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Abstract: As an important component of the Earth system, precipitation plays a vital role in regional
and global water cycles. Based on Microwave Humidity and Temperature Sounder (MWHTS) on-
board FY-3D satellite, four machine learning models, random forest regression (RFR), support vector
machine (SVM), multilayer perceptron (MLP), and gradient boosting regression tree (GBRT), are
implemented to retrieve precipitation rate, and verified with Integrated Multi-satellite Retrievals
for GPM (IMERG). This paper determines the optimal hyperparameters of the machine models
and proposes three linear combinations of MWHTS channels (183.31 ± 1.0–183.31 ± 3.0 GHz,
183.31 ± 1.0–183.31 ± 7.0 GHz, and 183.31 ± 3.0–183.31 ± 7.0 GHz), which can better characterize
precipitation of different intensities. With the inclusion of three linear combinations, the performances
of all four machine learning models are significantly improved. It is concluded that the RFR and
GBRT have the best retrieval accuracy. Over ocean, the MSE, MAE, and R2 values of precipitation esti-
mates using RFR are 1.75 mm/h, 0.44 mm/h, and 0.80, respectively, and are 1.80 mm/h, 0.45 mm/h,
and 0.78 for GBRT. Simultaneously, this paper analyzes the retrieval results from the perspective
of the different rain rates and temporal matching difference between MWHTS and IMERG data.
The RFR and GBRT also maintain the best retrieval accuracy under the condition of Gaussian noise,
indicating the relatively strong robustness and antinoise performance of ensemble learning models
for precipitation retrieval.

Keywords: FY-3D satellite; MWHTS; passive microwave; machine learning; precipitation retrieval;
linear combinations

1. Introduction

Precipitation is of great significance in various fields of meteorology and hydrology,
such as regional and global water resources, climate change, and numerical weather
modeling research [1–3]. The application of satellite observations is an vital method to
obtain precipitation information [1,4–7]. Compared with radiosonde observations and
ground-based remote sensing measurements, satellite remote sensing has the advantages
of high temporal sampling frequency, wide spatial coverage, and low cost. Visible light and
infrared wave have poor penetration to clouds and precipitation layers. In contrast, the
microwave wavelength can be flexibly selected according to practical applications, and the
influence of ice clouds and other particles can be ignored or effectively utilized. Therefore,
microwave remote sensing has a unique advantage in satellite atmospheric sounding. Since
the operation of satellite series Fengyun-3 (FY-3, including FY-3A, 3B, 3C, 3D, 3E), the
satellites have obtained rich data for weather, climate, and environmental research [8].

The Microwave Humidity and Temperature Sounder (MWHTS) onboard FY-3D, as
the upgraded instrument of the Microwave Humidity Sounder (MWHS), has included
the detection frequencies of 89 GHz and 118.75 GHz in addition to the original channels,
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making it the first instrument on a polar-orbiting meteorological satellite in the world to
carry out atmospheric observations with a 118.75 GHz radiometer. MWHTS is generally
used to retrieve atmospheric temperature and water vapor in order to estimate precipitation
and forecast typhoon paths [9,10]. In addition, MWHTS observations further strengthen
and increase the resiliency of the microwave branch of the observing system used for
numerical weather prediction (NWP) [11].

Precipitation retrieval methods can be roughly divided into three categories: statistical
methods (e.g., [12,13]), physical methods (e.g., [14–16]), and combined physical–statistical
methods (e.g., [17]). Compared with physical inversion systems, statistical methods can not
only avoid background field information from the atmospheric radiative transfer equation
but also have the advantages of low complexity, high calculation efficiency, and fewer
variables. In a statistical algorithm for precipitation, Cui et al. [18] used the satellite
data of MWHS/FY-3A during three severe tropical storms to estimate the precipitation
by multiple linear regression method. He et al. [19] developed a passive sub-millimeter
atmospheric profile and precipitation retrievals algorithm for MWHTS onboard the FY-3C
satellite. Researchers also found that the MWHTS channels at 118.75 GHz and 183.31 GHz
are helpful in detecting precipitation [20]. On this basis, Li et al. [21] proposed an improved
algorithm for precipitation retrievals based on brightness temperature (TB) data observed
by MWHTS/FY-3C using linear regression and a neural network method. In addition,
Chen et al. [22] evaluated the impacts of emissivity atlas and the dynamic emissivity for
assimilation. The results indicate that the use of the dynamic emissivity retrieved from
the 89 GHz channel of MWHTS/FY-3C apparently increases the amount of assimilated
data and improves the initial fields and the 24 h forecasts of precipitation distribution
and intensity.

In recent years, machine learning algorithms have gained increasing interest in precip-
itation research (e.g., [7,23,24]). Nevertheless, studies on comparing and quantifying the
performance of different machine learning models for satellite precipitation retrievals are
rare to none. In addition, optimization processes of some key hyperparameters in machine
learning models (i.e., parameters that need to be predefined) have not been thoroughly
investigated, which can greatly affect the model performance. In fact, most studies have
only utilized TB at different channels as inputs [21], which may not be sufficient to represent
precipitation characteristics, resulting in higher inversion errors.

Therefore, there are three main purposes of this study: (1) In addition to using TB
at different MWHTS channels, three linear TB combinations are proposed as inputs for
precipitation retrievals, which can better characterize precipitation at different intensities
and further improve the retrieval accuracy; (2) Using grid search and cross-validation
methods to explore the optimal hyperparameters of machine models, this paper compares
the performance and explores the feasibility and rationality of four machine learning models
(RFR, SVM, MLP, and GBRT) for precipitation retrieval; (3) This article also quantifies the
retrieval advantages with the addition of linear combinations as inputs and verifies the
robustness of the ensemble learning models.

2. Dataset and Input Selection
2.1. MWHTS Observations and Its Channels

When FY-3D operates in polar orbit, the MWHTS observations can be obtained every
102 min. Firstly, the original observation data on the satellite need to be processed by
quality inspection, identification, and control. Then, the data are calibrated successively by
two-point calibration, system nonlinear correction, and antenna pattern correction. Finally,
level-1 TB data are obtained. Detailed parameters are shown in Table 1. Figure 1 shows the
global TB data observed by FY-3D MWHTS of 183.31 ± 7.0 GHz channel around the Earth
polar orbit from 04:33 to 06:15 UTC on August 05 2019, from which we can see the global
TB data distribution information of land and ocean observed by MWHTS.
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Figure 1. Brightness temperature distribution monitored by the FY-3D MWHTS.

Table 1. Detailed parameters of MWHTS.

Channel Center Frequency
(GHz) Polarization Model Weight Peak Height

(hPa)

1 89.0 V window
2 118.75 ± 0.08 H 30
3 118.75 ± 0.2 H 50
4 118.75 ± 0.3 H 100
5 118.75 ± 0.8 H 250
6 118.75 ± 1.1 H 350
7 118.75 ± 2.5 H surface
8 118.75 ± 3.0 H surface
9 118.75 ± 5.0 H surface
10 150.0 V window
11 183.31 ± 1.0 H 300
12 183.31 ± 1.8 H 400
13 183.31 ± 3.0 H 500
14 183.31 ± 4.5 H 700
15 183.31 ± 7.0 H 800

2.2. IMERG Data

The IMERG-Late Run (Version 6) used in this paper provides half-hourly precipitation
estimates on a 0.1◦ × 0.1◦ grid resolution by the Integrated Multi-satellite Retrievals for
GPM (IMERG). IMERG data is intended to intercalibrate, merge, and interpolate satel-
lite microwave precipitation estimates, together with microwave-calibrated infrared (IR)
satellite estimates and precipitation gauge analyses [25]. The precipitation estimates from
various satellite passive microwave (PMW) sensors comprising the GPM constellation
are computed using the Goddard Profiling Algorithm [5], then gridded, intercalibrated
to the GPM Combined Ku Radar–Radiometer Algorithm (CORRA) product and merged
into half-hourly 0.1◦ × 0.1◦ fields. The intercalibrated merged PMW estimates are then
input to both the Climate Prediction Center (CPC) Morphing-Kalman Filter (CMORPH-KF)
Lagrangian time interpolation scheme [26] and the precipitation estimation from remotely
sensed information [27]. The CMORPH-KF morphing uses the PMW and IR estimates to
create half-hourly estimates. After obtaining the satellite observations, IMERG-Late Run is
computed about 14 h after observation time using both forward and backward morphing.
Figure 2 shows the IMERG data (mm/h) from 03:30 to 04:30 UTC on 5 August 2019.
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Figure 2. Precipitation data (mm/h) monitored by the GPM on 5 August 2019 from 03:30 to
04:30 UTC.

2.3. Temporal and Spatial Matching and Preprocessing

In this paper, MWHTS observations (level-1 products) and IMERG data (level-3 prod-
ucts) collected from 1 July 2019 to 31 August 2019 are used for precipitation retrieval model
training and testing. The matching domain covers (0◦N–40◦N, 120◦E–140◦E). Since there
may be some unreasonable data, such as lack of measurement or precipitation pixels of low
quality scores, the following steps are executed to ensure the data credibility:

1. Remove the missing MWHTS observations or IMERG data due to lack of measurement.
2. Remove the data of low quality.

For MWHTS observations, the missing data can be determined according to channel
data integrity quality, and the data quality can be determined by the Earth observations
quality score field. The score ranges from 0 to 100. In this paper, only the data with score of
100 (data with the best quality) are selected. For IMERG, product quality can be determined
according to the precipitation quality index field. Simultaneously, the data rationality of
the temporal and spatial matching will also directly affect the accuracy of precipitation
inversion. Given the time interval of half an hour for IMERG data, temporal matching
resolution is 30 min (the time difference between the two observation samples is less than
half an hour). Since IMERG data are global grid data with a resolution of 0.1◦ × 0.1◦ and the
nadir point size of MWHTS is 16 km × 16 km for 183.31 GHz, spatial matching resolution
is set as 0.15◦ × 0.15◦.

Compared with ocean, the natural background of land is more complex. Therefore,
the matched data are divided into two categories (hereafter referred to as ocean and land
data) according to the region of the matched data, to establish inversion models to improve
the accuracy of precipitation retrieval for both ocean and land regions. After completing
the matching steps, there are 55,520 matched data samples over ocean and 39,934 samples
over land.

2.4. Input Selection

In contrast to the method in which the TB at each channel is directly taken as the
input for the inversion, this article first analyzes the correlation coefficients of the TB at
15 channels observed by MWHTS (Figure 3). It can be inferred from Figure 3 that the
correlation coefficients of TB at 15 channels over ocean and land region are generally
consistent. Compared with continental precipitation, the number of smaller raindrops
in ocean precipitation is higher, and the number of larger raindrops is lower [28,29]. In
the weather scenarios with high water vapor content, the scattering effect of raindrops on
microwave is stronger, so the TB is more sensitive to raindrops. The correlation between
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the three channels at 118.75 GHz (118.75 ± 2.5, 118.75 ± 3.0, and 118.75 ± 5.0 GHz) is
relatively high, and a similar phenomenon occurs for five channels at 183.31 GHz. Li et
al. simulated the TB of MWHTS under water cloud weather conditions, and the results
indicated that three channels set at 118.75 GHz are more sensitive to the change of cloud
water content and equivalent particle radius than other 118.75 channels [21]. Five channels
set at 183.31 GHz also show the same result. This is consistent with the TB correlation
coefficient of each channel in Figure 3, which further illustrates the ability of these channels
to detect raindrops and clouds in the atmosphere.

Figure 3. Heatmap of the correlation coefficients of TB at 15 MWHTS channels based on (a) ocean
data and (b) land data.

In order to avoid data redundancy and save the training time, if the correlation
coefficient between a channel and other channels is greater than 0.9, the data of this
channel will not be selected as the input. Therefore, this paper firstly selected TB set at
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89.0 GHz, 118.75 ± 0.08 GHz, 118.75 ± 0.2 GHz, 118.75 ± 0.8 GHz, 118.75 ± 1.1 GHz,
118.75 ± 2.5 GHz, 183.31 ± 1.0 GHz, and 183.31 ± 3.0 GHz detection frequencies as inputs
over both ocean and land regions.

A crucial step for precipitation inversion is to construct the proper model and deter-
mine inputs of the model. To this end, different TB-derived variables were considered.
In addition to applying measured TB at different MWHTS channels, their differences
and linear combinations are taken into account to further resolve the correlation with
rain rate. In particular, three linear TB differences, i.e., 183.31 ± 1.0–183.31 ± 3.0 GHz,
183.31 ± 1.0–183.31 ± 7.0 GHz, and 183.31 ± 3.0–183.31 ± 7.0 GHz are also selected as
inputs to retrieve rain rate. Three channels (183.31 ± 1.0 GHz,183.31 ± 3.0 GHz, and
183.31 ± 7.0 GHz) have different weight heights, and channels away from 183.31 GHz
have lower weight peak heights (Table 1). In the case of light rain, the TB observed by
183.31 ± 1.0 GHz is lower than that of the other two channels. With the increase of rainfall
rate, the channel away from 183.31 GHz is more affected by the scattering of ice particles
from the lower layer of the cloud. As a result, TB further decreases and the TB difference
further increases. The results show that linear combinations between channels can be
well fitted by cubic polynomial, which can better characterize precipitation of different
intensities and further improve the retrieval performance. The specific fitting equations and
linear combinations scatter plots are shown in Table 2 and Figure 4 (in Table 2, R refers to
the rainfall rate, and C refers to TB differences calculated by fitting equations. For example,
C in the second row of Table 2 represents TB differences of 183.31 ± 1.0–183.31 ± 3.0 GHz).
Compared with classical approaches such as principal components to combining channels,
the contribution of channel difference combinations for precipitation inversion is clearly
displayed, which makes the physical interpretability of the statistical inversion method
stronger. As can be seen from Figure 4, the fitting effect of these three linear combinations is
good. In addition, IMERG data are basically consistent with the precipitation distribution
intensity and other details observed by the TB difference at MWHTS channels (Figure 5).
Therefore, from a qualitative point of view, it has certain rationality and feasibility to apply
three linear combinations to retrieve precipitation. and it can be intuitively predicted that
adding these linear combinations as inputs will improve the retrieval accuracy. The specific
results will be introduced in detail in the following sections.

Table 2. The fitted cubic polynomial relationships between the linear combinations at different
channels for ocean and land data.

Inversion
Region Linear Combination of TB at the Different Channels Cubic Polynomial

183.31 ± 1.0–183.31 ± 3.0 (GHz) C = 0.0001R3 + 0.0036R2 + 1.00611R − 9.275
Ocean 183.31 ± 1.0–183.31 ± 7.0 (GHz) C = 0.0045R3 − 0.1904R2 + 3.6624R − 10.74

183.31 ± 3.0–183.31 ± 7.0 (GHz) C = −0.0027R3 + 0.1007R2 + 0.3469R − 8.760

183.31 ± 1.0–183.31 ± 3.0 (GHz) C = −0.0009R3 + 0.0499R2 + 0.3286R − 2.8892
Land 183.31 ± 1.0–183.31 ± 7.0 (GHz) C = 0.0024R3 − 0.0972R2 + 2.3848R − 7.1699

183.31 ± 3.0–183.31 ± 7.0 (GHz) C = −0.0017R3 + 0.0462R2 + 0.6833R − 6.1516
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Figure 4. Scatter plots of linear combinations of TB at different MWHTS frequency channels versus
the average value of precipitation rate at 1 mm/h intervals. Panels (a–c) show the results based on
ocean data, whereas panels (d–f) show the results based on land data.

Figure 5. Spatial maps of the TB difference and IMERG data on 5 August 2019 at 04:30 UTC.
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3. Methodologies
3.1. Retrieval Framework

Figure 6 shows the overall steps of this research. Firstly, the MWHTS observa-
tions and IMERG data are preprocessed to control the data quality, then TB data are
matched with IMERG data over ocean and land region and the correlation of TB
data of each channel is analyzed to remove the redundant channel data (see block 1 in
Figure 6). In addition to selecting TB in the different MWHTS channels, three linear
TB combinations (183.31 ± 1.0–183.31 ± 3.0 GHz, 183.31 ± 1.0–183.31 ± 7.0 GHz, and
183.31 ± 3.0–183.31 ± 7.0 GHz) are also proposed as inputs (see block 2 in Figure 6). The
output of the model is precipitation rate (see block 4 in Figure 6). The precision retrieval
database consists of inputs and corresponding IMERG data. Each channel data was nor-
malized before training the model.

For an accurate performance evaluation, a proper data splitting into a training set, a
test set, and a verification set is required. The training set is the data sample for model
fitting. To evaluate our model performance, an independent test set is applied to tune the
hyperparameters of the models using grid search and cross-validation (GS-CV) methods,
monitor whether the model has been fitted, and evaluate the model performance. Selecting
the training model that performs the best on the test set introduces the risk of overfitting,
so an independent verification set is chosen to evaluate the generalization ability of the
trained models. Specifically, the training set accounts for 80%, test set accounts for 10%,
and verification set accounts for 10%, with 55,520 totally matched data points over ocean
and 39,934 matched data points over land.

Figure 6. Overall inversion framework for MWHTS-based precipitation retrievals.

3.2. Machine Learning Models

Based on the matched TB data, this article constructs four machine learning models:
random forest regressor (RFR) [30], support vector machine (SVM), multilayer perceptron
(MLP), and gradient boosting regression tree (GBRT).
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Random forest regression (RFR) is a bagging algorithm. The general idea of RFR
is training several weak models to form a strong model, as the performance of a strong
model is much better than that of a single weak model. In the training stage, RFR adopts
bootstrap sampling to collect different sub-datasets from the input dataset and averages
the prediction results of multiple decision trees to obtain the final output. The number
of trees, Nestimators, is an important parameter. As a machine learning method, RFR has
good processing abilities for high-dimensional data and can process huge amounts of data.
Simultaneously, the RFR model has strong generalization ability and robustness.

The support vector machine (SVM) can be used for classification or regression. The
basic model is the linear classifier with the largest interval defined in the feature space.
SVM also includes kernel techniques, which make them essentially nonlinear classifiers.
The basic idea is to make the input space correspond to a feature space through nonlinear
transformation so that the hypersurface model in the input space corresponds to the
hyperplane model in the feature space. The learning strategy of a support vector machine
is to maximize the interval, which is equivalent to a convex quadratic programming
problem. SVM has been applied in many fields, such as temperature and humidity profile
retrievals [31,32]. The key hyperparameter optimization of support vector machines mainly
includes the Gaussian kernel parameter (Gamma) and penalty factor (C).

The multilayer perceptron (MLP) is a model that imitates the structure and function of
biological neural networks, and adopts an error back-propagation algorithm and has strong
dynamic processing ability. It can realize highly nonlinear mapping without knowing the
relationship between the inputs and outputs. Because of its simple structure and strong
plasticity, it has been widely used in many fields. MLP is fully connected between layers,
and there is no coupling between nodes in the same layer [21]. Data are transmitted from
the input layer to the hidden layer, and the connection weight of the network is corrected
from the output layer. In the error signal back-propagation phase, the weight is adjusted
layer-by-layer. As the learning process continues, the error gradually decreases. However,
it is easy for it to fall into local optimal solutions and it is sensitive to input datasets. The
hyperparameters of the MLP mainly include the activation functions and the number of
hidden neurons.

Gradient boosting regressor tree (GBRT) is an iterative decision tree algorithm which
realizes precipitation inversion using cumulative output of many previous models and
continuously reducing the residual generated in the training process [33]. GBRT generates
a weak model through multiple rounds of iterations and the loss function decreases along
the gradient direction. In this way, the loss function is reduced continuously and the
convergence can reach the optimal solution. The main parameter of the model is the
number of trees: Nestimators.

3.3. Model Evaluation Criteria

For precipitation retrieval, the mean squared error (MSE), mean absolute error (MAE),
and R-square (R2) are proposed as the evaluation criteria of the model. MSE (mm/h) and
MAE (mm/h) measure the degree of deviation between the truth and predicted value.
Obviously, lower MSE and MAE values indicate that a model has better performance. The
value range of R2 is [0,1], and the closer the value is to 1, the stronger the explanatory
power of the TB in the regression equation is to rain rate. The equations used to calculate
MSE, MAE, and R2 can be expressed as follows (Table 3). Where ŷi is the predicted value of
the ith sample; yi is the corresponding truth value; n is the total number of samples.

3.4. Parameter Tuning

In a machine learning model, inappropriate hyperparameters will trigger underfitting
or overfitting issues. In this case, the values of hyperparameters are crucial. However,
manual selection for hyperparameters will consume an inordinate amount of time. To
this end, the GS-CV method [34] is applied to optimize the hyperparameter which can be
divided into two parts: grid search and cross-validation.
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Table 3. The regression scores equations, value range, and optimum value.

Criteria Equation Range Optimum

MSE MSE = 1
n

n
∑

i=1
(yi − ŷi)

2 [0,+∞] 0

MAE MAE = 1
n

n
∑

i=1
|yi − ŷi| [0,+∞] 0

R2
R2 = 1−

n
∑

i=1
(yi−ŷi)

2

n
∑

i=1
(yi−ȳ)2

[0,1] 1

For grid search, the machine learning model iterates through all candidate combi-
nations of hyperparameters, tries every possibility, and selects the best hyperparameters
as the final result. This is actually a process of training and comparison. In this paper,
MAE is used to evaluate model performance. Grid search ensures that parameters with
high precision can be found within the specified parameter range. For cross-validation,
k f old cross-validation is used, which can effectively reduce overfitting phenomenon and
improve the generalization ability of the model. Specifically, the matched data except
verification set are divided into k copies (k = 9 in this paper), the kth copy is taken as the
test set, and the remaining k− 1 copies are used as the training set for the cross-validation.
This process is repeated a total of k times, and the average of performance indicators of the
regression model is returned. When the hyperparameters are optimized by the grid search,
cross-validation is used to evaluate each group of hyperparameters. Finally, the optimal
combination of hyperparameters is selected to establish the model.

For the RFR model, the value of Nestimators to be optimized is from 10 to 160 and
bootstrapping is used for the sampling. MAE values under different Nestimators are shown
in Figure 7. When the n-estimators are 110 and 140, the MAE values based on ocean and
land data are the lowest, respectively.

Figure 7. MAE values (mm/h) of the RFR model under different Nestimators.

For the SVM regression model, MAE values of the model obtained under different C
and Gamma are shown in Figure 8. Compared with the model based on ocean data, the
accuracy based on land data changes little with different parameters. If the C value is
increased (C > 1) blindly (greater than one), the improvement of retrieval accuracy is very
limited, which will consume unnecessary time. In view of this situation, for both ocean
and land models, C = 2 and Gamma = 0.1 are selected.

The number of hidden layer neurons of the MLP model is optimized from 20 to
150, and the activation function is selected from Tanh, Logistic, and Relu (Figure 9). The
max − iter is set to 200, alpha is 0.0001, and Adam optimizer is selected to continuously
reduce losses. When activation function is Logistic and the number of neurons in the
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hidden layer is 40, the ocean model is optimal, and are Relu and 60 respectively, for the
land model results.

Figure 8. MAE values (mm/h) of the SVM model under different C and Gamma based on (a) ocean
data and (b) land data.

Figure 9. MAE values (mm/h) of the MLP model under different activation functions and numbers
of neurons based on (a) ocean data and (b) land data.
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For the GBRT model, whether based on ocean or land data, MAE value almost does
not decrease when Nestimators reaches 180 (Figure 10). The model is considered to be optimal
approximately when Nestimators is 180. The learning rate of the model is set to 0.01.

Figure 10. MAE values (mm/h) of the GBRT model under different Nestimators.

With GS-CV methods, hyperparameters of machine learning models were optimized,
as shown in Table 4.

Table 4. Optimum hyperparameters of four machine learning models over ocean and land regions.

Model Region Optimum Hyperparameters

RFR
Ocean Nestimators = 110
Land Nestimators = 140

SVM
Ocean C = 2, Gamma = 0.1
Land C = 2, Gamma = 0.1

MLP
Ocean Activation is Logistic, neurons numbers = 40
Land Activation is Relu, neurons numbers = 60

GBRT
Ocean Nestimators = 180
Land Nestimators = 180

4. Results and Analysis

In this study, TB and TB combinations are proposed as inputs. However, the limita-
tions of linear combinations lie in the interpretability of potential physical processes. This
leads to the question of whether the machine learning model with linear combinations
as inputs is better than the model without them. To this end, this paper explores the
contribution of the linear combinations for precipitation retrieval. Specifically, for each
machine learning model, (1) only TB of eight channels; (2) TB of eight channels and linear
combination (183.31 ± 1.0–183.31 ± 3.0 GHz); (3) TB of eight channels and linear combi-
nation (183.31 ± 1.0–183.31 ± 7.0 GHz); (4) TB of eight channels and linear combination
(183.31 ± 3.0–183.31 ± 7.0 GHz); (5) TB of eight channels and three linear combinations
are used as inputs. This will allow the advantages of linear combination to be quantified
individually and compared with performance of their combined inversion. Hyperparame-
ters of four machine learning models for retrieval precipitation were determined by GS-CV
methods to compare and assess the performance of models. Final results using the verifica-
tion set are shown in Figure 11 (with inputs (5)) and Table 5. In the case of adding three
combinations, it can be inferred from Figure 11 and Table 5 that applying four machine
learning models to retrieved precipitation is feasible and rational. For regression scores



Remote Sens. 2022, 14, 848 13 of 19

based on ocean verification data, the RFR model has the best performance, with MSE, MAE,
and R2 of 1.75 mm/h, 0.44 mm/h, and 0.80, respectively, and the retrieval accuracy of GBRT
model is almost as good as RFR, with MSE, MAE, and R2 of 1.80 mm/h, 0.45 mm/h, and
0.78, respectively, followed by the MLP model. The performance of precipitation inversion
based on SVM is not outstanding.

Figure 11. Comparison of the IMERG data with the retrievals using RFR (a,b), SVM (c,d), MLP (e,f),
and GBRT (g,h) models. Panels (a,c,e,g) are the results based on ocean verification data, whereas
panels (b,d,f,h) are the results based on land verification data.

Table 5. Evaluation results of four machine learning models with different inputs based on verification
set (additional linear combination means data except TB at eight channels).

Model Additional Linear Combination
Ocean Area Land Area

MSE MAE R2 MSE MAE R2

RFR

None 3.54 0.74 0.58 2.23 0.68 0.56
183.31 ± 1.0–183.31 ± 3.0 GHz 3.44 0.72 0.60 2.18 0.67 0.57
183.31 ± 1.0–183.31 ± 7.0 GHz 1.81 0.46 0.78 1.73 0.55 0.66
183.31 ± 3.0–183.31 ± 7.0 GHz 1.77 0.46 0.79 1.68 0.54 0.67

All linear combinations 1.75 0.44 0.80 1.67 0.52 0.68

SVM

None 4.33 0.76 0.49 3.22 0.67 0.37
183.31 ± 1.0–183.31 ± 3.0 GHz 4.22 0.74 0.50 3.20 0.66 0.38
183.31 ± 1.0–183.31 ± 7.0 GHz 2.68 0.49 0.69 2.74 0.55 0.47
183.31 ± 3.0–183.31 ± 7.0 GHz 2.66 0.49 0.68 2.72 0.55 0.47

All linear combinations 2.67 0.48 0.70 2.72 0.54 0.48

MLP

None 3.55 0.68 0.58 2.15 0.75 0.58
183.31 ± 1.0–183.31 ± 3.0 GHz 3.19 0.74 0.62 2.14 0.67 0.59
183.31 ± 1.0–183.31 ± 7.0 GHz 1.89 0.49 0.77 1.69 0.56 0.67
183.31 ± 3.0–183.31 ± 7.0 GHz 1.87 0.49 0.77 1.69 0.54 0.67

All linear combinations 1.83 0.47 0.79 1.69 0.54 0.67

GBRT

None 3.56 0.76 0.57 2.26 0.70 0.54
183.31 ± 1.0–183.31 ± 3.0 GHz 3.43 0.73 0.59 2.20 0.69 0.56
183.31 ± 1.0–183.31 ± 7.0 GHz 1.81 0.47 0.76 1.75 0.56 0.66
183.31 ± 3.0–183.31 ± 7.0 GHz 1.79 0.46 0.77 1.69 0.54 0.67

All linear combinations 1.80 0.45 0.78 1.69 0.53 0.68
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In addition, retrieval results indicate the retrieval advantages by adding linear combina-
tion as inputs. Regardless of the model, linear combination (183.31 ± 1.0–183.31 ± 3.0 GHz)
will slightly improve the model performance. Compared with using only TB of eight
channels as inputs, the R2 of RFR, SVM, MLP, and GBRT increased by 0.02, 0.01, 0.04, and
0.02, respectively, after adding combination (183.31 ± 1.0–183.31 ± 3.0 GHz). Simulta-
neously, two other linear combinations can significantly outperform linear combination
(183.31 ± 1.0–183.31 ± 3.0 GHz), almost reaching the accuracy of adding them all, espe-
cially for 183.31 ± 3.0–183.31 ± 7.0 GHz. For the precipitation inversion based on land
data, the background and natural factors are more complex. Simultaneously, there is
higher water vapor content in the atmosphere above the ocean surface, and the scattering
effect of raindrops in ocean precipitation on microwave is stronger, so the TB is more
sensitive to raindrops. Therefore, the retrieval accuracy is lower than that of corresponding
results based on ocean data. The improvement of retrieval performance by each linear
combination is consistent with that based on ocean data. Adding linear combination
(183.31 ± 1.0–183.31 ± 3.0 GHz) as inputs will slightly enhance the performance, while
adding two other combinations greatly improves retrieval accuracy, almost as accurate as
adding them all.

It can be inferred that no matter which kind of machine learning model is applied based
on ocean or land data, retrieval accuracy is improved with linear combinations as additional
inputs, indicating that linear combinations can enhance the extraction performance of
complex physical relationship between the TB and precipitation rate. This further confirms
the contribution of three linear combinations to precipitation inversion.

Simultaneously, this paper analyzes the results from the perspective of the different
rain rates and temporal matching difference between MWHTS and IMERG data (Table 6).
The results show that the performance changes of the four machine models are basically the
same under different rain rates and temporal matching difference. Performances are better
among the various evaluation criteria for heavy rain versus light. Compared with heavy
rain, temporal matching difference of light rain has little effect for retrieval performance.
As the temporal matching resolution is 30 min, the real rainfall rate corresponding to the
TB cannot be accurately matched for some data pixels. High rainfall rates would tend to be
associated with short duration event, resulting in a large gap between the matched and
real rainfall rate, which leads to the decline of retrieval performance.

For an additional qualitative evaluation, this paper takes a precipitation from 13:30 to
14:30 UTC on August 05 2019 over the Northwest Pacific region as the case, performs the
spatial maps of retrieval results using models, and compares them to MWHTS observa-
tions and IMERG data (Figure 12). The location, distribution, and structure information
(Figure 12c–f) retrieved by machine learning models are clearly displayed. Simultaneously,
retrieved precipitation spatial distribution is greatly consistent with IMERG data. Therefore,
from a qualitative point of view, four machine learning models are feasible and scientific.
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Table 6. Evaluation results of four machine learning models with different rain rate interval and
temporal matching difference between MWHTS and IMERG data.

Model Rain Rate Temporal Matching Difference
Ocean Area Land Area

MSE MAE R2 MSE MAE R2

RFR

0–5 (mm/h)
0–10 min 0.22 0.29 0.72 0.26 0.31 0.63

10–20 min 0.23 0.29 0.71 0.26 0.32 0.63
20–30 min 0.23 0.30 0.70 0.27 0.32 0.62

5–15 (mm/h)
0–10 min 7.56 1.95 0.75 8.05 1.98 0.66

10–20 min 7.77 2.01 0.71 8.23 2.06 0.65
20–30 min 7.89 2.07 0.70 8.45 2.19 0.62

>15 (mm/h)
0–10 min 12.02 6.07 0.81 13.37 6.74 0.69

10–20 min 14.36 6.43 0.74 15.65 7.13 0.67
20–30 min 17.01 7.01 0.68 17.89 7.46 0.63

SVM

0–5 (mm/h)
0–10 min 0.33 0.31 0.67 0.35 0.42 0.45

10–20 min 0.34 0.31 0.67 0.36 0.42 0.45
20–30 min 0.34 0.32 0.67 0.37 0.43 0.44

5–15 (mm/h)
0–10 min 8.38 2.23 0.69 8.99 2.78 0.48

10–20 min 8.91 2.36 0.68 9.12 2.96 0.46
20–30 min 9.26 2.43 0.67 9.34 3.18 0.45

>15 (mm/h)
0–10 min 14.43 6.97 0.72 13.97 7.24 0.52

10–20 min 16.86 7.82 0.68 15.79 8.04 0.46
20–30 min 18.16 8.97 0.62 18.01 9.65 0.40

MLP

0–5 (mm/h)
0–10 min 0.29 0.31 0.70 0.29 0.33 0.61

10–20 min 0.28 0.31 0.70 0.29 0.32 0.61
20–30 min 0.27 0.30 0.70 0.27 0.31 0.60

5–15 (mm/h)
0–10 min 7.95 2.01 0.73 8.34 2.13 0.64

10–20 min 8.09 2.21 0.70 8.63 2.38 0.63
20–30 min 8.39 2.43 0.70 8.97 2.54 0.60

>15 (mm/h)
0–10 min 12.02 6.07 0.79 14.71 6.99 0.67

10–20 min 14.36 6.43 0.70 17.34 7.73 0.65
20–30 min 17.01 8.01 0.63 19.61 8.49 0.61

GBRT

0–5 (mm/h)
0–10 min 0.23 0.30 0.71 0.28 0.31 0.63

10–20 min 0.24 0.30 0.71 0.28 0.32 0.62
20–30 min 0.24 0.30 0.70 0.29 0.33 0.61

5–15 (mm/h)
0–10 min 7.65 1.99 0.77 8.09 1.99 0.65

10–20 min 7.89 2.08 0.70 8.31 2.09 0.65
20–30 min 8.06 2.15 0.69 8.57 2.20 0.62

>15 (mm/h)
0–10 min 12.11 6.09 0.80 13.46 6.79 0.68

10–20 min 14.67 6.53 0.74 15.71 7.24 0.66
20–30 min 17.11 7.08 0.67 17.99 7.57 0.63
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Figure 12. Spatial maps of MWHTS observations (a), IMERG data (b), and retrieval results using
RFR (c), SVM (d), MLP (e), and GBRT (f) models from 13:30 to 14:30 UTC on 5 August 2019 over the
Northwest Pacific region.

5. Discussion

Both RFR and GBRT models belong to ensemble learning algorithms (including bag-
ging and boosting methods). They combine multiple weakly supervised models to obtain a
better model. The fundamental idea of ensemble learning is that even if one weak super-
vised model obtains relatively inaccurate prediction, other weak models can correct the
error to a certain extent. Specifically, the RFR model is characterized by the bagging method.
That is, bootstrap sampling is applied to randomly select samples from the training set
for N times. In that case, N weak supervised models are trained independently, and final
output is obtained through ensemble strategy. It is worth noting that N weak models are
independent of each other and are trained in parallel. Simultaneously, because the training
set changes with each sampling, the results of N weak models are different, which shows
that the bagging method has strong generalization ability and plays a significant role in
reducing model variance. The GBRT model adopts gradient boosting algorithm based on
the boosting method. In the function space, the loss function decreases along the gradient
direction, and model performance is improved by reducing the deviation. In the training
process, a weak supervision model is firstly initialized to obtain the predicted value and
loss, and then the subsequent model learns according to the previous model loss. Each step
of iteration can make up for the shortcomings of the previous model. Finally, the predicted
value of the model is the cumulative output of many previous models. Therefore, whether
based on ocean data or land data, the RFR and GBRT model have strong generalization
abilities and performance.

The above analysis illustrates that machine learning is a powerful tool for data anal-
ysis and extracting the complex relationships between variables. In addition, this paper
incorporates three TB combinations as inputs, which can better characterize precipitation at
different intensities and further improves the retrieval accuracy. Nevertheless, the robust-
ness and antinoise ability of the four machine learning methods need to be further tested.
To this end, this paper adds Gaussian distribution noises with variance of 0.4, 0.8, 1.2, 1.6,
and 2 on the TB (Figure 13).

From Figure 13, it can be inferred that RFR and GBRT models still have the best
retrieval performance under Gaussian noise condition, which reflects the strong robustness
and antinoise performance of the ensemble learning algorithm. Compared with the results
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based on ocean data, the models based on land data are more sensitive to noise due to
the more complex background, especially for SVM and MLP models. When the variance
of noise changes from 0 to 2, the MSE of the MLP model increases from 1.96 mm/h to
4.13 mm/h and the MSE of the SVM model changes from 2.72 mm/h to 4.65 mm/h.
Therefore, models based on ocean area have stronger ability to explain and fit precipitation,
to a certain extent.

Figure 13. Evaluation scores of machine learning models with verification set under different noise
conditions: Panels (a,c,e) are the results based on ocean verification data, whereas panels (b,d,f) are
the results based on land verification data.

6. Conclusions

Based on MWHTS observations, four machine learning models (RFR, SVM, MLP,
and GBRT) are applied for precipitation retrieval. This paper determines the optimal
hyperparameters of the machine models using grid search and cross-validation meth-
ods. Simultaneously, this research adds TB combinations as additional inputs, which can
better characterize precipitation of different intensities. The encouraging results show
that retrieval accuracy is significantly improved with linear combinations, especially for
183.31 ± 3.0–183.31 ± 7.0 GHz and 183.31 ± 1.0–183.31 ± 7.0 GHz. In addition, this paper
analyzes the retrieval results from the perspective of the different rain rates and temporal
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matching difference between MWHTS and IMERG data. The generalization capability and
robustness of each machine learning model are also analyzed. It can be inferred that the
RFR model and the GBRT model still maintain the best retrieval accuracy under different
Gaussian noise conditions, indicating the strong robustness and antinoise performance of
ensemble learning models for precipitation retrieval.

With the successful launch of satellite series FY-3, MWHTS onboard FY-3 can be
considered as supplementary instruments for multi-sensor products in the future and make
further valuable contributions to the global precipitation observation system. In addition
to that, deep learning techniques should be considered in future development of satellite
precipitation retrieval algorithms. Simultaneously, machine learning models in this paper
rely only on the passive microwave radiometer to retrieve precipitation; future work can
focus on the introduction of radar data and other multisource data for joint retrieval.
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