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Abstract: Multispectral imaging methods typically require cameras with dedicated sensors that
make them expensive. In some cases, these sensors are not available or existing images are RGB,
so the advantages of multispectral processing cannot be exploited. To solve this drawback, several
techniques have been proposed to reconstruct the spectral reflectance of a scene from a single RGB
image captured by a camera. Deep learning methods can already solve this problem with good
spectral accuracy. Recently, a new type of deep learning network, the Conditional Generative Adver-
sarial Network (CGAN), has been proposed. It is a deep learning architecture that simultaneously
trains two networks (generator and discriminator) with the additional feature that both networks
are conditioned on some sort of auxiliary information. This paper focuses the use of CGANs to
achieve the reconstruction of multispectral images from RGB images. Different regression network
models (convolutional neuronal networks, U-Net, and ResNet) have been adapted and integrated as
generators in the CGAN, and compared in performance for multispectral reconstruction. Experiments
with the BigEarthNet database show that CGAN with ResNet as a generator provides better results
than other deep learning networks with a root mean square error of 316 measured over a range from
0 to 16,384.

Keywords: spectral reconstruction; multispectral image; deep learning; CGAN

1. Introduction

Multispectral images have numerous applications in remote sensing ranging from
agriculture [1,2] to environmental monitoring [3,4], change detection [5,6], and geology [7].
The main difference of multispectral images compared to RGB images is the incorporation
of narrow bands in a specific wavelength range. These bands can include wavelengths in
the visible (VIS, 380–800 nm), visible and near infrared (VNIR, 400–1000 nm), near infrared
(NIR, 900–1700 nm), short-wave infrared (SWIR, 1000–2500 nm), mid-wave infrared (MWIR,
3–5 µm), and long-wave infrared (LWIR, 8–12.4 µm) spectrum. The wavelengths may be
separated by filters or detected via the use of instruments that are sensitive to particular
wavelength. Figure 1 shows a multispectral image taken by the Sentinel-2 satellite [8].

Many sensors for remote sensing capture multispectral images. However, they are
more expensive than RGB cameras since the extended spectral information provided
by these sensors requires additional complexity. The main application of multispectral
reconstruction is the generation of multispectral images when this type of sensor is not
available or when the only available images are RGB. In the case of having a mixture of RGB
and multispectral images, multispectral reconstruction allows uniform processing. This can
be important for change detection applications when part of the available images are RGB,
and part are multispectral. Multispectral reconstruction can also be useful in applications
that require multispectral image processing, but only RGB images are available. In this
case, the spectral reconstruction could be considered as a preprocessing stage like that
performed with filters and morphological or attribute profiles to highlight structures in the
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images. This spectral preprocessing could be useful in classification and object detection
operations.

Figure 1. Multispectral image captured by the satellite Sentinel-2 and belonging to the BigEarthNet
database.

Therefore there has been considerable interest in developing algorithms for spectral
reconstruction of multispectral images from RGB images. The goal of these algorithms is to
minimize the error in the creation of multispectral images, achieving a result as faithful as
possible to reality. The spectral reconstruction is a supervised machine learning problem,
which requires a set of training images. Various techniques have been proposed, ranging
from the use of functions or dictionaries [9–11] to more innovative methods such as artificial
neural networks [12–20].

Early works of spectral reconstruction are based on the creation of dictionaries. Arad
et al. [9] construct a sparse spectral dictionary collecting images (either general or domain
specific), whose projection into RGB provides a mapping between RGB atoms to hyper-
spectral atoms. Once all these components have been obtained, the spectral signature of
each pixel of the test image was estimated using these dictionary representation applying
the orthogonal match pursuit algorithm. A drawback of this method is that it treats each
pixel independently, so the information available in the neighborhood of that pixel is not
taken into account. This approach can be improved by adding additional information,
such as the a set of spectral and convolutional features [10]. Principal Component Analysis
(PCA) has also been used to extract basis functions from collected databases of spectral
reflectance [11].

Architectures based on neural networks have been proposed in the literature for
spectral reconstruction. Neural networks are capable of learning complex internal repre-
sentations which allow them to extract the relevant features from the information they can
process. Nguyen et al. [12] addressed the problem with the use of radial basis functions. In
this case, it continues to treat each pixel independently. In recent years, methods based on
neural networks and deep learning have become more common [21], especially by the use
of Convolutional Neuronal Networks (CNNs). An advantage of CNNs is the automatic
use of contextual information.

Different network types based on CNNs have been proposed for spectral reconstruc-
tion [13]. A moderately deep (6 convolutional layers) model witch residual connections
(ResNet) was proposed by Can et al. [14]. The residual connections ensure that more
features are available to the final layer. This approach was also used by Sharma et al. [15],
where the feature extraction from the three input RGB bands is done by a convolution layer,
followed by 10 residual blocks for feature mapping. In addition, there have been studies
of other convolutional neuronal network architectures, such as the U-Net used by Stiebel
et al. [16]. U-Net consists of a downsampling path and a upsampling path, which gives
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it the U-shaped architecture. During the contraction, the spatial information is reduced
while feature information is increased. Residual connections during the expansion path
complete the extracted features. Fubara et al. [17] used a modified U-Net network with
skip connections to allow lower level features to flow to deeper layers. Further, a second
unsupervised learning method is proposed in that work, which would be useful in case
there were no training images available.

Recently, the use of Generative Adversarial Networks (GAN) has been explored for
solving a number of tasks in image processing. GANs consist of two networks, a generator
and a discriminator. The generator tries to create new plausible synthetic data while the
discriminator learns to discriminate between the training samples and the fake data. In this
way, both networks improve their learning, the generator trying to trick the discriminator,
and the latter trying to distinguish between real and fake data. Conditional Generative
Adversarial Networks (CGAN) are an extension of the GAN where both the generator and
discriminator are conditioned on some sort of auxiliary information such as class labels
or data from other sources. CGANs have been proved useful for various applications in
image processing, including classification [22], denoising [23], registration [24], change
detection [25], information fusion [26], and precipitation estimation [27].

Isola et al. [18] proposed using CGAN as general-purpose solution to image-to-image
translation problems. These solutions include synthesizing photos from label maps, re-
constructing objects from edge maps, and colorizing images, among other tasks. The
proposed network in [18] is a CGAN with a U-Net-based architecture as a generator and
a convolutional PatchGAN classifier as a discriminator. Lore et al. [19] used CGANs
for RGB-to-multispectral image mapping, spectral super-resolution of image data, and
recovery of RGB imagery from multispectral data. A similar solution was proposed by
Alvarez et al. [20] for spectral reconstruction. Since generator needs to yield full-size de-
tailed images, a U-Net-like architecture was used. The discriminator was focused solely on
modeling high-frequency structure and consists of a PatchGAN, which is simpler in terms
of convolutional layer count. That is, the networks currently proposed in the literature for
CGAN-based spectral reconstruction are built around of U-Net models as generators.

In this work we intend to expand the use of CGANs for spectral reconstruction by
exploring other types of generators. Specifically, CNN, U-Net, and ResNet models are
adapted and evaluated as generators in the CGAN. As training data for the CGAN, the
BigEarthNet database [28] have been used. This database contains approximately half a
million images taken from the Sentinel-2 satellite, showing an aerial view of 10 European
countries. The rest of the paper is organized into four sections. Section 2 presents the
methods used in this study, including the description of the proposed classification network.
The experimental results for the evaluation in terms of classification performance and
computational cost are presented in Section 3. Then, the discussion is carried out in
Section 4. Finally, Section 5 summarizes the main conclusions.

2. Neural Network Models

In this section we present the neural networks under study that are used as generators
for a Conditional Generative Adversarial Network (CGAN) architecture. These networks
are designed to convert the RGB composite image to a multispectral image of n bands. The
CGAN model for multispectral reconstruction is first described in detail and then the CNN,
U-Net, and ResNet models, which are considered as generators. In Section 3, variations in
terms of layers, kernel size and skip connections are studied for these architectures.

2.1. CGAN Model

A generative adversarial network (GAN) is a class of machine learning framework
where two networks (generator and discriminator) compete with each other. The generative
network generates candidates while the discriminative network evaluates them. The
objective of the generator is to synthesize candidates that the discriminator thinks are real,
that is, to increase the error rate of the discriminator. The objective of the discriminator is to
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detect the candidates synthesized by the generator, this is to decrease its error rate. GANs
provide an efficient way to learn deep representations with a relatively small number of
training data. This is achieved by generating backpropagation signals through a competitive
process that involves both networks. When the GAN is well designed, the generator
and discriminator error rates are stable and balanced. The representations that can be
learned by GANs may be used in a variety of applications, including synthesis, editing,
superresolution, and classification.

Different models of GANs have been proposed in the bibliography, among which we
can highlight [29]:

• Deep Convolutional Generative Adversarial Network (DCGAN) [30]. The DCGAN is the
version of the GAN architecture which uses deep convolutional neural networks for
generator and discriminator with a linked training between both networks. This
architecture makes use of large unlabeled datasets to train the discriminator in order
to be able to distinguish them from those synthesized by the generator. DCGAN has
been used as the basis model for generating many other GAN models. For example,
the discriminator model can be used as a starting point for developing a classifier,
while the generator model could make use of additional information for generating
the candidates.

• Conditional Generative Adversarial Network (CGAN) [31]. The CGAN is an extension to
the GAN architecture that makes use of additional information as input both to the
generative and the discriminative networks. In ordinary GAN, there is no control over
modes of the candidates to be generated. In CGANs, additional information can be
added as input to the generator in order to condition the synthesis of candidates. For
example, if class labels are available they can be used. This labels can also be added to
the discriminator input to help it distinguish generated candidates from real ones. By
providing additional information, two benefits are achieved:

– Convergence will be stable and faster since the random distribution that candi-
dates follow will have some pattern.

– The generator model can be used to generate candidates of a given specific type,
for example, for a class label.

• Auxiliary Classifier Generative Adversarial Network (ACGAN) [32]. The ACGAN is an
extension to the GAN architecture in which both the generative and the discriminative
networks are class conditional as with the CGAN, but also adds an additional model
to the discriminator to detect the class label. That is, the discriminator model must
predict whether the given candidate is real or generated as in the CGAN, but also will
predict the class label of the candidate.

• Information Maximizing Generative Adversarial Network (InfoGAN) [33]. The InfoGAN
is an extension to the GAN architecture that introduces control variables that are
automatically learned by the architecture and allow control over the characteristics
of the candidate generated. For example, style, thickness, and type in the case of
generating images of handwritten digits. This architecture is motivated by the desire
to control and decouple the properties in the generated candidates. The InfoGAN
involves the addition of control variables to generate an auxiliary model that predicts
the control variables, trained via mutual information loss function.

• Semisupervised Generative Adversarial Network (SGAN) [34]. The semi-supervised GAN
is an extension of the GAN architecture for training a classifier model while making use
of labeled and unlabeled data. Semi-supervised learning is the challenging problem
of training a classifier in a dataset that contains a small number of labeled examples
and a much larger number of unlabeled examples. In the SGAN, the discriminator is
modified to predict n + 1 classes, where n is the number of classes in the classification
problem and the additional class represents the synthesized candidate. It involves
directly training the discriminator model for both the unsupervised GAN task and the
supervised classification task simultaneously.
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These GAN architectures are illustrated in Figure 2. In this work, we have chosen
the CGAN architecture, since it makes possible to add additional information to both
generator and discriminator, which will help the generation of multispectral images. On
the other hand, a classification of the candidates is not necessary for this task. In our
case, the CGAN architecture makes it is possible to add a RGB composite image as input
to the generator in order to synthesize the multispectral image, without requiring the
classification of the results [20]. In summary, the functions of generator and discriminator
for the task considered are:

• Generator: takes as input an RGB composite image, and its goal is to learn how to
create the most realistic multispectral bands possible.

• Discriminator: takes as inputs the RGB composite image and the multispectral bands
synthesized by the generator. Its function is to determine if the multispectral bands
are real or generated.

G D
noise

real/gen.

real data

DCGAN

generated data

G D
noise

real data

label

CGAN

real/gen.

G D

real data

InfoGAN

noise

label

real/gen.
class G D

noise

real data

label

SGAN

real class=1

real class=n

...

gen. class

G D
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real data

label

ACGAN

class
real/gen.

Figure 2. Different GAN architectures: DCGAN, CGAN, ACGAN, InfoGAN and SGAN.

The CGAN architecture for spectral reconstruction is shown in Figure 3a. The CGAN
training process begins in the generator. The input to this part of the network is an RGB
composite image, providing a multispectral image as output. Since the objective of the
GAN is to synthesize the best possible multispectral image, the best effort should be put
into the design of the generator. In this work, different types of networks (CNN, U-Net,
and ResNet) have been considered as generator.

Then it is the turn for the discriminator to work. The discriminator takes as input
the RGB bands and the multispectral bands of an image and provides a two-value output,
which indicates whether the multispectral image is real or generated. In our CGAN, the
discriminator is a classifier PatchGan. It uses convolutional layers, consisting of two
convolution modules, batch normalization, and an activation function leaky ReLU, as can
be seen in the Figure 3b. A final convolution is applied to reduce the size of the result.

In more detail, the operation of the discriminator is as follows. The discriminator must
detect whether the image structure is real or generated, and for this it computes an error
map by subdividing the image into blocks [18]. Figure 4 shows a example of error map of
size 5 × 5 obtained from a image of size 60 × 60 pixels when using the discriminator of the
Figure 3b. Each component of the error map estimates the percentage the structure of a
particular section of the image is real or generated. This operation is repeated twice, first
with the pair RGB bands/multispectral bands provided by the generator, and then with a
pair of RGB bands/multispectral bands from the training set. The function used to evaluate
the obtained values and build the error map is binary cross-entropy. Finally, to combine
the two error maps, the two values obtained by applying this function are added together.
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This value is what is used by the discriminator to learn to distinguish the generated images
from the real ones.

GENERATOR

60

60

12

Multispectral
training image

9

60

60

bands
Generated

3

60

60

60

60

12

generated image
Multispectral
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Figure 3. Conditional Generative Adversarial Network architecture: (a) CGAN overview, (b) Dis-
criminator model.

Multispectral image

Error map

Figure 4. Reconstruction error map measured as Root Mean Square Error (RMSE) in a range of values
from 0 to 16,384 obtained by the discriminator of the CGAN.
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The training of the generator uses another different error function, which takes in
counts the result of the discriminator [18]:

ErrorGenerator = ErrorCGAN + λ · L1loss, (1)

where ErrorCGAN is the result of applying the binary cross-entropy function to the dis-
criminator output taking as input the generated image, L1loss is the average absolute
error between the expected image and the generated image, and λ = 100 as proposed by
Isola et al. [18] to reduce the visual artifacts that may be introduced on certain applications.

2.2. CNN Model

A Convolutional Neural Network (CNN) has mainly two layers: convolutional layers
and pooling layers. In the convolutional layer, the convolution operation is applied several
times using filters or kernels to obtain a map of features. These maps provide information
about the content of the image. Several filters can be applied in the same layer and several
feature maps will be created. The size of the filters may vary, and the most common are
windows of size 3 × 3 and 5 × 5. The pooling layer is responsible for extracting the most
representative pixels in each subregion of an image. There are several types of subsampling
operations. One of the most used is max pooling, that extracts the maximum value in each
window [35].

The CNN model considered in this work to integrate into a CGAN as a generator is
designed using five convolutional layers. This network is illustrated in Figure 5. The upper
part of the figure shows the feature maps, while the lower part illustrates the operation
that is carried out. The number of features increases to 64, while the dimension of the input
image remains constant. The number of output features in the last layer can be adjusted to
suit the number of spectral bands required. In this network, the number of output bands is
set to 9, which added to the three original bands gives a total of 12. This is the number of
spectral bands available in the images of the BigEarthNet database, details of which are
presented in Section 3.

image

Input

Input image

6432 64 64

3x3

3x33x3

3x3

60

60

3

3x3

60

9

60

Output bands

Output 

bands

ReLU

Conv2D

ReLU

Conv2D

ReLU

Conv2D

ReLU

Conv2D

ReLU

Conv2D

32 3x3 64 3x364 3x3 64 3x3 9 3x3

Figure 5. CNN model considered as generator for a Conditional Generative Adversarial Network
architecture. In the upper part of the figure the boxes represent features, while in the lower part the
boxes represent the network modules.

The multispectral reconstruction is approached as a regression problem, so the use
of pooling layers is removed as proposed by Stiebel et al. [16]. These layers are used in
classification problems, but in the case of reconstruction problems they would cause a loss
of information.

This CNN model will be introduced as a generator within the CGAN. The resulting
network will be evaluated and considered as a basic scheme with which to compare other
more efficient generators.
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2.3. U-Net Model

The U-Net architecture consists of a downsampling path followed by an upsampling
path. A convolution operation is applied in the layers of the downsampling path, while
a transpose convolution is used in the layers along the upsampling path. During the
downsampling path, the spatial information is reduced based on the size of the kernel,
but new features (in the spectral dimension) are created. The upsampling path performs
the reverse function. The features of a transposed convolution are combined with the
information of previous layers to produce a more precise spectral reconstruction. After
passing through a layer, the spatial resolution increases.

Figure 6 shows the model considered in this work, that is based on the U-Net proposed
by Stiebel et al. [16]. The upper part of the figure shows the feature maps, while the lower
part indicates the operation that is carried out. The network input is a RGB composite
labeled as Input image in Figure 6 while the output consists of the nine additional bands of
the multispectral image, labeled as Output bands in the same Figure. The downsampling
path is indicated by a downward arrow in the figure, and the upsampling path by an
upward arrow. Figure 6 also illustrates the skip connections and the operation done that
combine the output of one layer in the downsampling path as the input to a layer in the
corresponding upsampling level. In Figure 6 the spatial dimension of the image is reduced
by 2 in each layer in the downsampling path while the number of features progressively
increases to 128 in the last layer of this path. Figure 6 also illustrates in magenta the skip
connections that combine the output of one layer in the downsampling path as the input to
a layer in the corresponding upsampling level.

Since the U-Net proposed in [16] was designed to operated independently and not
included within a conditional GAN, in this work the U-Net will be adapted to operate
as a generator within that architecture. The original U-Net architecture, proposed by
Ronneberger et al. [36] for biomedical image segmentation, will also be considered as a
generator for the CGAN named U-Net_b. The U-Net_b model reduces by 2 the dimension of
the images in each layer along the downsampling path and magnified it by this same factor
along the upsampling path. This is the generator used in the CGAN of Alvarez et al. [20].
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Figure 6. U-Net model considered as generator for a Conditional Generative Adversarial Network
architecture. The upper part of the figure shows the feature maps, while the lower part indicates
the operation that is carried out. In the downsampling path, blocks labeled Conv2D perform 2D
convolutions, while in the upsampling path Conv2DT indicates transposed 2D convolutions.
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2.4. ResNet Model

The Residual Neural Network (ResNet) architecture is characterized by using skip
connections, which reduce the training error when adding more layers and solve degrada-
tion problems [37]. The ResNet considered in this work is based on the residual network
proposed by Can et al. [14] for spectral reconstruction. Since the network was designed to
operate independently and not included within a GAN, in this work the ResNet will be
adapted to operate as a generator within CGAN.

The ResNet model is shown in Figure 7. The upper part of the figure shows the feature
maps, while the lower part indicates the operation that is carried out. The boxes represent
the convolutional layers, with the labels indicating the size of the kernel. The residual
blocks are framed in dotted lines, while the lower lines connecting both sides of the network
show the skip connections used in this architecture.

The backbone of the network has two residual blocks. The two convolutional layers
before the residual blocks perform a feature extraction and a compression, respectively.
Despite the initial features are shrunk, they are used through the skip connections in
the last layers of the network. This structure has benefits in terms both of execution
and performance, since compressing the features that follow the main path speeds up
the computation time and reduces overfitting. The skip connection on the bottom side
in Figure 7 estimates the basic mapping from RGB to multispectral reconstruction by a
7 × 7 convolution layer [14]. The last two convolutional layers expand the features to
approximate the output to the multispectral image. Through the skip connections, the
initial learned features are also used in the network.

Output 

bandsimage

Input Conv2D Conv2D
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PReLU PReLU

PReLU
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Figure 7. ResNet model considered as generator for a Conditional Generative Adversarial Network
architecture. The upper part of the figure shows the feature maps, while the lower part indicates the
operation that is carried out.

Different than the original residual blocks introduced in [37], a Parametric Rectified
Linear Unit (PReLU) activation function is used in this work, instead of a ReLU as in the
ResNet architecture proposed by [38]. The PReLU function was shown to improve over the
traditional non-parametric ReLU. Other possible modifications to this network to optimize
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its operation as a generator within the GAN are discussed in Section 3. Table 1 includes the
network models considered as generators for a CGAN.

Table 1. Network models considered as generators for a Conditional Generative Adversarial Network
architecture.

Generator Layers Activation Kernel Skip Connection

CNN 5 ReLU 3 × 3 –
U-Net 10 ReLU 3 × 3 Concatenate
U-Net_b [20,36] 16 Leaky ReLU 3 × 3 Concatenate
ResNet 9 PReLU 5 × 5, 3 × 3 Concatenate

3. Results

In this section, the accuracy of the multispectral image reconstruction and the compu-
tational cost of the CGAN are evaluated using as generators the CNN, U-Net, and ResNet
neural networks designed in the previous section. The CGAN of Alvarez et al. [20] that uses
the U-Net of Ronneberger et al. [36] as generator is also included in the analysis, named
U-Net_b in this section. It was adapted removing the PatchGAN layer in the discriminator
and reducing the number of layers and filters to fit the input image size. Table 1 includes
those networks and key parameters.

The BigEarthNet [28] dataset was used for training the CGAN. In this work 10,000
image patches were used for the experiments. The size of the dataset was analyzed prior
the experiments, considering the limitations of the available hardware. The experiments
were carried out on a personal computer with a AMD Ryzen 5 2600 CPU at 3.4 GHz with
16 GB of RAM, and a GPU NVIDIA GeForce GTX 1660 at 1.7 GHZ with 6 GB of RAM. The
code was written in Python using the TensorFlow library [39] under a Linux operating
system.

The multispectral reconstruction was evaluated using the Root Mean Square Error
(RMSE). The RMSE measures the amount of error between the reflectance value of the
image and the predicted value. Since it is an error measure, networks that obtain a lower
RMSE provide a more accurate reconstruction. The RMSE retains the same scale as the data,
so the ranges can be transformed to a common scale so that the results can be compared.
The computational cost was measured in terms of execution time (t) and the performance
between the CPU and GPU was compared in terms of speedup as the fraction tCPU/tGPU .

3.1. Dataset

The BigEarthNet [28] dataset has approximately half a million of multispectral images
patches taken from 125 high resolution images acquired by the Sentinel-2 satellite. All
the tiles were atmospherically corrected by the Sentinel-2 Level 2A product generation
and formatting tool (sen2cor) [28]. Sentinel-2 carries an optical instrument payload that
samples 13 spectral bands: four bands at 10 m, six bands at 20 m and three bands at 60 m
spatial resolution. The spectral band B10 was discarded as it does not contain information
of the surface because of the sen2cor processing methodology. Table 2 shows the details
of the multispectral patches. As the image patches have different resolution at different
wavelengths, all the spectral bands were downscaled to 60 × 60 as it is the most common
size among all bands, except bands B01 and B09 that were upscale to 60 × 60. See Table 2
for details of the patch sizes.
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Table 2. Multispectral band name, description, wavelength (nm), spatial resolution (m) and patch
size (pixels) of the BigEarthNet with Sentinel-2 database. (*) The spectral band B10 was discarded as
it does not contain information of the surface because of the sen2cor processing methodology.

Name Description Wavelength Spatial Resolution Patch Size
(nm) (m) (Pixels)

B01 Coastal aerosol 443 60 20 × 20
B02 Blue 492 10 120 × 120
B03 Green 560 10 120 × 120
B04 Red 665 10 120 × 120
B05 Vegetation red edge 704 20 60 × 60
B06 Vegetation red edge 741 20 60 × 60
B07 Vegetation red edge 783 20 60 × 60
B08 Near-infrared 833 10 120 × 120
B8A Narrow near-infrared 865 20 60 × 60
B09 Water vapour 945 60 20 × 20
B10 * Cirrus cloud 1373 60 20 × 20
B11 Short-wavelength infrared 1614 20 60 × 60
B12 Short-wavelength infrared 2202 20 60 × 60

For the experiments, 10,000 patches were randomly selected from the BigEarthNet
dataset and divided into three non overlapping sets: 80% was used for training and
validating and 20% for testing. Of the total samples for training and validation, we make
the same partition with 80% for training the neural networks and 20% for validate the
performance during the training. Thus, 64% of the total number of samples was used for
training, 16% for validation and 20% for testing.

Figure 8 shows the RMSE during the training for a ResNet using different number
of patches. It is observed how the error decreases when a larger number of patches is
used, so the available RAM in the computer was the limiting factor for the dataset size. As
our GPU has only 6 GB of RAM compared to the 16 GB of RAM for CPU memory, 10,000
images were used in the experiments. Each image needs 168.75 kB (4 bytes × 60 × 60 ×
12), that is the size in bytes of each spectral band times the number of bands plus additional
information from the metadata and software used for the experiments.

100 images 1000 images500 images 5000 images 10000 images

Epoch

R
M

S
E

Figure 8. Validation error during training for a ResNet with different dataset sizes.

3.2. CGAN Generators Comparison

To evaluate the CGAN with different networks as generators (CNN, U-Net, U-Net_b [20,36]
and ResNet), these networks were first trained individually using the validation set and
different parameters in order to set up the configuration of each model.



Remote Sens. 2022, 14, 816 12 of 20

3.2.1. Configuration of the Neural Networks as Generators

To obtain the best results for each network operating as a CGAN generator, some
variations and optimizations in the configurations were studied. These variations are
numbered from 1 to 4 in Table 3. The first column lists the variations for the U-Net
architecture and the second column lists the variations of the ResNet. The row marked
with ‘0’ indicates the base architecture on which the variations are applied. The networks
were trained for 200 epochs at a learning rate of 0.001.

Regarding the U-Net, the following modifications were studied: (1) variation of the
number of layers, (2) add a preprocessing layer for noise images, (3) variation of the size of
the convolutional filters, and (4) replace the function concatenate by the add function. Best
results were obtained for the configuration shown in Figure 6: a 3 × 3 convolution filter
with no padding, a ReLU activation function and concatenated skip connections. The main
reasons are that a small convolution filter adds information from the nearest neighbors that
may have more similarity and the concatenation activation function keeps all information
in the skip connections while the add function means losing some information.

Table 3. Variations in terms of layers, kernel size and skip connections for the U-Net architecture
(first column) and variations in terms of number of filters, number of residual blocks and number
of paths for the ResNet architecture (second column). The row marked with ‘0’ indicates the base
architecture on which the variations are applied. The RMSE is included for each variation.

# U-Net Variations RMSE # ResNet Variations RMSE

0 U-Net base Figure 6 348 0 ResNet base Figure 7 328
1 10 layers 345 1 Doubling the number of filters 327
2 10 layers + preprocessing 365 2 Halving the number of filters 346
3 Kernel size 5 × 5 468 3 Add another residual block 326
4 Skip connection with addition 372 4 Remove 7 × 7 path 341

Regarding the ResNet, the following modifications were considered: (1) variation in
the number of filters in the convolutional layers, (2) variation in the number of residual
blocks, and (3) variation in the number of paths. After analyzing the results we can
conclude that adding residual blocks or doubling the number of filters marginally improves
the results. However, in practice, these two modifications are not recommended, as the
computing time they need to train is twice as long, and we only get an improvement of
less than 1%. On the other hand, it has been verified that the 2 paths of the proposed
architecture are useful and reduce the error by 4% without increasing the execution time.
Best results were obtained for the configuration shown in Figure 7: two residual blocks and
two paths.

3.2.2. Configuration of the CGAN

Next, we proceed to evaluate the CGAN by integrating the above networks as gen-
erators. As previously mentioned, CGAN learning is based on competition between the
two networks that compose it. This learning method makes CGAN provide better results
than other networks even when they are included in CGAN as part of its architecture, as
shown in Figure 9. In this figure, the CGAN using a ResNet as a generator is compared to
the standalone ResNet. During most of the training, the error rate of the CGAN is lower
than that of the ResNet. A validation set of 1600 images was used to plot the error during
the training phase.
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Figure 9. Comparison of the evolution of validation errors during the training phase of ResNet and
CGAN with ResNet as generator (CGAN/ResNet).

Figure 10 shows the RMSE obtained during the training of the CGAN for the four
generators during different number of epochs. It can be observed that for the CGAN with
U-Net_b as a generator (denoted by CGAN/U-Net_b) the validation error remains constant
from 100 epochs, while for the CGAN with CNN, U-Net and ResNet the validation error
decreases for almost 200 epochs, reducing the overfitting. The validation set, consisting of
16% of the images, was used for this study.

CGAN/CNN CGAN/U-Net CGAN/U-Net_b CGAN/ResNet
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Figure 10. Root Mean Square Error (RMSE) during training of the CGAN with different networks as
generators, CNN, U-Net, U-Net_b [20,36] and ResNet, using the validation set.

With the configuration extracted from the training step, the CGAN was evaluated for
the multispectral reconstruction calculating the RMSE on the entire test set. The error was
calculated from the histogram of the entire dataset using a common scale, resulting a range
of values from 0 to 16,384.

Table 4 shows the reconstruction error (RMSE) for each network, the number of passes
of the entire training dataset (epochs), the execution time for training on CPU and GPU, as
well as the GPU speedup with respect to the CPU execution time. The CGAN with ResNet
has the best reconstruction result with an error of 316. The CGAN with U-Net_b got the
highest error with a RMSE value of 404, while for CNN and U-Net a similar accuracy in the
reconstruction is obtained, in particular, an error of 363 and 354, respectively.
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Table 4. Reconstruction error (RSME), epochs, CPU and GPU execution times in minutes and
speedup as the fraction tCPU/tGPU for the training of the CGAN using CNN, U-Net, U-Net_b [20,36],
and ResNet as generators for multispectral reconstruction. Networks with lower RSME provide
better results.

Network RMSE Epochs tCPU tGPU Speedup

CGAN/CNN 363 200 284 19 14.7×
CGAN/U-Net 354 200 727 49 14.8×
CGAN/U-Net_b 404 200 25 11 2.2×
CGAN/ResNet 316 200 595 62 9.6×

Regarding the execution time for training, the CGAN with ResNet needs 62 min when
using the GPU, while for CNN and U-Nets it needs less training time. The CGAN with
U-Net_b is the one that needs the least time (11 min), while for U-Net it needs 49 min, both
using the GPU. From Table 4 it is also observed that all networks achieved an increase in
speed when using the GPU. For the CNN and U-Net the speedup is higher, reaching almost
15×. Both networks, compared to U-Net_b and ResNet are better suited for GPU execution.
The speedup obtained on GPU is 9.6× for the ResNet and 2.2× for the U-Net_b.

3.3. Multispectral Reconstruction Comparison

Based on the best results obtained with the CGAN using the ResNet as a genera-
tor, in this section we compare the multispectral reconstruction from RGB images with
two real multispectral images: an image with pastures and an image of the ocean, see
Figures 11 and 12, respectively. These figures shows an error map as the absolute error
between the each spectral band of the real multispectral image and the reconstructed image.
These error is calculated between 0 and 1. In addition, the RMSE calculated for each spectral
band is also included in those figures.

Figures 11 and 12 consist of several sections. On the left, the RGB composite is shown
and the next column presents the red, green and blue channels which are the input of the
neural network. The next three columns shows the rest of spectral bands of the image (see
Table 2 for details of the name and number of bands). These nine bands are the output of
the neural network. Finally, the last three columns are the absolute error that results from
comparing the generated bands with the real ones. To improve the visual inspection of the
error, the scale has been adjusted between 0 and 0.2 in these figures since no error in the
bands exceeded that value.

Figure 11. Error map as the absolute error between the each spectral band of a multispectral image of
pasture and the reconstructed image. From left to right by columns: RGB composite, red, green and
blue channels, spectral reconstruction, error map. To improve the visual inspection of the error, the
scale has been adjusted between 0 and 0.2.
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Taking a closer look at Figure 11 (pasture image), the RMSE is under 100 in a range
of values from 0 to 16,384, for all the spectral bands but it is observed in the top left of the
image a parcel of forest in the middle of the pastures that represent the higher error (higher
intensity) in the error map. In the image of the ocean, a minor error is observed, below 20,
except in B01, which is greater than 100. As explained in Section 3.1 the spectral band B01
was upscaled to 60 × 60. Since upscaling makes the image patch looks blurry and have a
lower quality for the neural network a higher RMSE is expected for these spectral band.

Figure 12. Error map as the absolute error between the each spectral band of a multispectral image of
the ocean and the reconstructed image. From left to right by columns: RGB composite, red, green
and blue channels, spectral reconstruction, and error map. To improve the visual inspection of the
error, the scale has been adjusted between 0 and 0.2.

The average intensity of the pixels was also compared as illustrated in Figure 13 for
the pasture image and Figure 14 for the ocean image. For each band, the average value
is calculated and it is plotted in the left graph of these figures. The right graph shows a
random pixel of the image. The average intensity has a very good match for the image of
pasture, see Figure 13 (left), and a slight difference for the ocean image, see Figure 14 (left),
especially in the first band (443 nm), which is the spectral band with the highest RMSE, as
shown in the previous section. The difference between the real multispectral image and
the reconstruction one is best appreciated when selecting a random pixel. In Figure 13
(right) it is observed between bands B06 (741 nm) and B09 (945nm). In the ocean image,
see Figure 14 (right), the difference is also in the vegetation red edge range from 704 nm to
783 nm. The details of the wavelengths and name of the bands can be seen at Table 2.
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Figure 13. Average intensity of the pixels ((left) plot) and wavelength of a random pixel ((right) plot)
of the multispectral patch of the pasture.
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Figure 14. Average intensity of the pixels ((left) plot) and wavelength of a random pixel ((right) plot)
of the multispectral image of the ocean.

4. Discussion

In view of the results obtained in this work, the problem of generating multispectral
images from RGB images can be achieved with sufficient quality using CGAN models.
The RMSE measured in a range from 0 to 16,384 was on average 316 using the ResNet
generator on a set of 2000 test images. The combination of contextual information when
using convolutional networks, a training with CGAN that prioritizes that the structure of
the image is correct through the combination of a generator and a discriminator, and the
use of a ResNet model as a generator, which reduces overfitting and allows training for
more periods are the result of the study carried out in this work.

A limitation of deep-learning methods based on supervised learning as the one de-
signed in this work is that they require training samples. In the same way as in supervised
classifiers, which require training with the same types of materials (classes) that are to be
classified in the images, the CGAN training must be carried out with samples of materi-
als that will be present in the images to be reconstructed. In this sense, the presence of
materials with which the deep learning network has not been trained would produce an
indeterminate output. This does not imply that the reconstruction should be limited to
images with a relatively homogeneous part of surface (forests, crops, etc.), but that all the
materials included in the image to be reconstructed must be present during training.

In general, these limitations also apply to anomaly analysis, which is of great interest
in many applications, e.g., in the detection of areas with plant damage for agriculture or
ecological monitoring. However, in some cases this analysis may be feasible without specific
training. For example, when the ground cover has intermediate levels of vegetation, ranging
from bare soil to leafy vegetation. Like a supervised classifier, the spectral reconstruction
network should be able to correctly handle these intermediate cases.

Fortunately, very extensive land cover databases are now available to facilitate the
learning of deep-learning networks. The BigEarthNet database [28], which contains approx-
imately half a million images taken from the Sentinel-2 satellite, showing an aerial view of
10 European countries provide an ideal scenario for machine learning. Although this work
focuses on the Sentinel-2 satellite, the database also provides images from the Sentinel-1
satellite. In addition, it is a database of public access. The use of this dataset in this work
serve as a starting point for future contributions and improvements since it establishes a
baseline of the results that can be achieved with the neural network architectures studied
in this work.

In certain processing chains, the spectral reconstruction can be included as an ad-
ditional step (generation of the multispectral images on basis of RGB images). In this
cases, multispectral reconstruction could be considered as a preprocessing stage like that
performed with filters and morphological or attribute profiles to highlight structures in
the images. For example, this spectral preprocessing could be useful in classification and
object detection operations. One advantage that spectral reconstruction networks have
over classifiers is that their operation is completely automatic. In classifiers, images have
to be labeled manually, often at the pixel level, which is labor-intensive and error-prone,
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in some cases requiring field views. On the contrary, the CGAN training is carried out
automatically since it is a regression and both the input and output are obtained from the
databases. In this way, spectral processing operations are decoupled from classification
operations in the processing chain, with the advantages of massive training that the former
have, since labeled images are not required.

With respect to CGAN models such as the ones used in this work, they can present
some disadvantages. First of all, they require a lot of computational resources. For example,
training the CGAN with a ResNet as a generator requires 62 min on the GPU of a commodity
PC. However, the training is performed only once, while the inference operations are much
faster (they require only one epoch compared to 200 during training). On the other hand,
the design of CGANs is difficult. If the two networks that make up the CGAN, generator
and discriminator, are not well balanced, the model will not reach convergence during
training. Therefore, a careful study of the details of the networks is required to achieve
effective designs.

5. Conclusions

The generation of synthetic multispectral images from color images offers the pos-
sibility of increasing the volume of images in datasets that can be used for supervised
training, for example for classification of the Earth’s surface. These synthetic images must
be generated with sufficient quality to be useful.

In this article a study and comparison of generators for Conditional Generative Adver-
sarial Networks (CGANs) applied to multispectral image reconstruction from RGB images
in remote sensing was presented. Among the CNN, U-Net and ResNet generators under
study, the ResNet obtained better results in terms of Root Mean Square Error (RMSE). It was
also possible to train the network for more epochs, avoiding the overfit that occurs in other
proposals using a U-Net. The discriminator used in all CGAN models was a PatchGan
classifier.

The runtime was also analyzed, showing that the U-Net and ResNet generators
consume more time. Despite the experiments were executed using the computational
capacity of a GPU, the training time of the model using the ResNet was 1 h and 2 min.
However, the inference operation from RGB to multispectral was only a few seconds.

The study was carried out in a public database of multispectral images, the BigEarth-
Net database. The wide range of images of the Earth’s surface available in this dataset
were of interest to generalize the training. Being an open access database, it is possible to
establish a baseline of the results that can be achieved with the neural network architectures
studied in this work.

As future works, the influence of different discriminators on the ResNet generator
can be studied. It is also of interest to dive into the ResNet architecture to improve the
execution time as other authors have done in the use of U-Net when it is used into a CGAN
network. These future works could be executed on a high performance computing server
with a GPU with more RAM, giving the possibility to use the entire dataset.
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The following abbreviations are used in this manuscript:

ACGAN Auxiliary Classifier Generative Adversarial Network
CGAN Conditional Generative Adversarial Network
CNN Convolutional Neural Network
DCGAN Deep Convolutional Generative Adversarial Network
GAN Generative Adversarial Network
GPU Graphics Processing Unit
InfoGAN Information Maximizing Generative Adversarial Network
LWIR Long-Wave Infrared
MWIR Mid-Wave Infrared
NIR Near Infrared
PatchGAN Patch Generative Adversarial Network
PCA Principal Component Analysis
PReLU Parametric Rectified Linear Unit
ReLU Rectified Linear Unit
ResNet Residual Neural Network
RMSE Root-Mean-Square Deviation
SGAN Semisupervised Generative Adversarial Network
U-Net U-shape Network
VIS Visible (spectrum)
VNIR Visible and Near Infrared
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