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Abstract: Very high resolution (VHR) images change detection plays an important role in many
remote sensing applications, such as military reconnaissance, urban planning and natural resource
monitoring. Recently, fully connected conditional random field (FCCRF)-facilitated deep convolu-
tional neural networks have shown promising results in change detection. However, the FCCRF in
change detection currently is still postprocessing based on the output of the front-end network, which
is not a convenient end-to-end network model and cannot combine front-end network knowledge
with the knowledge of pairwise potential. Therefore, we propose a new end-to-end deep Siamese
pairwise potential CRFs network (PPNet) for VHR images change detection. Specifically, this method
adds a conditional random field recurrent neural network (CRF-RNN) unit into the convolutional
neural network and integrates the knowledge of unary potential and pairwise potential in the end-to-
end training process, aiming to refine the edges of changed areas and to remove the distant noise.
In order to correct the front-end network identification errors, the method uses effective channel
attention (ECA) to further effectively distinguish the change areas. Our experimental results on two
data sets verify that the proposed method has more advanced capability with almost no increase in
the number of parameters and effectively avoids the overfitting phenomenon in the training process.

Keywords: very high resolution (VHR) images; change detection; full convolutional network (FCN);
CRF-RNN; effective channel attention (ECA)

1. Introduction

Change detection has been one of the important research directions of remote sens-
ing imagery processing. It plays an indispensable role in many practical applications,
such as military reconnaissance, urban planning, natural resource monitoring, ecosystem
monitoring and disaster assessment [1–6]. The widely recognized definition of change
detection comes from [7]: Change detection is the processing of identifying the difference
of an object by observing it at the same location at different times. Generally speaking,
the complete process of change detection is divided into four steps: data preprocessing,
change detection/change difference information extraction, threshold segmentation and
performance evaluation [8]. Among them, the extraction of change difference information
is the most concerned research content.

Most early change detection methods are unsupervised where multitemporal images
are compared to generate the pixel-wise difference. The comparison can be implemented
via band difference, band ratio, band regression and the measure of spectral angle [7]. The
results obtained by these basic methods are often referred to by later developed meth-
ods and integrated from different perspectives to improve the performance of change
detection [9–11]. Change vector analysis (CVA) proposed in [12] is one of the most popular
methods where the multiple changed regions are recognized via analyzing the change
vector generated by band-wise difference. Other improved methods based on CVA have
been continued up to now, and some of them are listed in [13–16]. Principal component
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analysis (PCA) is an unsupervised dimensionality reduction method, which converts
image information into orthogonal feature vectors and then selects some important prin-
cipal components as data to be processed in the next step. The disadvantage of it is that
the features after dimensionality reduction have no corresponding practical significance
sometimes [17]. Based on canonical correlation analysis, multivariate alteration detection
(MAD) was used to detect changed regions in different bands of images by maximizing the
variance of change vectors [18]. Combined with expectation-maximum algorithm, itera-
tively reweighted multivariate alteration detection (IR-MAD) [19], the iterative weighting
algorithm based on MAD, was proposed.

Due to the rapid development of remote sensing technology recently, SPOT, GF,
Worldview, IKONOS, QuickBird and other satellite sensors generate a large number of
available VHR images. The VHR image means that a pixel represents 0.5–10 m of ground
objects. They have rich geographical information and show a closer spatial correlation
between pixels. As a result, the research of city change analysis and building detection has
been promoted [5,20–22]. Meanwhile, VHR image has gradually become one of popular
image data types in change detection. However, the traditional change detection methods
for low- or medium-resolution images are not enough to cope with the challenges brought
by the improvement of image spatial resolution. How to extract rich spatial information
has become the main problem of high-resolution image change detection. The VHR images
require effective spatial environment modeling methods to accurately capture change
information. Focusing on this point, many unsupervised methods have been proposed.
In [23], spatial information such as texture and morphological contour is combined with
spectral information to achieve higher change detection accuracy. A VHR images change
detection algorithm [24] extracts object-level change features and then performs progressive
features classification, achieving advanced detection performance. With the rich details
and the impact of imaging conditions such as illumination, shade and variance of view
angles, some semantic information should be used to avoid detecting inessential changes.
Since then, supervised methods have been popular recently for VHR images. A transition
detection method is proposed in [25] based on text forest for remote sensing images, by
extending the binary tree structure in the traditional method to the four-decision tree
structure. Using the classificatory information is an intuitive way for change detection, so
that object-based methods which detect the changes according to territorial classification
are popular for VHR images change detection [24,26,27]. However, the accuracy of such
methods severely depends on the performance of classification methods.

Recently, conditional random fields (CRF) and Markov random fields (MRF) based on
probabilistic graph model are introduced into change detection. These methods [28–34]
combine rich spatial information well to ameliorate the robustness of change detection.
VHR image change detection involves a large number of observed variables and interde-
pendent variables that need to be predicted. As a structured prediction method [33], the
conditional random field is essentially a combination of classification and graphic modeling.
The combination of the ability of graphical model to model remote sensing multivariate
data and the ability to predict a large number of input features in change detection can
significantly improve the accuracy of change detection. L. Zhou et al. [31] designed a
change detection model that alleviates the oversmooth performance of pairwise potential
based on high-order potential CRF with regional connection constraints. Reference [32]
proposed the hybrid conditional random field (HCRF), which introduced an object item
to balance the excessive smoothing problem of the random field approach and reduce
the detection errors caused by the segmentation strategy in the object-based approach.
However, the feature extraction ability of these methods is still weak, which is not enough
to fully represent the important information of the original VHR images.

At the same time, a large number of advanced and effective deep networks combined
with CRFs have emerged in the field of computer vision in different applications, such
as semantic segmentation [35], semantic labeling [36], depth estimation [37] and material
recognition [38]. Because of the powerful ability of deep learning to learn representative and
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discriminative features, it has played a significant role in the field of remote sensing data
and has won more and more attention [39,40]. Convolutional neural network (CNN) [41] is
one of the most classical networks in computer vision and has the ability to automatically
capture multilevel features. At the same time, CNN is often used as the backbone network
for VHR images change detection. The deep features can be learned without annotated data
or transferred from other types of tasks. As a consequence, some unsupervised methods are
proposed to better represent the input images. Saha et al. [42] adopted deep change vector
analysis (DCVA) combined with CNN and CVA for unsupervised change detection. Firstly,
CNN is used to extract the difference vectors, and some vectors related to change detection
are selected from the deep difference vectors to form the deep change vectors. Then, the
traditional CVA algorithm is used to deal with these vectors for binary change detection
and multiclassification change detection. In [43], deep convolutional coupled network
(SCCN) is used for change detection of two heterogeneous imageries acquired by optical
sensor and radar. SCCN, where the two input images, respectively, connected to both
sides of the network are converted into a feature space so that their feature representation
becomes more consistent, is symmetric. However, without the annotated data, the learned
deep features cannot well represent the change detection tasks. Recently, many end-to-end
networks have been proposed. Zhan et al. [44] designed a Siamese convolutional network
for change detection and used weighted contrast loss function to solve the problem of a
few changed areas in samples. Three different deep full convolutional networks [45] are
designed based on U-net backbone network, and all adopted end-to-end training which
further simplified the processing of change detection. H. Chen et al. [46] proposed a deep
Siamese full convolutional network with multiscale theory and refined the results of change
detection by using the traditional fully connected conditional random field algorithm.

However, the above change detection methods combining probability graph model
and deep learning are based on the traditional CRF framework, and these methods have
obvious deficiencies in the unity of training process and the combination of potential
functions. On the one hand, the pairwise potential function of the traditional CRF method
is based on the probability graph given by a strong unary potential function, which makes
the complicated piecewise training process. On the other hand, deep convolutional neural
network (DCNN) and FCCRF [47], which represent unary potential and pairwise potential,
respectively, are sequential rather than joint in the traditional framework, which also
hinders the knowledge fusion of potential functions before and after. Therefore, it is
necessary to structure the traditional FCCRF and propose the end-to-end change detection
convolutional neural network. In addition, the filter bandwidths and category compatibility
coefficients in the traditional FCCRF are often set through manual experience and grid
search, while in the end-to-end change detection convolutional neural network, they are
learned through training, which further increases the generalization ability of the method.
Based on the inspiration obtained by [48], the training advantage and knowledge fusion
brought by the CRF-RNN unit are suitable for change detection of VHR optical images.

Furthermore, we observe that the detection errors of change detection can be generally
divided into two types: edge errors and internal errors of change regions. The edge errors
of change detection have been corrected by FCCRF. However, the internal errors of change
regions or the identification errors of small change regions need to be corrected by a more
powerful unary potential network. Therefore, ECA [49] was introduced to emphasize
the channels related to change information among deep features extracted by FCN, to
distinguish changed and unchanged regions more forcefully. ECA has very few parameters
in various attention units [49–54] and avoids the overfitting phenomenon in training while
improving performance. In addition to improving the network structure, we adopt the
method of combining binary crossentropy loss and dice loss in the loss function to further
solve the unbalanced category problem in the change detection network [44–46]. To sum
up, the main contributions of this work can be summarized as follows:
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(1) We propose a novel deep Siamese pairwise potential CRFs network (PPNet) for
change detection, which uses an end-to-end training method. We introduce CRF-RNN
module which integrates the knowledge of unary potential and pairwise potential in
the end-to-end training and improves the overall performance of the whole algorithm.
To the author’s knowledge, this method is the first to implement end-to-end FCCRF
convolutional neural network in change detection;

(2) In order to correct the identification errors of front-end network, this method uses
ECA to further distinguish the changed area effectively. ECA uses one-dimension
convolution with adaptive kernel size to avoid dimension reductions and maintain
the appropriate crosschannel interactions. This method is the first to verify the
effectiveness of ECA in the application of change detection;

(3) Our experimental results on two data sets verify that this method has advanced
capability in the same kind of methods. This method improves the capability of change
detection without increasing the number of parameters and avoids the overfitting
phenomenon in the training process.

In this paper, focusing on VHR images, we propose a new end-to-end deep Siamese
pairwise potential CRFs network for change detection. The rest of this article is arranged as
follows: The details of the proposed method are presented in Section 2. The performance
of the method is evaluated in Section 3. Finally, we discuss the experiment in Section 4 and
conclude the article in Section 5.

2. Methodology

In this section, we introduce in detail the proposed network architecture PPNet for
VHR images change detection. As shown in Figure 1, the proposed method is based on
the hop convolution neural network with Siamese architecture. The encoder network
extracts the multiscale feature maps from multitemporal remote sensing images, and the
decoder network generates the change map according to the feature differences and the
multiscale feature maps of a ramification. We take the probability graph generated by
the basic network as the unary potential of CRF and combine CRF-RNN unit to form the
end-to-end FCCRF network architecture. Then, ECA units are used to better distinguish the
channels related to change detection in the feature maps. The change map can be obtained
by feeding paired change images of the shallow ground into the network.

Considering T1 and T2 as the input VHR images, the whole algorithm process can be
formulated as follows:

U = fDSMSFCN−ECA(T1, T2), (1)

DI = fCVA(T1, T2), (2)

CM = fCRF−RNN(U, DI). (3)

where fDSMSFCN−ECA, fCVA and fCRF−RNN represent DSMSFCN-ECA front-end network,
CVA algorithm and CRF-RNN unit, respectively. U, DI and CM represent the output
of DSMSFCN-ECA, difference image and change map, respectively. The training and
reasoning process of the whole algorithm are convenient, and the detection accuracy is
more superior. In the following sections, we introduce the CRF-RNN unit, the ECA unit
and the whole algorithm in turn.
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Figure 1. The illustration of the proposed PPNet architecture. It is composed of the encoder net
and the decoder net. The encoder net is divided into two data streams with shared weight, and
the decoder net discriminates the changed regions. The blue and white modules represent the
concatenating modules, and the red module represents CRF-RNN unit. The input of CRF-RNN unit
is the output of the front-end network and the difference image, and the output is the change map.
CRF-RNN unit is jointly trained with the front-end network.

2.1. CRF-RNN Unit

Deep learning based on convolution structure lacks the ability to accurately describe
visual objects. Traditional CNN generates rough pixel-level labels due to the convolution
filter with large sensing domain and lacks smoothing constraints to encourage label con-
sistency between similar pixels, as well as appearance consistency in close spaces of label
output. However, probabilistic graph models such as CRF have natural advantages in
encouraging label consistency between similar pixels. CRF inference refines images to
produce clear boundaries and fine-grained change detection results. However, traditional
FCCRF is used as the DCNN post-processing method so that the weights of deep learning
cannot adapt to the behavior of CRF in the training stage. The probability graph network
combining DCNN and FCCRF has the advantages of both and learns the parameters of
both together in the end-to-end training process. The filtering bandwidths and category
compatibility coefficients in the traditional FCCRF method can be obtained through net-
work learning. Specifically, we formalize conditional random field with Gaussian pairwise
potentials and mean field approximate reasoning as an RNN unit which is combined with
a deep siamese FCN network at the front end.

FCCRF is a conditional probability distribution that gives a set of input variables and
solves for another set of variables. The energy function of FCCRF [47] is defined as follows:

E(Y|X) = ∑
i

ϕu(yi) + ∑
i<j

ϕp(yi, yj), (4)

where the values of i and j range from 1 to N, ϕu represents unary potential, and ϕp
represents pairwise potential. In change detection, X = {x1, x2, . . . , xN} is a observation
image obtained by the difference image of multitemporal images, and Y = {y1, y2, . . . , yN}
is a binary change map. The domain of yi is L = {0, 1}. Unary potential is ϕu(yi) =
−logP(yi), where P(yi) calculated by the front-end network is the change probability of
pixel i.
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Furthermore, all pixel pairs have corresponding pairwise terms for all pixels in the
image. The definition of pairwise potential ϕp(yi, yj) is:

ϕp(yi, yj) = µ(yi, yj)
M

∑
m=1

w(m)k(m)
G ( fi, f j), (5)

where µ is a penalty, µ(yi, yj) = 1 if yi 6= yj, 0 otherwise. kG is a Gaussian kernel, w is the
Gaussian kernel weight, and M is the number of kernels. fi and f j are, respectively, the
feature vectors of pixel i and j in the feature space. In change detection, the kernel is:

kG( fi, f j) = w(1) exp(−
|pi − pj|2

2σ2
α
−
|Ii − Ij|2

2σ2
β

) + w(2) exp(−
|pi − pj|2

2σ2
γ

). (6)

where the first appearance kernel depends on pixel coordinates (denoted by p) and spectral
difference intensity (denoted by I), and the second smoothing kernel only depends on pixel
coordinates. Further said that the above spectral difference intensity refers to the spectral
difference between pi and pj in the change difference image that has three channels. The
parameters σα, σβ and σγ control the execution strength of the two kernels. The pairwise
energy defines a smoothing term that encourages assigning similar labels to pixels with
similar characteristics.

The iterative algorithm of mean-field reasoning of FCCRF is decomposed to CNN
operations and then reconstructed to an RNN unit [48]. The CRF-RNN unit is shown
in Figure 2. The change map (CM) can be obtained by inputting the change probability
image U from unary potential and the change difference image (DI) from CVA. Softmax
normalization is used to initialize the difference image for the first input. There is then an
iteration through message passing, reweighting, compatibility transform, unary addition
and normalization. In fθ(U, Z1, DI), θ = {w(m), µ(yi, yj)}, m ∈ {1, . . . , M}, and yi, yj ∈
{0, 1}. These parameters can be learned in RNN unit using the standard back propagation
algorithm [55,56]. Our experiments show that the iterative convergence of CRF-RNN unit
is fewer than 10 times.

Figure 2. CRF-RNN unit. Each iteration of the mean field algorithm be transformed to a stack of
CNN layers in the network.

The execution of the unit is expressed by the following equations where G1 and G2
are gated functions, Z1 and Z2 are hidden states, and T is the number of iterations of the
mean field:

Z1(t) =
{

so f t max(U), t = 0
Z2(t− 1), 0 < t ≤ T,

(7)

Z2(t) = fθ(U, Z1(t), DI), 0 ≤ t ≤ T, (8)

CM(t) =
{

0, 0 ≤ t < T
Z2(t), t = T.

(9)
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2.2. ECA Unit

The refinement of the FCCRF pairwise potential for the unary potential probability
image is mainly aimed at the edge errors in the change detection regions. However, the
internal errors or recognition errors in the change detection regions need to be corrected
by unary potential network with more recognition ability. Attention mechanisms [50,51]
have significant effects in many CNN networks. More specifically, different attention
mechanisms effectively decrease the identification errors of FCN network in general. The
existing methods tend to use more complex attention units to improve the robustness
of the network and also inevitably increase the complexity and computational burden.
For two reasons of reducing network complexity and the small amount of data in the
high-resolution data set for change detection, lightweight ECA units [49] are introduced. In
the case of almost no increase in the number of parameters, the effect of change detection is
improved, and the overfitting phenomenon is avoided.

ECA is an improvement over the squeeze-and-congestion (SE) attention. Here, avoid-
ing dimension reduction and maintaining appropriate crosschannel interaction are the
differences between ECA and SE. We use ECA instead of SE because FCN network with
ECA can achieve more advanced detection performance with fewer parameters through
the above two strategies. Moreover, ECA adopts the adaptive selection method of one di-
mension convolution kernel to properly solve the dependence between channel dimension
and the size of one-dimension convolution kernel.

The ECA experiments found through the analysis of SE that all channels should share
the same learning parameters, namely:

ωi = ρ(
k

∑
j=1

ω jzj
i), zj

i ∈ Ωk
i . (10)

In the above formula, ω is the ECA weight, and ρ is sigmoid function. The value of i
ranges from 1 to C, where C is the channel dimension. Ωk

i is the set of K adjacent channels
of zi. The one-dimension convolution with kernel size k is implemented:

ω = ρ(C1Dk(z)). (11)

where z is a vector obtained by global average pooling (GAP) of channel dimensions, ω is
the learning weight of ECA, and C1D represents one-dimension convolution. This formula
is a simplified version of the previous formula.

The coverage of crosschannel interaction often requires the manual adjustment of
the size of the one dimension convolution kernel in different CNN architectures. In the
view of the principle of group convolution [57–59], we assume that there is a nonlinear
mapping C = h(k) between the channel dimension C and the size k of the one dimension
convolution kernel. Given the channel dimension C, the kernel size k can be determined
adaptively:

k = g(C) =
∣∣∣∣ log2(C)

γ
+

b
γ

∣∣∣∣
odd

. (12)

where |t|odd represents the closest odd number of t, g is a mapping from C to k, and γ and b
are set to 2 and 1, respectively. By adjusting the g mapping, the high-dimensional channels
maintain long distance interaction, while the low-dimensional channels are short.

Figure 3 illustrates how the ECA unit works. A 1 × 1 × C vector is obtained by using
GAP for the V vector of H ×W × C without dimensionality reduction. Through the adap-
tive one-dimension convolution kernel selection strategy, the size of convolution kernel k is
determined to represent the range of local crosschannel interaction. Then, one-dimension
convolution is performed, and the channel attention is learned by sigmoid function. Finally,
the result of ECA’s attention, V vector, is learned by the element-wise product:

V = V ⊗ω = V ⊗ (ρ(C1Dk(z))). (13)
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The channel attention mechanism distinguishes the changed regions by emphasizing
the channels related to the changing information in the deep features extracted by CNN.

Figure 3. A diagram of the efficient channel attention (ECA) unit. The aggregation features are ob-
tained by GAP, and ECA generates channel weights by performing a fast one-dimension convolution
of size k, where k is determined by mapping adaptation of the channel dimension C.

2.3. VHR Images Change Detection Algorithm Based on PPNet

The specific architecture of deep Siamese pairwise potential CRFs Network proposed
in this paper is shown in Figure 1. PPNet is a supervised fully convolutional network for
change detection. It consists of the encoder network and the decoder network. The encoder
network is divided into two data streams with shared weights, and the decoder network
performs the discrimination of changed regions.

Each branch of the decoder has four subsampling layers. The first two subsampling
layers are composed of two 3 × 3 convolution layers and a 2 × 2 max pooling layer,
respectively. The latter two subsampling layers include two multiscale convolutional
layers MFCU [46] and a 2 × 2 max pooling layer, respectively. Based on the hop structure
proposed in U-net [60], four subtractions and absolute value operations are performed for
the deep features of different scales, to obtain four deep difference features of different
scales. Because the multiscale hop structure is beneficial for generating a more accurate
binary change map. In the change detection stream, the deep difference features are
concatenated with the corresponding scale deep features. ECA attention mechanism is used
after concatenating module to improve the identification of changed areas by emphasizing
the feature channels related to change information. The network uses softmax activation
function to generate the network probability image which is input into CRF-RNN unit as
the unary potential output of CRF with the change difference image obtained by CVA. With
the advantages of joint training and learnable parameters, the pairwise potential CRF-RNN
unit produces the final change map with fine edges.

The change detection algorithm flow for VHR images based on PPNet is shown in
Table 1. Because fully connected conditional random field [47] models all pixels and their
spatial context information, the final change map has a more accurate boundary than the
previous and removes the noise with a longer distance. In addition, the CRF-RNN unit
adopts the high-dimensional filtering algorithm; as a result, the whole algorithm needs
some time in training process, but its inference speed is still relatively fast.
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Table 1. The change detection algorithm flow for VHR images.

The VHR images change detection algorithm based on PPNet.

Input:
1. A pair of VHR images in the same region at different times with a corresponding
ground truth.
Step 1: Pairwise VHR images are clipped according to the corresponding size, and
then the whole Images T1 and T2 of pairwise H×W×C are put into the network.
Step 2: The training is carried out on the training set or verification set by the DSMS-
FCN network joining ECA. The deep features and deep difference features of paired
images were extracted from the same feature space of Stream T1 and Stream T2, and
then change detection stream was used to discriminate the changed regions. The
relatively rough change probability image U is obtained.
Step 3: CVA is used to calculate the differential image of pairwise VHR images.
Step 4: The change probability image U and the difference image are taken as the
input of CRF-RNN unit, and the network weight obtained in step 2 is taken as the
initial value, which conduct joint training with pairwise potential CRF-RNN on the
training set or verification set. The number of iterations T in CRF-RNN is generally
set to 5. Finally, the optimal network weight of PPNet can be obtained.
Step 5: By inputting pairwise test images, the end-to-end network infers the change
map of H×W and obtains the changed regions and the unchanged regions.
Output:
1. Change map.

2.4. End-to-End Training

The unbalanced category problem often exists in change detection tasks. There are
fewer regions of changed compared to unchanged regions. In order to overcome this
problem, the following loss function is used in the training of the whole algorithm:

L = q̂logq + (1− q̂)log(1− q)+λLDice. (14)

The loss function L consists of binary cross entropy (BCE) loss and dice loss LDice [61].
q̂ is the change map of the test output, and q is the ground truth. λ adjusts the weights of
this two loss functions. We set λ to 0.5 in the experiment. Dice loss LDice is as follows:

LDice = 1−2|q∩ q̂|+1
|q|+|q̂|+1

. (15)

where |q∩ q̂| is the intersection between q and q̂, and |q| and |q̂| represents the number
of elements of q and q̂, respectively. The numerator is multiplied by 2 to ensure that
the denominator is in the range of [0, 1] after repeated calculation. LDice has a robust
performance in the scene with serious imbalance of positive and negative samples, and it
pays more attention to the mining of the foreground areas in the training process. However,
in the case of small targets, the training loss is unstable. In addition, in extreme cases, it
leads to gradient saturation. Therefore, we combine BCE loss and dice loss LDice to train
and infer the network architecture.

The training and inference of the whole algorithm are end-to-end. During the test, the
whole image can be input in pairs to obtain the whole change map. In order to make the
training more steady and converge at a faster speed, the DSMS-FCN network [46] added
ECA needs to be trained first. Then, based on the weight of the basic network as the initial
value, the joint training of the PPNet with the probabilistic graphical modeling of structured
prediction based on CRF is performed. In the training process, the backpropagation
algorithm is used for end-to-end optimization of the whole network parameters, where the
kernel function weights and compatibility coefficients of CRF-RNN are learnable.



Remote Sens. 2022, 14, 841 10 of 19

3. Results

A large number of experiments are carried out on two VHR images change detection
data sets to prove the advance of the proposed algorithm. First of all, the two VHR images
change detection data sets are described. Then, this section describes the evaluation index
and parameter setting of the experiment. Finally, the experimental results are analyzed
in detail, and the advantages and disadvantages of this method and other latest methods
are described.

3.1. Data Sets

The two datasets, SZTAKI AirChange Benchmark set (ACD) and LEVIR-CD, were
used to train the proposed network and evaluate our method. The ACD dataset is one
of the commonly used data sets in the field of change detection, for which many change
detection algorithms [28,43–46,62–64] have been compared. It contains two small datasets,
Szada and Tiszadob, which are difficult to detect. The ACD Szada dataset contains seven
sets of dual-phase RGB aerial image pairs and corresponding ground truth obtained under
different seasonal conditions. Each image is 952 × 640 and has the spatial resolution of
150 m per pixel. The main differences between the image pairs are a lot of trivial changed
areas of new buildings, new farmland and land surfaces before reconstruction. We cropped
the size of seven pairs of images to 784 × 448 and enhanced them using image flipping and
image rotation. The Szada-1 was used as the test image, and the rest images were used as
the training set. The test image pair is shown in Figure 4.

Figure 4. The multitemporal images selected from the ACD Szada dataset as the test set. (a) Prechange
of Szada-1. (b) Postchange of Szada-1. (c) Ground truth.

The second dataset is the LEVIR-CD dataset [64]. It is a new benchmark for change
detection methods [64–68] based on deep learning, mainly consisting of large-scale remote
sensing buildings, such as warehouses, large apartments, villas and garages. This dataset
consists of 637 pairs of VHR (0.5 m/pixel) Google Earth images, the size of which is
1024 × 1024 pixels. We mainly focus on the change of the built area, which includes the
change from the soil/grassland/original surface to the emergence of new buildings and the
change of the original built area destruction. The LEVIR-CD dataset contains seasonal and
light-induced change, which facilitates the development of more robust change detection
methods. We cropped the size of LEVIR-CD dataset to 256 × 256 pixels. The LEVIR-CD
data set is shown in Figure 5 and, respectively, has 7120 groups of image training set,
1024 groups of image verification set and 2048 groups of image test set.
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Figure 5. Some of the samples of 256× 256 are obtained by sizing the LEVIR-CD dataset. Each column
represents a group of samples, containing 3 images of prechange, postchange and ground truth.
White and black represent areas of changed and unchanged, respectively. (a–f) show, respectively,
addition and destruction of buildings. (g,h) show samples with no change.

3.2. Experimental Details
3.2.1. Evaluation Indexes

Evaluation indexes are used to analyze the performance of change detection algo-
rithms. In our experiments, total accuracy (OA) and F1 coefficient are used to evaluate
different change detection algorithms. About the OA and F1 coefficient, four indexes are
used: (1) true positives (TP), the number of correctly detected changed pixels; (2) true nega-
tives (TN), the number of correctly detected unchanged pixels; (3) false positives (FP), the
number of unchanged pixels that are incorrectly detected as changed pixels; and (4) false
negatives (FN), the number of changed pixels that are incorrectly detected as unchanged
pixels. Specifically, OA is defined as

OA =
TP + TN

TP + TN + FP + FN
. (16)

F1 coefficient is an index used to measure the performance of binary classification
model, and it also takes into account the precision and recall of classification model.
In essence, change detection is a dichotomous problem. F1 coefficient is regarded as a
weighted average of precision and recall. In addition, they are, respectively, expressed
as follows:

precision =
TP

TP + FP
, (17)

recall =
TP

TP + FN
, (18)

F1 =
2× TP

2× TP + FP + FN
. (19)

3.2.2. Parameter Settings

All the experiments are completed on Ubuntu18.04 using an NVIDIA GeForce RTX
2070 SUPER card. The parameters are set as follows: Adam optimizer [69] is used in the
training process. For the ACD data set, the initial learning rate is set to 2× 10−4, and it
is changed to 1× 10−5 during the training of CRF-RNN unit. While the initial learning
rate should be set to 1× 10−4 for the LEVIR data set. The settings enable training to find
the optimal value quickly and smoothly. Dropout is used to avoid overfitting during the
training. For the ACD data set, we set up 250 epochs to train the basic network that joined
ECA unit, while the training of PPNet generally converges within 30 epochs. However, for
the LEVIR dataset, we set 100 epochs to train the DSMSFCN-ECA network, while PPNet
converges within 40 epochs. The kernel size k of ECA is set in the adaptive form. The filter
bandwidth σα, σβ and σγ of CRF-RNN are set to 300, 3 and 3, respectively. The number of
iterations of CRF-RNN in the training is set to 5, and the optimal number of iterations in
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the test is set to 20. We use Potts model to initialize the compatibility parameters µ(yi, yj)
of CRF-RNN.

For other algorithms, set the parameters as follows: For FC-EF, FC-Siam-Conc, FC-
Siam-Diff and DSMS-FCN, we use the Python code provided by [45,46], and select the same
settings as the original articles. The filter bandwidth σα, σβ and σγ of traditional FCCRF are
set to (5,5), (10,10,5) and (1,1), respectively. In addition, the filtering weight w(1) and w(2) of
FCCRF are 3 and 4, respectively. The number of iterations of FCCRF training and testing is
set to 5.

3.3. Comparison Results

For the ACD Szada dataset, our model is compared with two traditional algorithms
and eight advanced networks to prove the validity of the proposed algorithm. RL [62]
and TBSRL [63] are two traditional algorithms. The eight networks include DSCN [44],
CXM [28], SCCN [43], FC-EF [45], FC-Siam-Conc, FC-Siam-Diff, DSMS-FCN [46] and
STANet [64]. Based on DSMS-FCN, we compare the performance of DSMS-FCN-FCCRF,
DSMS-FCN-ECA and PPNet (DSMS-FCN-ECA joined with CRF-RNN), respectively, to
reflect the role of ECA units and CRF-RNN unit intuitively. The experimental results
of RL, TBSRL, DSCN, CXM, SCCN and STANet are based on the values in [46,64]. For
the LEVIR-CD dataset, we conduct comparative experiments with FC-EF, FC-Siam-Conc,
FC-Siam-Diff, DSMS-FCN and DSMS-FCN-FCCRF.

Table 2 reports different indicators of different methods on the ACD data set Szada-1,
The proposed method achieves optimal values in precision, F1 coefficient and OA. By
adding ECA modules into DSMS-FCN network, the precision and F1 coefficient are im-
proved to 0.6640 and 0.5719, respectively. Meanwhile, OA also achieves a relatively compet-
itive result. On the integrated network PPNet, we achieved the highest values of precision
and OA and the competitive value of F1 coefficient.

Table 2. Evaluation of the results generated by the different algorithms on Szada-1 of ACD dataset.

Method Pre. Rec. F1 OA

RL 0.431 0.507 0.466 NA
TBSRL 0.444 0.619 0.517 NA
DSCN 0.412 0.574 0.479 NA
CXM 0.365 0.584 0.449 NA
SCCN 0.224 0.347 0.287 NA

STANet 0.455 0.635 0.530 NA

FC-EF 0.4729 0.4399 0.4558 0.9341
FC-Siam-Conc 0.4562 0.4808 0.4682 0.9395
FC-Siam-Diff 0.6053 0.4561 0.5202 0.9349
DSMS-FCN 0.6076 0.4833 0.5616 0.9430

DSMS-FCN-FCCRF 0.5684 0.5186 0.5423 0.9440

DSMS-FCN-ECA(Ours) 0.6640 0.5023 0.5719 0.9420
PPNet(Ours) 0.6736 0.4819 0.5619 0.9485

Figure 6 shows the change detection results of the ACD data set Szada-1 by different
methods. The binary change maps of FC-EF, FC-Siam-Conc and FC-Siam-Diff are relatively
rough and have a large number of error detection and missed detection areas. Even if
the detected regions are correct, due to using the convolution, these regions are all large
connected regions without subtle edges. DSMS-FCN with multiscale module achieves
competitive detection effect. By further adding ECA module, DSMS-FCN-ECA minimizes
the missed areas. However, the edges of these networks are rough, and the change maps
have a lot of noise. The traditional DSMS-FCN-FCCRF alleviates these disadvantages of
the networks. Obviously, PPNet correctly detects the most accurate change areas, basically
removing noise, but there is some oversmooth effect.
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Figure 6. Change maps on ACD dataset Szada-1 by different methods. (a) Ground truth. (b) FC-EF.
(c) FC-Siam-Conc. (d) FC-Siam-Diff. (e) DSMS-FCN. (f) DSMS-FCN-FCCRF. (g) DSMS-FCN-ECA.
(h) PPNet.

Combined with Table 3 and Figure 7, we present the comparative experiment results
of different methods on the LEVIR-CD dataset. Our method is superior to other methods
in F1 coefficient, OA and Kappa coefficient, respectively. Figure 7 shows the change maps
for the LEVIR-CD data set by different methods. FC-EF shows the worst results where a
large number of missing areas and error areas are clearly found. FC-Siam-Conc presents
better detection results than FC-Siam-Diff. DSMS-FCN, FC-Siam-Diff with the addition
of inception modules, does not bring any performance improvements, and the traditional
DSMS-FCN-FCCRF has little effect. The attention mechanism of DSMS-FCN-ECA achieves
significant performance with the combined use of BCE loss and dice loss. As shown in line
6 of Figure 7, compared with DSMS-FCN-ECA, PPNET shows the effects of refining the
changed area edges and removing the distant noise.

Figure 7. Change maps on LEVIR-CD dataset by different methods. (a) Prechange. (b) Postchange.
(c) Ground truth. (d) FC-EF. (e) FC-Siam-Conc. (f) FC-Siam-Diff. (g) DSMS-FCN. (h) DSMS-FCN-
FCCRF. (i) DSMS-FCN-ECA. (j) PPNet.
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Table 3. Evaluation of the results generated by the different algorithms on LEVIR-CD dataset.

Method Pre. Rec. F1 OA Kappa

FC-EF 0.8398 0.6723 0.7468 0.9768 0.7348
FC-Siam-Conc 0.9307 0.7559 0.8342 0.9847 0.8263
FC-Siam-Diff 0.9353 0.7374 0.8247 0.9840 0.8164
DSMS-FCN 0.9359 0.7342 0.8229 0.9839 0.8146

DSMS-FCN-FCCRF 0.9360 0.7344 0.8230 0.9839 0.8147

DSMS-FCN-ECA(Ours) 0.9277 0.7730 0.8433 0.9854 0.8357
PPNet(Ours) 0.9193 0.7919 0.8508 0.9859 0.8435

3.4. Failure Cases

Our methods on ACD dataset Tiszadob-3 do not achieve ideal results. As shown in
Figure 8, we provide the change maps of DSMS-FCN, DSMS-FCN-ECA and PPNet on ACD
dataset Tiszadob-3. The F1 values obtained by DSMS-FCN, DSMS-FCN-ECA and PPNet
are 0.6633, 0.6873 and 0.6850, respectively.

Figure 8. Change maps on ACD dataset Tiszadob-3 by different methods. (a) Prechange of Tiszadob-3.
(b) Postchange of Tiszadob-3. (c) Ground truth. (d) DSMS-FCN. (e) DSMS-FCN-ECA. (f) PPNet.

The reason why the ideal change maps are not obtained is that DSMS-FCN basic
network has poor detection performance of Tiszadob-3 image pairs and insufficient recog-
nition ability to distinguish the changed areas from the unchanged areas. DSMS-FCN-ECA
achieves the performance improvement of 0.024. Because the ACD dataset Tiszadob only
has four groups of training images, we use data augmentation technology to expand it to
16 groups. However, PPNet is still not fully trained, and its desired effect is not achieved.

4. Discussions
4.1. Ablation Study

Using the same joint loss function of BCE loss and dice loss, the effectiveness of
each module is intuitively verified based on DSMS-FCN as baseline by comparing the
performances of FCCRF algorithm, CRF-RNN unit and ECA unit. All comparisons use
the same hyperparameter settings. The results in Table 4 show that on LEVIR-CD data set,
and the FCCRF algorithm has no effect, while CRF-RNN unit shows certain improvements
in all indicators. The ECA unit has significant performance gains. The combination of
CRF-RNN unit and ECA unit enables PPNet to achieve the most advanced performance.
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Table 4. Ablation study of FCCRF algorithm, CRF-RNN unit and ECA unit on the LEVIR-CD test set.

Method FCCRF CRF-RNN ECA F1 OA Kappa

DSMS-FCN(base) % % % 0.8354 0.9849 0.8276
DSMS-FCN-FCCRF X % % 0.8354 0.9849 0.8276

DSMS-FCN-CRF-RNN % X % 0.8399 0.9852 0.8324
DSMS-FCN-ECA % % X 0.8433 0.9854 0.8357

PPNet % X X 0.8508 0.9859 0.8435

4.2. Parameters Selection in CRF-RNN Unit

In CRF-RNN unit, the parameters selection of σα, σβ and σγ has great influence on
the change detection results. Due to the long training time of CRF-RNN, we conduct
the selection experiments of these three hyperparameters on ACD Szada-1. As shown in
Figure 9, the range of influence σα is large, while the ranges of σβ and σγ are small. The
optimal F1 value of PPNet is 0.5619 when σα, σβ and σγ are 300, 3 and 3, respectively. At
higher F1 values or other ranges of these three hyperparameters, the changed areas in the
change map are greatly reduced, resulting in oversmoothing effect.

Figure 9. The parameters selection in CRF-RNN unit. (a) σα of CRF-RNN. (b) σβ of CRF-RNN. (c) σγ

of CRF-RNN.

4.3. Comparative Study with SE Attention

Since ECA is an improvement based on SE attention, we compared these two attentions
based on DSMS-FCN net. As shown in Table 5, the experiments prove the effectiveness
of ECA’s avoiding dimension reduction and maintaining the appropriate crosschannel
interaction. In addition, ECA achieves better detection performance with fewer parameters.

Table 5. Comparative study of SE attention and ECA based on DSMS-FCN net.

Method F1 OA Kappa

DSMS-FCN-SE 0.8400 0.9852 0.8324
DSMS-FCN-ECA 0.8433 0.9854 0.8357

4.4. Comparison of the Total Number of Network Parameters

The total number of parameters of five different FCN network architectures is shown
in Figure 10. Compared with the number of parameters of FC-EF, FC-Siam-Conc and
FC-Siam-Diff, the number of PPNet parameters decreased by 34.1%, 43.5% and 34.6%,
respectively. Moreover, our network also adds fewer than 100 parameters over DSMS-FCN.
In other words, the experimental results on two datasets prove that our model achieves
more advanced detection results with almost no increase in the number of parameters. The
reason is that ECA module enhances the detection performance in the channel dimensions,
and CRF-RNN module refines the edges of the changed areas and removes the distant
noise. However, these two modules bring a few parameters and training costs.
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Figure 10. The total number of parameters of the five different FCN network architectures.

5. Conclusions

We propose a new learnable pairwise potential CRFs deep Siamese network architec-
ture for VHR images change detection. To solve the problem that traditional FCCRF cannot
be combined with deep network for training, we use the CRF-RNN unit to integrate the
knowledge of unary potential and pairwise potential in the end-to-end training process,
and the learnable filter bandwidths and compatibility coefficients to further enhance the
performance of probabilistic graph network. On the other hand, compared with other
attention mechanisms, ECA effectively improves the identification errors of FCN network
by avoiding dimension reductions and maintaining appropriate crosschannel interactions.
Our experimental results from two data sets verify that the proposed method has more
advanced capability with almost no increase in the number of parameters. Furthermore, we
verify that the ECA unit and CRF-RNN unit, as general modules, effectively improve the
performance of change detection in deep convolutional networks. Our next work is how to
further improve the oversmooth effect of learnable pairwise potential network. The main
technical route is to enhance the detection capability of the existing basic backbone network
or to introduce higher-order potential to correct the output results of pairwise potential.
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