1 mm/100 km) [14]; (4) the check points are the same in Experiment I and Experiment II;
and (4) the unit weight is used in all of the experiments in this paper.
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3.2. Simulation Experiments

We generate the rotation matrices with different rotation angles and different fixed
rotation axes, and 1000 sets of coordinates of common points and check points in coordinate
system-i are randomly simulated by the common points and check points in experiment
I (see Table 1, different rotation axes α, different rotation angles δ, same common points,
same check points). Then, we calculate the mean value of five transformation precision
indices σR, σT , σk, RMSEsame, and RMSEcheck of the Euler angle method (EA-Method, see
Appendix B), Rodrigue method (R-Method, see Appendix C), new Euler angle method
(NEA-Method, see Section 2.3), and new Rodrigue method (NR-Method, see Section 2.3)
using the procedure shown in Appendix D. Similarly, we generate the rotation matrices with
different rotation angles, different fixed common points distributions, and a fixed rotation
axis, and randomly simulate 1000 sets of coordinates of common points and check points in
coordinate system-I by the coordinates of common points and check points in experiment
II (see Table 1, fixed rotation axes α, different rotation angles δ, different common points,
same check points). We calculate the mean value of σR, σT , σk, RMSEsame, and RMSEcheck
of EA-Method, R-Method, NEA-Method, and NR-Method using the procedure shown in
Appendix D. The specific experimental procedure is summarized as follows:

Table 1. The true coordinates of common points and check points *.

Name Common Points Check Points

Experiment I

α ∈
{

0, π
6 , . . . , 5π

6

}
δ ∈ [−π, π]

pi+1
01 = 4pi+1

1 , pi+1
02 = 4pi+1

2 , pi+1
03 = 4pi+1

3 pi+1
1 =

[
0 −5√

3
0
]T

,

pi+1
2 =

[
−2.5 −2.5√

3
0
]T

,

pi+1
3 =

[
2.5 −2.5√

3
0
]T

,

pi+1
4 = 12pi+1

1 , pi+1
5 = 12pi+1

2 ,
pi+1

6 = 12pi+1
3 , pi+1

7 = 40pi+1
1 ,

pi+1
8 = 40pi+1

2 , pi+1
9 = 40pi+1

3

Experiment II
α = π

2
δ ∈ [−π, π]

Distribution1 pi+1
11 = 2pi+1

1 , pi+1
12 = 2pi+1

2 , pi+1
13 = 2pi+1

3
Distribution 2 pi+1

21 = 6pi+1
1 , pi+1

22 = 6pi+1
2 , pi+1

23 = 6pi+1
3

Distribution 3 pi+1
31 = 10pi+1

1 , pi+1
32 = 10pi+1

2 , pi+1
33 = 10pi+1

3
Distribution 4 pi+1

41 = 14pi+1
1 , pi+1

42 = 14pi+1
2 , pi+1

43 = 14pi+1
3

Distribution 5 pi+1
51 = 18pi+1

1 , pi+1
52 = 18pi+1

2 , pi+1
53 = 18pi+1

3
Distribution 6 pi+1

61 = 22pi+1
1 , pi+1

62 = 22pi+1
2 , pi+1

63 = 22pi+1
3

* (a) α is the angle between the rotation axis
⇀
n and the plane XOY of coordinates-i + 1 and represents a fixed

rotation axis; (b) δ is the angle of the simulated rotation matrix Ri−1; (c) experiment I and experiment II have the
same check points; (d) the unit of the coordinates is meter.

Step 1: Assume the total number of the common points n = 3; the total number of
the check points m = 9; and the angle between the rotation axis

→
n and the plane XOY of

Coordinate system-(i + 1) is α (corresponding to different rotation axes);
Step 2: Input the weight matrix P and the coordinates of common points and check

points in Experiment I;
Step 3: Let α = 0, π

6 , 2π
6 , 3π

6 , 4π
6 , 5π

6 . The EA-Method and the R-Method are separately
used to calculate the mean value of σR, σT , σk, RMSEsame, and RMSEcheck for different fixed
rotation axes and different rotation angles using the procedure shown in Appendix D (see
Figure 1);

Step 4: Let α = 0, π
6 , 2π

6 , 3π
6 , 4π

6 , 5π
6 . The NEA-Method and the NR-Method are sepa-

rately used to calculate the mean value of σR, σT , σk, RMSEsame, and RMSEcheck for different
fixed rotation axes and different rotation angles using the procedure shown in Appendix D
(see Figure 2);

Step 5: Input P and the coordinates of common points and check points in Experiment
II;

Step 6: Let α = π
2 . The EA-Method and the R-Method are separately used to calculate

the mean value of σR, σT , σk, RMSEsame, and RMSEcheck for different common points
distributions using the procedure shown in Appendix D (see Figure 3);
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Figure 1. Transformation precision of the current transformation model for experiment I (each x axis
value represents a different rotation angle, each y axis value represents a different precision for a
different precision index (a1)-(rad), (b1)-(a.u.), (m), (a.u.), RMSE(m)), each color represents a different
rotation axis for different, (a1–a5) shows the results of the EA-Method, subgraph (b1–b5) shows the
results of the R-Method).
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Figure 2. Transformation precision of the new transformation model for experiment I (each x axis
value represents a different rotation angle, each y axis value represents a different precision for a
different precision index (a1)-(rad), (b1)-(a.u.), (a.u.), (m), RMSE(m)), each color represents a different
rotation axis for different, (a1–a5) shows the results of the proposed NEA-Method, (b1–b5) shows the
results of the proposed NR-Method).
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Figure 3. Transformation precision of the current transformation model for experiment II (each x 
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Figure 3. Transformation precision of the current transformation model for experiment II (each x axis
value represents a different rotation angle, each y axis value represents a different precision for a
different precision index (a1)-σR(rad), (b1)-σR(a.u.), σT(m), σk(a.u.), RMSE(m)), each color represents
a different common points’ distribution, (a1–a5) shows the results of the EA-Method, (b1–b5) shows
the results of the R-Method).

Step 7: Let α = π
2 . The NEA-Method and the NR-Method are separately used to

calculate the mean value of σR, σT , σk, RMSEsame, and RMSEcheck for different common
points distributions using the procedure shown in Appendix D (Figure 4).
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Figure 4. Transformation precision of the new transformation model for experiment II (each x axis
value represents a different rotation angle, each y axis value represents a different precision for a
different precision index (a1)-σR(rad), (b1)-σR(a.u.), σT(m), σk(a.u.), RMSE(m)), each color represents
a different common points’ distribution, (a1–a5) shows the results of the proposed NEA-Method,
(b1–b5) shows the results of the proposed NR-Method).

3.3. Practical Engineering Case

To further verify the applicability of the proposed method described in Section 2.3 we
selected a dataset from a practical engineering application in Guangzhou’s new airport
terminal [1,15], which consists of the true coordinates and measured coordinates of 15
nodes and 2 hinge center points in a component of the grid structure, as shown in Table 2.
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The origin in the true coordinates and the measured coordinates are the center of the end
hinge of the component and any hypothetical point, respectively. In total, 5 cases are
considered in this study, each of which selects 5 out of 17 points as common points: Case
A selects {1, 11, 12, 13, 23}; Case B selects {1, 8, 9, 10, 23}; Case C selects {1, 14, 15, 16, 23};
Case D selects {1, 5, 6, 7, 23}; and Case E selects {1, 17, 18, 19, 23}. We then calculate σR,
RMSEsame, and RMSEcheck by the EA-Method, R-Method, NEA-Method, and NR-Method,
respectively. The detailed experimental procedure is summarized as follows:

Table 2. Actual and measured coordinates [1,15].

Point Number
True Coordinates (mm) Measured Coordinates (mm)

xi yi zi xi+1 yi+1 zi+1

1 0.0 0.0 0.0 108,521.0 96,611.0 101,222.0
5 289.0 0.0 3327.0 108,819.0 99,931.0 101,213.0
6 −114.0 216.5 3327.0 108,379.0 99,937.0 101,438.0
7 −114.0 −216.5 3327.0 108,378.0 99,939.0 100,996.0
8 444.0 0.0 5327.0 108,965.0 101,930.0 101,206.0
9 −222.0 333.0 5327.0 108,302.0 101,930.0 101,538.0

10 −222.0 −333.0 5327.0 108,302.0 101,931.0 100,879.0
11 600.0 0.0 7327.0 109,126.0 103,938.0 101,202.0
12 −300.0 450.0 7327.0 108,225.0 103,926.0 101,639.0
13 −300.0 −450.0 7327.0 108,224.0 103,925.0 100,762.0
14 444.0 0.0 9327.0 108,955.0 105,927.0 101,212.0
15 −222.0 333.0 9327.0 108,290.0 105,916.0 101,540.0
16 −222.0 −333.0 9327.0 108,291.0 105,914.0 100,880.0
17 289.0 0.0 11,327.0 108,785.0 107,926.0 101,223.0
18 −114.0 216.5 11,327.0 108,354.0 107,914.0 101,440.0
19 −114.0 −216.5 11,327.0 108,355.0 107,908.0 100,997.0
23 0.0 0.0 14,625.0 108,473.0 111,215.0 101,228.0

Step 1: Let the number of common points and check points be n = 5 and m = 17,
respectively;

Step 2: Input P, the coordinate of 17 position points in Table 2;
Step 3: Let the coordinate of common points be Case A, Case B, Case C, Case D,

and Case E, respectively; the EA-Method and the NEA-Method are separately used to
calculate the σR, RMSEsame, and RMSEcheck using the procedure shown in Appendix B and
the procedure in Section 2.3 (see Figure 5);

Step 4: Let the coordinate of common points be Case A, Case B, Case C, Case D, and
Case E, respectively; the R-Method and the NR-Method are separately used to calculate
the σR, RMSEsame, and RMSEcheck using the procedure shown in Appendix C and the
procedure in Section 2.3 (see Figure 6).

3.4. Discussion

From Figures 1 and 3, it may be concluded that: (1) EA-Method becomes singular
when the rotation angle is around 90◦ and 140◦, and R-Method is singular when the rotation
angle is close to 180◦. Thus, the current EA-Method and R-Method are not suitable for
estimating the transformation parameters in some circumstances. (2) RMSE of the common
points and check points is independent of the rotation angle and rotation axis, but the
rotation parameters’ precision σR estimated by R-Method is related to the rotation axis
and proportional to the absolute value of the rotation angle. Therefore, in the case where
the rotation matrices are different, the small value of the rotation parameters’ estimation
precision cannot represent that the corresponding transformation precision is better than the
larger value of the rotation parameters’ estimation precision, and the rotation parameters’
precision estimated by R-Method is not suitable for evaluating the RMSE of the check
points. (3) RMSE of the different common points in Experiment II can be considered the
same, and the translation parameters’ precision σT can also be considered the same, but the
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corresponding RMSE of the check points is not equal when different common points are
used. Thus, the RMSE of the common points and the translation parameters’ precision all
cannot be used to evaluate the RMSE of the check points.
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Figure 5. Transformation precision comparison of the EA-Method and NEA-Method for practical
engineering application (each x axis value represents a different case selection of the common points,
each y axis value represents a different precision for a different precision index (σR(rad), RMSE (mm)),
(a1–a3) shows the results of the EA-Method, (b1–b3) shows the results of the NEA-Method).

From Figures 2 and 4, it may be concluded that: (1) NEA-Method can resolve the
singularity problem of EA-Method under some rotation angles, and NR-Method can
also resolve the singularity problem of R-Method under the near 180◦ rotation angle;
(2) the rotation parameters’ precision σR estimated by NEA-Method and that by NR-
Method is independent of the rotation angle and the rotation axis, so the evaluation
indices of σR estimated by NEA-Method and NR-Method are unique to different coordinate
transformations; and (3) the rotation parameters’ precision σR estimated by NEA-Method
and that by NR-Method is proportional to the RMSE of the check points. Thus, the
evaluation indices of σR estimated by NEA-Method and NR-Method can be used to evaluate
the RMSE of the check points.

From Figures 5 and 6, several observations can be made as follows:(1) EA-Method still
has singularity for A, B, and C distributions, where the RMSE of the common points and
check points are more than 10,000 mm, so EA-Method is not suitable for this experiment;
(2) the RMSE of the check points for NE-Method, R-Method, and NR-Method in the same
case are equal, and its RMSE values for case A, B, C, D, and E are 19.4, 18.8, 19.2, 23.9, and
25.5 mm, respectively (the size is comparable to the calculated value in the literature [1,15],
the results are correct), respectively, where the size relationship is E > D > A > C > B (see
subgraph Figures 5b3 and 6a3,b3); that is, “the size relationship of the check points’ RMSE
is inconsistent with that of the common points’ RMSE”, so the RMSE of the check points
cannot be used to evaluate the RMSE of the common points; (3) the RMSE values of the
common points for NE-Method, R-Method, and NR-Method in the same case are also equal,
but its RMSE values for case A, B, C, D, and E are 19.8, 12.5, 13.6, 13.05, and 13.06 mm,
respectively, where the size relationship is A > C > E > D > B (see subgraph Figures 5b2
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and 6a2,b2); that is, “the size relationship of the common points’ RMSE is inconsistent
with that of the check points’ RMSE”, so the RMSE of the common points cannot be used
to evaluate the RMSE of the check points; (4) for NEA-Method and NR-Method, the size
relationship of σR in case A, B, C, D, E is E > D > A > C > B (see subgraph Figure 5b1), and
for R-Method, the size relationship is B > A > C > E > D (see subgraph Figure 6a1; that is,
“the size relationship of σR calculated by R-Method is inconsistent with that of the check
points’ RMSE, and the size relationship of σR calculated by NEA-Method and NR-Method
is consistent with that of the check points’ RMSE”, so the rotation parameters’ precision
calculated by NEA-Method and NR-Method is suitable for evaluating the size relationship
of the different check points’ RMSE but that by R-Method is not.
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engineering application (each x axis value represents a different case selects of the common points,
each y axis value represents a different precision for a different precision index (σR(a.u.), RMSE (mm))
((a1–a3) shows the results of the R-Method, (b1–b3) shows the results of the NR-Method).

4. Conclusions

Motivated by the observation that the current coordinate transformation models’ have
some limitations, this paper proposed a new method for coordinate transformation to
deal with these limitations. The new transformation method was constructed by using
the orthogonality of rotation matrix, the theorem of “any vector multiplied by the identity
matrix does not change”, and the approximation of the rotation matrix (which is calculated
by the orthogonal Procrustes method). The corresponding estimation formulas of th new
transformation method were derived from the linearization theorem, the partial derivation
theorem of matrix, and the principle of least squares adjustment.

We designed two simulation experiments and a practical engineering case to verify the
effectiveness and applicability of the new transformation method. The results demonstrated
that (1) the new transformation model is suitable for the Cartesian coordinate transforma-
tion under any rotation angle; (2) the rotation parameters’ precision calculated by the new
method can be used to evaluate the transformation precision; (3) the new transformation
method can be used to resolve the evaluation problem in the absence of check points.
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However, it should be noted that “we do not consider the effects of linearization
errors or coefficient matrix errors”; “our method only evaluates the accuracy of conversion
parameters while the accuracy of any point in space is related to the accuracy of parameter
conversion, the coordinates of any point, and the measurement accuracy of coordinates
of any point and when calculating the accuracy of any point in space, it is necessary
to refer to the related formula in [22]”; and “the relationship between the accuracy of
conversion parameters and the accuracy of the final converted results requires further
analytical investigation”.
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Appendix A. Calculation of Approximate Transformation Parameters by the
Orthogonal Procrustes Method

We can compute the approximation k0, ωx0, ωy0, ωz0, a0, b0, c0, tx0, ty0, tz0 of scale
parameter k; rotation parameters ωx, ωy, ωz, a, b, c; and translation parameters tx, ty, tz
by the orthogonal Procrustes method, which was given in [16]. The specific steps are as
follows [16]:

Step 1: Constituting the common points matrix HA and HB based on all the common
points’ coordinates:

HA(j, :) =
[

xi+1
j yi+1

j zi+1
j

]
, HB(j, :) =

[
xi

j yi
j zi

j

]
, j = 1, · · · , n, (A1)

where n is the total number of the common points;
Step 2: Computing orthogonal matrices U and V by singular value decomposition:

U ∑ VT = svd(HT
A(En −

1
n

eneT
n )HB), (A2)

where:

En =


1

1
. . .

1

, en =


1
1
...
1

, (A3)

Step 3: Computing the approximation of rotation matrix and rotation parameters:

Ri+1,0 =
VUT

|VUT |
, (A4)
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ωy0 = arcsin(Ri+1,0(3, 1))

ωx0 = arcsin(− Ri+1,0(3,2)
cos ωy0

)

ωz0 = arcsin(− Ri+1,0(2,1)
cos ωy0

)

,


a0 =

Ri+1,0(2,3)−Ri+1,0(3,2)
tr(Ri+1,0)+1

b0 =
Ri+1,0(3,1)−Ri+1,0(1,3)

tr(Ri+1,0)+1

c0 =
Ri+1,0(1,2)−Ri+1,0(2,1)

tr(Ri+1,0)+1

; (A5)

Step 4: Computing the approximation of the scale parameter:

k0 =
tr(Ri+1,0HT

A(En×n − 1
n eneT

n )HB)

tr(HT
A(En×n − 1

n eneT
n )HA)

; (A6)

Step 5: Computing the approximation of the translation parameters:

T0 =

 tx0
ty0
tz0

 =
1
n
(HT

B − k0Ri+1,0HT
A)en. (A7)

Appendix B. Euler Angle Method

If the rotation matrix is expressed by three Euler angle parameters (ωx, ωy, ωz) (see
Equation (2)), using Equations (1)–(3), with the approximations k0, ωx0, ωy0, ωz0, tx0, ty0,

tz0 and all the common points
{

pi
j, pi+1

j

}
j=1,··· ,n

, we can construct the error equation of the

seven-parameter transformation model based on the Euler angle [8]:

Vω = Bωxω − lω, (A8)

where Vω is the 3n× 1 residual matrix, Bω is the 3n× 7 coefficient matrix, xω is the true
errors of the approximations Xω0 =

[
tx0 ty0 tz0 ωx0 ωy0 ωz0 k0

]T , lω is the
3n× 1 matrix, and:

xω =
[

dtx dty dtz dωx dωy dωz dk
]T , (A9)

Vω =

 vω1
...

vωn

, vωj = Bωjx− lωj, j = 1, · · · , n, (A10)

lω =

 lω1
...

lωn

, lωj = pi
j − k0Ri+1,0 pi+1

j − T0, T0 =

 tx0
ty0
tz0

, j = 1, · · · , n, (A11)

Bω =


Bω1

...
Bωn

, Bωj =
[

E3×3
∂Ri+1
∂ωx

pi+1
j

∂Ri+1
∂ωy

pi+1
j

∂Ri+1
∂ωz

pi+1
j Ri+1,0 pi+1

j

]
, j = 1, · · · , n, (A12)

Ri+1,0 =


r0(11) r0(12) r0(13)

r0(21) r0(22) r0(23)

r0(31) r0(32) r0(33)

,



r0(11) = cos ωy0 cos ωz0

r0(12) = cos ωx0 sin ωz0 + sin ωx0 sin ωy0 cos ωz0

r0(13) = sin ωx0 sin ωz0 − cos ωx0 sin ωy0 cos ωz0

r0(21) = − cos ωy0 sin ωz0

r0(22) = cos ωx0 cos ωz0 − sin ωx0 sin ωy0 sin ωz0

r0(23) = sin ωx0 cos ωz0 + cos ωx0 sin ωy0 sin ωz0

r0(31) = sin ωy0

r0(32) = − sin ωx0 cos ωy0

r0(33) = cos ωx0 cos ωy0

, (A13)
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∂Ri+1

∂ωx
=


0 rx(12) rx(13)

0 rx(22) rx(23)

0 rx(32) rx(33)

,



rx(12) = − sin ωx0 sin ωz0 + cos ωx0 sin ωy0 cos ωz0

rx(13) = cos ωx0 sin ωz0 + sin ωx0 sin ωy0 cos ωz0

rx(22) = − sin ωx0 cos ωz0 − cos ωx0 sin ωy0 sin ωz0

rx(23) = cos ωx0 cos ωz0 − sin ωx0 sin ωy0 sin ωz0

rx(32) = − cos ωx0 cos ωy0

rx(33) = − sin ωx0 cos ωy0

, (A14)

∂Ri+1

∂ωy
=


ry(11) ry(12) ry(13)

ry(21) ry(22) ry(23)

ry(31) ry(32) ry(33)

,



ry(11) = − sin ωy0 cos ωz0

ry(12) = sin ωx0 cos ωy0 cos ωz0

ry(13) = − cos ωx0 cos ωy0 cos ωz0

ry(21) = sin ωy0 sin ωz0

ry(22) = − sin ωx0 cos ωy0 sin ωz0

ry(23) = cos ωx0 cos ωy0 sin ωz0

ry(31) = cos ωy0

ry(32) = sin ωx0 sin ωy0

ry(33) = − cos ωx0 sin ωy0

, (A15)

∂Ri+1

∂ωz
=


rz(11) rz(12) rz(13)

rz(21) rz(22) rz(23)

0 0 0

,



rz(11) = − cos ωy0 sin ωz0

rz(12) = cos ωx0 cos ωz0 − sin ωx0 sin ωy0 sin ωz0

rz(13) = sin ωx0 cos ωz0 + cos ωx0 sin ωy0 sin ωz0

rz(21) = − cos ωy0 cos ωz0

rz(22) = − cos ωx0 sin ωz0 − sin ωx0 sin ωy0 cos ωz0

rz(23) = − sin ωx0 sin ωz0 + cos ωx0 sin ωy0 cos ωz0

. (A16)

We can compute the estimated transformation parameters and the transformation
precision evaluation index by the following steps [8]:

Step 1: Input the weight matrix P, the coordinates of the common points pi
j1

and pi+1
j1

,

and the check points pi
j2

and pi+1
j2

in coordinate system-i and coordinate system-(i + 1),
and the numbers of the common points and check points n and m, the estimation threshold
values of the translation parameters, the rotation parameters, and the scale parameters
ThrT , ThrR, and Thrk;

Step 2: Calculate the approximation value tx0, ty0, tz0, ωx0, ωy0, ωz0, k0 of the seven transfor-
mation parameters by Equations (A1)–(A7), and let
Xω0 =

[
tx0 ty0 tz0 ωx0 ωy0 ωz0 k0

]T;

Step 3: Calculate Ri+1,0, ∂Ri+1
∂ωx

, ∂Ri+1
∂ωy

, ∂Ri+1
∂ωz

by Equations (A13)–(A16);
Step 4: Constitute the coefficient matrix Bω by Equation (A12);
Step 5: Constitute the matrix lω by Equation (A11);
Step 6: Calculate the estimated values of xω as

x̂ω = (BT
ωPBω)

−1
BT

ωPlω; (A17)

Step 7: If x̂ω is less than the given limit, which is max{abs{x̂ω(1 : 3) }} ≤ ThT ,
max{abs{x̂ω(4 : 6) }} ≤ ThR and max{abs{x̂ω(7) }} ≤ Thk, continue; if not, Xω0 = Xω0 + x̂ω ,
and go to Step 3;

Step 8: Calculate the estimated transformation parameters:

X̂ = Xω0 + x̂ω, T̂i+1 =

 t̂x
t̂y
t̂z

 =

 X̂(1)
X̂(2)
X̂(3)

,

 ω̂x
ω̂y
ω̂z

 =

 X̂(4)
X̂(5)
X̂(6)

, k̂ = X̂(7), (A18)
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R̂i+1 =


r̂(11) r̂(12) r̂(13)

r̂(21) r̂(22) r̂(23)

r̂(31) r̂(32) r̂(33)

,



r̂(11) = cos ω̂y cos ω̂z

r̂(12) = cos ω̂x sin ω̂z + sin ω̂x sin ω̂y cos ω̂z

r̂(13) = sin ω̂x sin ω̂z − cos ω̂x sin ω̂y cos ω̂z

r̂(21) = − cos ω̂y sin ω̂z

r̂(22) = cos ω̂x cos ω̂z − sin ω̂x sin ω̂y sin ω̂z

r̂(23) = sin ω̂x cos ω̂z + cos ω̂x sin ω̂y sin ω̂z

r̂(31) = sin ω̂y

r̂(32) = − sin ω̂x cos ω̂y

r̂(33) = cos ω̂x cos ω̂y

, (A19)

where X̂ is the estimated values of the seven transformation parameters; T̂i+1 is the es-
timated values of the translation parameters; ω̂x, ω̂y, ω̂z are the estimated values of the
translation parameters; k̂ is the estimated values of the scale parameters; and R̂i+1 is the
estimated values of the rotation matrix;

Step 9: Calculate the evaluation index of the transformation precision:
σT =

√
DXω(1, 1) + DXω(2, 2) + DXω(3, 3)

σR =
√

DXω(4, 4) + DXω(5, 5) + DXω(6, 6)
σk =

√
DXω(7, 7)

, (A20)


RMSEsame =

√
1
n

n
∑

j1=1
∆2

ωj1

RMSEcheck =

√
1
m

m
∑

j2=1
∆2

ωj2

, (A21)

where σT , σR, and σk are the evaluation indices of the translation parameters’ estimation pre-
cision, rotation parameters’ estimation precision, and scale parameter’ estimation precision,
respectively; RMSEsame, RMSEcheck are the root mean square error of the common points
and the check points, respectively; DXω is the variance and covariance of the estimated
transformation parameters; ∆ωj1 and ∆ωj2 are the transformation error of the common
points and the check points, respectively; and:

DXω = σ2
0 (BT

ω PBω)
−1

, ∆ωj1 = pi
j1 − k̂R̂i+1 pi+1

j1
− T̂i+1, ∆ωj2 = pi

j2 − k̂R̂i+1 pi+1
j2
− T̂i+1, (A22)

where σ0 is the unit weight variance (usually determined in the initial processing before
transformation).

Appendix C. Rodrigue Method

If the rotation matrix is expressed by three Rodrigue parameters (a, b, c) (see Equation (3)),
using Equations (1)–(3), with the approximations k0, a0, b0, c0, tx0, ty0, tz0, and all the com-

mon points
{

pi
j, pi+1

j

}
j=1,··· ,n

, we can construct the error equation of the seven-parameter

transformation model based on Rodrigue parameters [4,22]:

Vabc = Babcxabc − labc, (A23)

where Vabc is the 3n× 1 residual matrix, Babc is the 3n× 7 coefficient matrix, xabc is the true
errors of the approximations Xabc0 =

[
tx0 ty0 tz0 a0 b0 c0 k0

]T , labc is the 3n× 1
matrix, and:

xabc =
[

dtx dty dtz da db dc dk
]T , (A24)
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Vabc =

 vabc1
...

vabcn

, vabcj = Babcjx− labcj, j = 1, · · · , n, (A25)

labc =

 labc1
...

labcn

, labcj = pi
j − k0Ri+1,0 pi+1

j − T0, T0 =

 tx0
ty0
tz0

, j = 1, · · · , n, (A26)

Babc =


Babc1

...
Babcn

, Babcj =
[

E3×3
∂Ri+1

∂a pi+1
j

∂Ri+1
∂b pi+1

j
∂Ri+1

∂c pi+1
j Ri+1,0 pi+1

j

]
, j = 1, · · · , n, (A27)

Ri+1,0 =
1

1 + a2
0 + b2

0 + c2
0


1 + a2

0 − b2
0 − c2

0 2(a0b0 + c0) 2(a0c0 − b0)

2(a0b0 − c0) 1− a2
0 + b2

0 − c2
0 2(b0c0 + a0)

2(a0c0 + b0) 2(b0c0 − a0) 1− a2
0 − b2

0 + c2
0

, (A28)

∂Ri+1

∂a
=


ra(11) ra(12) ra(13)

ra(21) ra(22) ra(23)

ra(31) ra(32) ra(33)


(1 + a2

0 + b2
0 + c2

0)
2 ,



ra(11) = 4a0(b2
0 + c2

0)

ra(12) = 2b0(1− a2
0 + b2

0 + c2
0)− 4a0c0

ra(13) = 2c0(1− a2
0 + b2

0 + c2
0) + 4a0b0

ra(21) = 2b0(1− a2
0 + b2

0 + c2
0) + 4a0c0

ra(22) = −4a0(1 + b2
0)

ra(23) = 2(1− a2
0 + b2

0 + c2
0)− 4a0b0c0

ra(31) = 2c0(1− a2
0 + b2

0 + c2
0)− 4a0b0

ra(32) = −2(1− a2
0 + b2

0 + c2
0)− 4a0b0c0

ra(33) = −4a0(1 + c2
0)

, (A29)

∂Ri+1

∂b
=


rb(11) rb(12) rb(13)

rb(21) rb(22) rb(23)

rb(31) rb(32) rb(33)


(1 + a2

0 + b2
0 + c2

0)
2 ,



rb(11) = −4b0(1 + a2
0)

rb(12) = 2a0(1 + a2
0 − b2

0 + c2
0)− 4b0c0

rb(13) = −2(1 + a2
0 − b2

0 + c2
0)− 4a0b0c0

rb(21) = 2a0(1 + a2
0 − b2

0 + c2
0) + 4b0c0

rb(22) = 4b0(a2
0 + c2

0)

rb(23) = 2c0(1 + a2
0 − b2

0 + c2
0)− 4a0b0

rb(31) = 2(1 + a2
0 − b2

0 + c2
0)− 4a0b0c0

rb(32) = 2c0(1 + a2
0 − b2

0 + c2
0) + 4a0b0

rb(33) = −4b0(1 + c2
0)

, (A30)

∂Ri+1

∂c
=


rc(11) rc(12) rc(13)

rc(21) rc(22) rc(23)

rc(31) rc(32) rc(33)


(1 + a2

0 + b2
0 + c2

0)
2 ,



rc(11) = −4c0(1 + a2
0)

rc(12) = 2(1 + a2
0 + b2

0 − c2
0)− 4a0b0c0

rc(13) = 2a0(1 + a2
0 + b2

0 − c2
0) + 4b0c0

rc(21) = −2(1 + a2
0 + b2

0 − c2
0)− 4a0b0c0

rc(22) = −4c0(1 + b2
0)

rc(23) = 2b0(1 + a2
0 + b2

0 − c2
0)− 4a0c0

rc(31) = 2a0(1 + a2
0 + b2

0 − c2
0)− 4b0c0

rc(32) = 2b0(1 + a2
0 + b2

0 − c2
0) + 4a0c0

rc(33) = 4c0(a2
0 + b2

0)

. (A31)

We can compute the estimated transformation parameters and the transformation
precision evaluation index by the following steps [4,22]:
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Step 1: Input the weight matrix P, the coordinates of the common points pi
j1

and pi+1
j1

,

and the check points pi
j2

and pi+1
j2

in coordinate system-i and coordinate system-(i + 1), the
numbers of the common points and check points n and m, the estimation threshold values
of the translation parameters, the rotation parameters, and the scale parameters ThrT , ThrR,
and Thrk;

Step 2: Calculate the approximation value tx0, ty0, tz0, a0, b0, c0, k0 of the seven transforma-

tion parameters by Equations (A1)–(A7), and let Xabc0 =
[

tx0 ty0 tz0 a0 b0 c0 k0
]T;

Step 3: Calculate Ri+1,0, ∂Ri+1
∂a , ∂Ri+1

∂b , ∂Ri+1
∂c by Equations (A28)–(A30);

Step 4: Constitute the coefficient matrix Babc by Equation (A27);
Step 5: Constitute the matrix labc by Equation (A26);
Step 6: Calculate the estimated values of xabc as:

x̂abc = (BT
abcPBabc)

−1
BT

abcPlabc, (A32)

Step 7: If x̂abc is less than the given limit, which is max{abs{x̂abc(1 : 3) }} ≤ ThT ,
max{abs{x̂abc(4 : 6) }} ≤ ThR, and max{abs{x̂abc(7) }} ≤ Thk, continue; if not,
Xabc0 = Xabc0 + x̂abc, and go to Step 3;

Step 8: Calculate the estimated transformation parameters:

X̂ = Xabc0 + x̂abc, T̂i+1 =

 t̂x
t̂y
t̂z

 =

 X̂(1)
X̂(2)
X̂(3)

,

 â
b̂
ĉ

 =

 X̂(4)
X̂(5)
X̂(6)

, k̂ = X̂(7), (A33)

R̂i+1 =
1

1 + â2 + b̂2 + ĉ2

 1 + â2 − b̂2 − ĉ2 2(âb̂ + ĉ) 2(âĉ− b̂)
2(âb̂− ĉ) 1− â2 + b̂2 − ĉ2 2(b̂ĉ + â)
2(âĉ + b̂) 2(b̂ĉ− â) 1− â2 − b̂2 + ĉ2

, (A34)

where X̂, T̂i+1, k̂, R̂i+1 are as defined in Appendix B; and â, b̂, ĉ are the estimated values of
the rotation parameters;

Step 9: Calculate the evaluation index of the transformation precision:
σT =

√
DXabc(1, 1) + DXabc(2, 2) + DXabc(3, 3)

σR =
√

DXabc(4, 4) + DXabc(5, 5) + DXabc(6, 6)
σk =

√
DXabc(7, 7)

, (A35)


RMSEsame =

√
1
n

n
∑

j1=1
∆2

abcj1

RMSEcheck =

√
1
m

m
∑

j2=1
∆2

abcj2

, (A36)

where σT , σR, σk, RMSEsame,RMSEcheck, and σ0 are as defined in Appendix B; DXabc is the
variance and covariance of the estimated transformation parameters; and ∆abcj1 and ∆abcj2
are the transformation error of the common points and the check points, respectively; and:

DXabc = σ2
0 (BT

abcPBabc)
−1

, ∆abcj1 = pi
j1 − k̂R̂i+1 pi+1

j1
− T̂i+1, ∆abcj2 = pi

j2 − k̂R̂i+1 pi+1
j2
− T̂i+1. (A37)

Appendix D. Calculation Procedure of the Transformation Precision Index for
Different Rotation Angles

Assume the angle α between the rotation axis
⇀
n and the plane XOY of coordinates-i +

1 is fixed, σ0 = 5 mm. We can compute the transformation precision evaluation index of
different rotation angles by the following steps:

Step 1: Assume k̃ = 1, T̃i+1 =
[

10 10 10
]T , δ = −π;
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Step 2: Input the weight matrix P, the coordinates of the common points p̃i+1
j1

, the

check points p̃i+1
j2

in coordinate system-i and coordinate system-(i + 1), and the numbers
of the common points and check points n and m;

Step 3: If δ ≤ π, j0 = 1, continue; if not, go to Step 10;
Step 4: Let the rotation parameters ã = 0, b̃ = tan δ · cos α, c̃ = tan δ · sin α, and

calculate the coordinate true values of the common points and check points as:

p̃i
j1 = k̃R̃i+1 p̃i+1

j1
+ T̃i+1, p̃i

j2 = k̃R̃i+1 p̃i+1
j2

+ T̃i+1, j1 = 1, · · · , n, j2 = 1, · · · , m, (A38)

where:

R̃i+1 =
1

1 + ã2 + b̃2 + c̃2

 1 + ã2 − b̃2 − c̃2 2(c̃ + ãb̃) 2(ãc̃− b̃)
2(ãb̃− c̃) 1− ã2 + b̃2 − c̃2 2(ã + b̃c̃)
2(b̃ + ãc̃) 2(b̃c̃− ã) 1− ã2 − b̃2 + c̃2

; (A39)

Step 5: If j0 ≤ 1000, continue; if not, go to Step 8;
Step 6: Add random noise to the coordinates of the common points in experiment I:

pi
j1 = p̃i

j1 + normrnd(0, σ0, 3, 1), j1 = 1, · · · , n, (A40)

where normrnd(0, σ0, 3, 1) returns a 3× 1 array of random numbers chosen from a normal
distribution with a mean and standard deviation of 0 and σ0;

Step 7: Calculate the σR,j0 , σT,j0 , σk,j0 , RMSEsame,j0 , RMSEcheck,j0 by the Euler-Angle-
Method in Appendix B, Rodrigue-Method in Appendix C, or New-Transformation-Method
in Section 2.3;

Step 8: Let j0 = j0 + 1, and go to Step 5;
Step 9: Calculate the mean value of the transformation precision evaluation index:

σR =

1000
∑

j0=1
σR,j0

1000
, σT =

1000
∑

j0=1
σT,j0

1000
, σk =

1000
∑

j0=1
σk,j0

1000
,


RMSEsame =

1000
∑

j0=1
RMSEsame ,j0

1000

RMSEcheck =

1000
∑

j0=1
RMSEcheck ,j0

1000

; (A41)

Step 10:δ = δ + π
18 , go to Step 3;

Step 11: End.
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