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Abstract: The emergence of hyperspectral imagery paved a new way for rapid mineral mapping. 
As a classical hyperspectral classification method, spectral matching (SM) can automatically map 
the spatial distribution of minerals without the need for selecting training samples. However, due 
to the influence of noise, the mapping accuracy of SM is usually poor, and its per-pixel matching 
method is inefficient to some extent. To solve these problems, we propose an unsupervised cluster-
ing-matching mapping method, using a combination of k-means and SM (KSM). First, nonnegative 
matrix factorization (NMF) is used and combined with a simple and effective NMF initialization 
method (SMNMF) for feature extraction. Then, k-means is implemented to get the cluster centers of 
the extracted features and band depth, which are used for clustering and matching, respectively. 
Finally, dimensionless matching methods, including spectral angle mapper (SAM), spectral corre-
lation angle (SCA), spectral gradient angle (SGA), and a combined matching method (SCGA) are 
used to match the cluster centers of band depth with a spectral library to obtain the mineral map-
ping results. A case study on the airborne hyperspectral image of Cuprite, Nevada, USA, demon-
strated that the average overall accuracies of KSM based on SAM, SCA, SGA, and SCGA are ap-
proximately 22%, 22%, 35%, and 33% higher than those of SM, respectively, and KSM can save more 
than 95% of the mapping time. Moreover, the mapping accuracy and efficiency of SMNMF are about 
15% and 38% higher than those of the widely used NMF initialization method. In addition, the pro-
posed SCGA could achieve promising mapping results at both high and low signal-to-noise ratios 
compared with other matching methods. The mapping method proposed in this study provides a 
new solution for the rapid and autonomous identification of minerals and other fine objects. 

Keywords: hyperspectral mineral mapping; clustering; spectral matching; nonnegative matrix fac-
torization 
 

1. Introduction 
Minerals, as a nonrenewable resource, play an important role in the survival and 

development of human society. For example, kaolin and muscovite can be used as ceramic 
and refractory materials [1,2]. Food production requires mineral fertilizers, such as nitro-
gen, phosphorus, and potassium [3,4]. Montmorillonite powder can be used to treat 
chronic diarrhea [5]. Mapping these mineral resources is a prerequisite for their utiliza-
tion. The traditional mineral mapping method uses the experience of geologists and la-
boratory equipment to identify minerals. The large-scale application of this method is 
time-consuming and laborious. Remote sensing technology, especially hyperspectral re-
mote sensing, makes it possible to realize a wide area of mineral mapping [6]. 

In fact, mineral mapping is one of the most successful applications of hyperspectral 
remote sensing [7] because hyperspectral imagery usually has high spectral resolution 
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and hundreds of continuous spectral bands covering the range from the visible to 
shortwave infrared spectra, which can serve to identify various minerals and map their 
spatial distribution [8]. The rationale behind hyperspectral mineral mapping is that min-
eral species have diagnostic spectral absorption features from 20 to 40 nm full-width at 
half-maximum [9]. The spectral resolutions of commonly used hyperspectral images are 
usually around 10 nm [10], thus making the rapid identification and mapping of surface 
minerals possible. 

Over the past decades, different hyperspectral mineral mapping methods have been 
developed, including supervised classification [11], spectral unmixing [12], and spectral 
matching (SM) [13]. Supervised methods can provide promising classification perfor-
mance when training samples are sufficient [14]. However, the selection and evaluation 
of training samples are time-consuming and very difficult for fine objects, such as miner-
als and vegetation [15]. Also, for hyperspectral imagery, the small ratio between the num-
ber of training samples and the available number of spectral features usually makes the 
supervised training process prone to overfitting (i.e., the Hughes phenomenon) [16,17]. 
Spectral unmixing can provide the abundance of various minerals in a pixel. Nevertheless, 
endmember extraction, the key step of spectral unmixing, usually assumes the existence 
of pure pixels or has quite high computational complexity [18–20]. SM matches the spec-
trum of each pixel with a spectral library and then classifies the pixel according to its 
greatest similarity with a category [21]. In fact, the emergence of imaging spectrometers 
and SM provides the possibility to automatically obtain classification information from 
remote sensing images [22]. However, although SM based on the whole waveform fea-
tures is simple without complex analysis of the spectrum or adjustment of thresholds, the 
mineral mapping results of SM are generally fragmentary because of its sensitivity to 
noise and the requirement of a high signal-to-noise ratio (SNR) of hyperspectral imagery 
[23,24]. Moreover, since hyperspectral images usually have hundreds of thousands or 
even more pixels with a high spectral resolution, the per-pixel matching method of SM is 
inefficient to some extent. 

Another commonly used classification algorithm that does not require training sam-
ples and endmember extraction is clustering (i.e., unsupervised classification), which 
groups similar data points into the same cluster [25]. Clustering has been widely used in 
data mining, machine learning, and image classification [26,27]. In fact, clustering and SM 
can complement each other in hyperspectral classification. On the one hand, considering 
that the clustering result only reflects the spatial distribution of different clusters without 
giving specific types, the final classification results can be obtained by matching the clus-
ter centers with a spectral library. On the other hand, since the noise in signals can be 
removed to a certain extent by averaging [28–32], the de-noised cluster centers can be ob-
tained by averaging their corresponding pixels in the original or enhanced hyperspectral 
image. Moreover, the matching between the cluster centers and spectral library is block-
wise rather than pixel-wise. Thus, the fragmentation of the mapping results of SM may be 
reduced by matching the de-noised cluster centers with a spectral library. Furthermore, 
since the number of cluster centers (K) is usually much fewer than the pixel number of a 
hyperspectral image, the combination of clustering and SM (i.e., clustering-matching) has 
great potential to improve the mineral mapping efficiency of SM without destroying its 
nonsupervision. Therefore, clustering-matching, a novel, unsupervised, hyperspectral 
classification method, was proposed to address the accuracy and efficiency of SM in min-
eral mapping. 

Since high dimensionality and correlation of hyperspectral image will reduce the 
clustering efficiency and accuracy [33], feature extraction should be carried out first before 
clustering-matching. In general, there are linear and nonlinear hyperspectral feature ex-
traction methods. Considering that the former has lower computational complexity and 
memory cost [34,35], linear features will be used for clustering. Nonnegative matrix fac-
torization (NMF), proposed by Lee and Seung [36], is an effective algebraic method in 
extracting linear features for clustering [37]. Compared with other feature extraction 
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methods, NMF can preserve the majority of the original image structure and guarantee 
the nonnegative nature of both the base and coefficient matrix [38]. However, since NMF 
is a nonconvex optimization problem, its feature extraction results depend heavily on the 
performance of initialization methods [39]. In fact, NMF can be used not only for dimen-
sionality reduction, but also for soft clustering [40]. Based on this, the current study pro-
poses a simple and effective initialization method from the perspective of NMF clustering. 

In this study, the clustering-matching mapping method had three steps: First, NMF 
was carried out to extract the spectral features that reflect the distribution of various min-
erals. Second, clustering was implemented based on the extracted features and the de-
noised cluster centers, from which the enhanced hyperspectral image can be calculated 
using the final clustering result or directly obtained during the clustering process. Finally, 
three common matching methods and a combined matching method were used to match 
the de-noised cluster centers with a mineral spectral library to obtain the final mineral 
mapping results. 

2. Materials 
2.1. Study Area 

The study area, Cuprite (Figure 1a), is located approximately 200 km northwest of 
Las Vegas, Nevada, and is separated into eastern and western regions by US Highway 95. 
Cuprite is ideal for geologic mapping, as different mineral types are exposed to very little 
vegetation cover, and it has been used as a geologic remote-sensing test site since the early 
1980s [41,42]. Figure 1b exhibits the mineral distribution map of Cuprite derived from the 
United States Geological Survey (USGS), which was developed by Clark according to the 
vibrational absorption features of minerals [43]. Six mineral types, including alunite, cal-
cite, kaolinite, muscovite, chalcedony, and montmorillonite have been discovered in this 
area [44]. 

 
Figure 1. Study area and data: (a) location map; (b) mineral distribution map from USGS; and (c) 
AVIRIS image. 
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2.2. Datasets 
2.2.1. Hyperspectral Data 

The study data were derived from airborne visible/infrared imaging spectrometer 
(AVIRIS), which covers a spectral range of 0.4–2.5 µm with a spectral resolution of 10 nm 
and 224 contiguous bands [45]. The AVIRIS image (Figure 1c) used in this study has 50 
bands covering the shortwave infrared of 2.0–2.5 µm, with a spatial resolution of 20 m, 
consisting of 350 lines and columns. This image was chosen because the spectral range of 
2.0–2.5 µm covers the spectral features of many alteration minerals [46]. Furthermore, this 
image has been corrected by an empirical flat field optimized reflectance transformation 
[47]. To assess the mapping accuracy, registration between the AVIRIS image and the min-
eral distribution map has been performed, and the root-mean-square error was less than 
1 pixel. 

2.2.2. Spectral Library 
The spectral library contains the reflectivity of various objects measured by the spec-

trometer and plays an important role in the quick and accurate identification of fine ob-
jects. This study uses the USGS mineral spectral library for matching, which has 481 min-
eral spectra [48]. Each spectral curve has 420 bands covering a spectral range of 0.4–2.6 
µm. It can be seen in Figure 2 that, although the spectral absorption features of the six 
Cuprite minerals are mainly distributed in the spectral range of about 1.4–2.5 µm, they 
are quite different, which is the prerequisite for hyperspectral mineral mapping. 

 
Figure 2. The spectral curves of the Cuprite minerals in the USGS spectral library. 

3. Methodology 
3.1. Spectral Preprocessing 

As SM requires the hyperspectral image and spectral library to have the same spec-
tral range and resolution, spectral resampling of the USGS mineral spectral library was 
performed using the environment for visualizing images before matching. Moreover, 
band depth (BD) was used to enhance the spectral absorption differences of various min-
erals [49]. The calculation of BD includes three steps: (1) connecting the extreme points of 
the spectral curve to form the envelope; (2) dividing the original spectrum by the envelope 
to generate the continuum removal [50]; and (3) subtracting the continuum removal from 
1 to obtain the BD. 

SL =
Re − Rs

λe − λs
 (1) 
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BD = 1 −
Ri

Rs + SL ∙ (λi − λs)
 (2) 

where R is the reflectance; λ is the wavelength; SL represents the slope; i is the band index; 
and e and s are the ending and starting points of the segmented straight lines of the enve-
lope, respectively. As shown in Figure 3, the envelope completely wraps the original spec-
tral curve, and the BD greatly enhances the spectral absorption depth of muscovite. 

 
Figure 3. Spectral curves of muscovite of USGS mineral spectral library after spectral preprocessing. 

3.2. Clustering-Matching 
Figure 4 shows a flowchart of the clustering-matching procedure, which includes 

three steps: (i) extracting the spectral features that can well reflect the distribution of var-
ious minerals; (ii) clustering based on the extracted spectral features; and (iii) matching 
the de-noised cluster centers with the USGS mineral spectral library by dimensionless 
matching methods. 

 
Figure 4. Flowchart of the clustering-matching procedure. 
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3.2.1. Feature Extraction 
The main idea of NMF is to discover two low-rank factor matrices to approximate an 

input large-dimensional nonnegative matrix 𝑉𝑉 ∈ 𝑅𝑅+𝑚𝑚×𝑛𝑛 with the following objective func-
tion [51]: 

min
W∈R+m×r,H∈R+r×n 

 ‖V − WH‖F2     s. t. W, H ≥ 0 (3) 

where || ⋅ ||𝐹𝐹 denotes the Frobenius norm; from the perspective of dimensionality reduc-
tion, W and H are the basis and coefficient matrix, respectively; m and n are the pixel and 
band number, respectively; r is the factorization rank. All elements of W and H must be 
nonnegative. Alternating least squares (ALS) [52,53] was used for solving this objective 
function. The update rule of ALS is described as follows, and the maximum number of 
steps allowed is set as 1000: 

H ← (WTW)−1WTV    s. t. H ≥ 0 (4) 

W ← VHT(HHT)−1     s. t. W ≥ 0 (5) 

Since NMF is a nonconvex optimization problem, there is no guarantee that the W 
and H matrices are optimally determined, which means that the different initial values of 
W and H may provide different NMF results. Therefore, particular emphasis has to be 
placed on NMF initialization. At present, random initialization, clustering-based initiali-
zation [54], and matrix factorization initialization [55] can be used to obtain the initial W 
and H matrices. Among the three initialization methods, only matrix factorization con-
tains no randomization. Nevertheless, except for NMF, other matrix factorization algo-
rithms, such as singular value decomposition (SVD) [56] and independent component 
analysis [57], usually produce negative values, which violates the nonnegative constraint 
of NMF. 

In fact, NMF can not only be used for feature extraction, but it also has a wide appli-
cation in clustering [58,59]. From the perspective of clustering, W is equivalent to the clus-
ter division, and H is the centroid set, in which the pixel spectra of various minerals should 
well reflect their spectral absorption differences. For hyperspectral images, these repre-
sentative pixels in H can be obtained by matching with the spectral library. Based on this, 
an NMF initialization method using SM, called SMNMF, was proposed. Firstly, r was set 
as 6, which is the mineral type number of the AVIRIS image. Then, H was initialized with 
the pixels most similar to each mineral type. Finally, the initial W matrix was calculated 
using Equation (7): 

H = {p | p = arg min SMF(V, M)}    s. t. H ≥ 0 (6) 

W = V/H    s. t. W ≥ 0 (7) 

where SMF is a similarity measurement function and is specified as the combined match-
ing method in this study, which will be introduced later; M represents the spectra of the 
six mineral types and is obtained from the USGS mineral spectral library; and p is a pixel 
that is most similar to one mineral type. Since the H matrix obtained by SM is unique, 
SMNMF can also obtain a definite initial solution without producing negative values. 

The most widely used NMF initialization method, Nonnegative Double Singular 
Value Decomposition (NNDSVD) and its slightly modified variant (NNDSVDa) [56,60], 
were used for comparison with SMNMF in mineral mapping. It can be seen from Figure 
5 that the NMF features obtained based on SMNMF and NNDSVDa can reflect the distri-
bution of various minerals to a certain extent, while the brightness of the feature image 
initialized by NNDSVD is generally low. This is the case because, in order to keep the 
matrix nonnegative, NNDSVD initializes NMF only using the positive section of the sin-
gular vectors, and the negative elements are set to zeros, indicating that the initial W and 
H matrices extracted by NNDSVD are likely to contain many zeros. Therefore, NNDSVD 
is only suited for the sparse case and may lead to a worse error than random initialization 
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in the dense case [60]. To address this problem, NNDSVDa sets all zeros to the average of 
all elements of an image. However, this ensemble average is unreasonable to some extent 
because, if the pixel number of various types varies greatly, some types with fewer pixels 
may be lost in the classification. 

 
Figure 5. Spectral features of the AVIRIS image extracted by NMF: (a–f) are the NMF features ini-
tialized by NNDSVD; (g–l) are the NMF features initialized by NNDSVDa; and (m–r) are the NMF 
features initialized by SMNMF. 

3.2.2. Clustering 
To date, an abundant number of clustering algorithms have been developed. In this 

study, k-means was used for clustering for two reasons. On the one hand, it is obvious 
that the clustering complexity will affect the mapping efficiency of clustering-matching. 
If the complexity and memory requirements of the clustering algorithm are high, such as 
in the case of spectral clustering and affinity propagation [61,62], the mapping efficiency 
of clustering-matching will not be significantly improved, even if K is far less than the 
pixel number. Therefore, k-means, one of the ten classical algorithms in data mining, was 
used for clustering-matching due to its speed and simplicity. On the other hand, since k-
means updates the cluster centers by averaging, the de-noised cluster centers can be di-
rectly obtained when the clustering iteration stops, and there is no need to use the final 
clustering result to average the corresponding pixels from the enhanced hyperspectral 
image. In this study, KSM is short for the combination of k-means and SM, and the KSM 
mapping methods based on NNDSVD, NNDSVDa, and SMNMF are called NKSM, 
NAKSM, and SKSM, respectively. 

K-means is an iterative clustering algorithm. Its objective function is to minimize the 
sum of the squared errors (SSE) [63]: 

SSE(C) = ���xlj − cl�F
2

Nl

j=1

K

l=1

 (8) 

where cl is one cluster center; Nl is the pixel number of cl; and xlj is one pixel of cl. Unlike 
the traditional k-means, KSM has two cluster centers during the clustering process. One 
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cluster center, called Center1, is calculated from the extracted features and used to judge 
whether the clustering iteration should be stopped. Another cluster center, called Center2, 
is calculated from the BD and used to match with the enhanced USGS spectral library to 
get the mineral mapping results. Generally, k-means has four steps: (1) initialization, 
where K is set, and Center1 and Center2 are selected randomly; (2) division, where each 
pixel in the feature image is divided into its nearest cluster center, and a category index of 
each pixel can be obtained; (3) updating, where Center1 and Center2 are respectively up-
dated by calculating the average of pixels in the feature image and the BD based on the 
category index; and (4) iteration, where the algorithm returns to step 2 until Center1 does 
not change. In this way, when k-means stops iterating, the de-noised cluster centers of the 
BD (i.e., Center2) can be obtained directly. 

The clustering results of k-means are limited by the indeterminacy of K. In this study, 
K was set as 481, namely the number of spectra in the USGS spectral library, which is far 
greater than the mineral type number of the AVIRIS image because, as K increases, the 
intra-cluster similarity of each cluster also increases, resulting in the decrease of SSE. That 
is, in theory, a larger K is conducive to improving the mineral mapping accuracy of KSM. 
In addition, the clustering results of k-means depend heavily on the initial cluster centers 
[64], which means different initial cluster centers may lead to different clustering-match-
ing results. Therefore, to comprehensively analyze the performance of KSM in mineral 
mapping, the initial cluster centers should cover all pixels in the AVIRIS image as far as 
possible. Thus, the k-means clustering was performed 254 times, and 481 different initial 
cluster centers were randomly selected for each clustering. In other words, a total of 
122,174 (i.e., 254 * 481) nonrepeating pixels were used as the initial cluster centers, cover-
ing almost the entire AVIRIS image. Therefore, 254 clustering-matching mapping results 
were generated for the AVIRIS image. 

3.2.3. Matching 
Since the clustering result solely reflects the mineral distribution without providing 

specific mineral types, four dimensionless matching methods, including spectral angle 
mapper (SAM), spectral correlation angle (SCA), spectral gradient angle (SGA), and a 
combined matching method, were used to match Center2 with the enhanced USGS min-
eral spectral library to obtain the final mineral mapping results. 

SAM measures the similarity of two spectral vectors by calculating the cosine angle 
between them [65]: 

SAM = acos�
∑ Vti ∗ Vrin
i=1
‖Vt‖ ⋅ ‖Vr‖

� (9) 

where Vt and Vr represent the target and reference spectral vectors, respectively. SAM is 
invariant to scalar multiplication. SCA uses the Pearson correlation coefficient for match-
ing: 

SCA = acos((
∑ (Vti − Vt� ) ∗ (Vri − Vr� )n
i=1

‖Vt − Vt�‖ ⋅ ‖Vr − Vr� ‖
+ 1)/2) (10) 

where Vt�  and Vr�  are the mean values of Vt and Vr, respectively. SGA uses the gradient of 
two spectral vectors to calculate their shape similarity [66]: 

SGt = (Vt2 − Vt1, Vt3 − Vt2, … , Vtn − Vt(n−1)) (11) 

SGr = (Vr2 − Vr1, Vr3 − Vr2, … , Vrn − Vr(n−1)) (12) 

SGA = acos (
∑ SGti ∗ SGri

(n−1)
i=1
‖SGt‖ ⋅ ‖SGr‖

) (13) 

where SGt and SGr are the spectral gradient vectors of Vt and Vr, respectively. 
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In fact, as can be seen from Equations (9), (10), and (13), SCA and SGA are both vari-
ants of SAM. Compared with SAM, SCA can distinguish between positive and negative 
correlations, while SGA provides the advantage of considering slope changes within the 
spectral vector [67]. However, since the fluctuation of the spectral curve caused by noise 
poses a great influence on the slope changes, the mapping results of SGA may not be ideal 
when SNR is lower, while SCA is less sensitive to the spectral changes caused by noise 
through decentralization. Therefore, to measure the correlation and shape similarity of 
two spectral curves simultaneously, this study proposes a combined matching method 
called SCGA, which combines SCA and SGA according to the following equation: 

SCGA = sqrt(SCA2 + SGA2) (14) 

The smaller the value of the four matching methods, the greater the similarity be-
tween the target and reference spectral vectors. 

3.2.4. Accuracy Assessment 
In this study, the overall accuracy (OA) [68] is used to evaluate the mineral mapping 

performances of SM and KSM. OA is the probability that the classification results are con-
sistent with the actual results. It considers the number of correctly classified pixels in the 
diagonal direction of the confusion matrix. 

OA = � qjj/N
m

j=1

 (15) 

Here, m is the number of mineral types; qjj is the sum of the confusion matrix diagonal; 
and N is the total number of samples. 

4. Results 
In this study, there are four mapping methods including SM, NKSM, NAKSM, and 

SKSM. Each mapping method uses SAM, SCA, SGA, and SCGA for matching. Thus, the 
combination of the mapping and matching methods constitutes 16 classifiers, including 
SM–SAM, SM–SCA, SM–SGA, SM–SCGA, NKSM–SAM, NKSM–SCA, NKSM–SGA, 
NKSM–SCGA, NAKSM–SAM, NAKSM–SCA, NAKSM–SGA, NAKSM–SCGA, SKSM–
SAM, SKSM–SCA, SKSM–SGA, and SKSM–SCGA. 

Qualitatively, it can be inferred from Figure 6 that the mineral mapping results based 
on KSM are more contiguous and extensive than those of SM, no matter which matching 
or mapping method was used. In particular, for the three KSM mapping methods, NKSM 
lost a number of calcite and muscovite samples compared with NAKSM and SKSM. For 
SAM and SCA, NAKSM and SKSM have similar mineral mapping results. For SGA and 
SCGA, SKSM identifies more chalcedony than NKSM and NAKSM. Furthermore, among 
the four matching methods, SGA and SCGA can identify more calcite and muscovite sam-
ples than SAM and SCA. 
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Figure 6. Mineral mapping results of the AVIRIS image: (a–d) are the mapping results based on SM–
SAM, SM–SCA, SM–SGA, and SM–SCGA, respectively; (e–h) are the mapping results based on 
NKSM–SAM, NKSM–SCA, NKSM–SGA, and NKSM–SCGA, respectively; (i–l) are the mapping re-
sults based on NAKSM–SAM, NAKSM–SCA, NAKSM–SGA, and NAKSM–SCGA, respectively; 
and (m–p) are the mapping results based on SKSM–SAM, SKSM–SCA, SKSM–SGA, and SKSM–
SCGA, respectively. 

Figure 7 displays the accuracy assessment of the 254 mineral mapping results of the 
AVIRIS image, in which the horizontal axis represents the number of clustering, and the 
vertical axis represents OA. Quantitatively, it can be seen that KSM performs much better 
than SM for any initial cluster center or matching method. Specifically, NAKSM and 
SKSM outperform NKSM, no matter which matching method was used. For SAM and 
SCA, NAKSM and SKSM have similar mineral mapping accuracies. For SGA and SCGA, 
the OA curves of SKSM are above those of NAKSM. Furthermore, among the four match-
ing methods, SAM and SCA have similar mapping accuracies, which are less than those 
of SGA and SCGA. In addition, for each mapping method, SCGA performs slightly better 
than SGA in OA. 
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Figure 7. Mineral mapping accuracies of the AVIRIS image: (a–d) are the mapping accuracies based 
on SAM, SCA, SGA, and SCGA, respectively. 

In terms of the average mineral mapping accuracies of the AVIRIS image, it can be 
inferred from Table 1 that, for each matching method, any KSM mapping method outper-
forms SM. Specifically, for SAM and SCA, although NKSM performs worse than NAKSM 
and SKSM, its average mapping accuracies are still about 13% higher than SM. For 
NAKSM and SKSM, the average mapping accuracies of SAM and SCA are about 22%, 
20%, 22%, and 22% higher than SM, respectively. For SGA and SCGA, SKSM outperforms 
NKSM and NAKSM, and its average overall accuracies are about 35% and 33% higher 
than SM, while the average mapping accuracies of SGA and SCGA based on NKSM and 
NAKSM are about 21%, 18%, 27%, and 26% higher than SM, respectively. Among the 
three KSM mapping methods, the average mapping accuracy of SKSM is about 15% and 
9% higher than those of NKSM and NAKSM at most. For each mapping method, SCGA 
outperforms other matching methods in OA. In addition, SKSM–SCGA has higher aver-
age accuracies than other classifiers. 

Table 1. Average mineral mapping accuracies of the AVIRIS image. 

Matching Method SM NKSM NAKSM SKSM 
SAM 0.5167 0.6441 0.7375 0.7329 
SCA 0.4955 0.6296 0.6954 0.7102 
SGA 0.5431 0.7517 0.8120 0.8966 

SCGA 0.6005 0.7772 0.8580 0.9282 

To analyze the mineral mapping performance of various matching methods under 
different SNRs, zero-mean Gaussian noise with different standard deviations was added 
to the AVIRIS image. The higher the noise standard deviation, the lower the SNR. Quali-
tatively, as shown in Figure 8, KSM performs significantly better than SM in mineral map-
ping. Moreover, it can be inferred from Figures 6 and 8 that, among the four matching 
methods, the mineral mapping results of SCA and SCGA change the least after adding 
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noise, while the mineral mapping performances of SAM and SGA are obviously limited 
by noise. Specifically, before adding noise, SM–SGA has better mapping results than SM–
SAM and SM–SCA, while after adding noise to the AVIRIS image, SM–SGA performs 
worst among the four SM classifiers and only gets some alunite, kaolinite, and little calcite. 
Although the mapping results of SM–SGA in Figure 8 are greatly improved by KSM, SGA-
based KSM classifiers still perform worse than the KSM classifiers using SCA and SCGA. 
Similarly, despite that KSM improves the mapping results of SM-SAM to some extent, 
after adding noise, SAM-based KSM classifiers perform worse than the KSM classifiers 
using other matching methods. Unlike SAM and SGA, after adding noise to the AVIRIS 
image, SCA and SCGA retain most of the mineral mapping results in Figure 6 and show 
similar mapping performance. 

 
Figure 8. Mineral mapping results of the AVIRIS image after adding zero-mean Gaussian noise with 
the standard deviation of 0.006: (a–d) are the mapping results based on SM–SAM, SM–SCA, SM–
SGA, and SM–SCGA, respectively; (e–h) are the mapping results based on NKSM–SAM, NKSM–
SCA, NKSM–SGA, and NKSM–SCGA, respectively; (i–l) are the mapping results based on 
NAKSM–SAM, NAKSM–SCA, NAKSM–SGA, and NAKSM–SCGA, respectively; and (m–p) are the 
mapping results based on SKSM–SAM, SKSM–SCA, SKSM–SGA, and SKSM–SCGA, respectively. 
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Figure 9 shows the mineral mapping accuracies of the AVIRIS image after adding 
zero-mean Gaussian noise, in which the horizontal axis represents the noise standard de-
viation with unequal-interval distribution. Quantitatively, for SM, SGA generally per-
forms worse than other matching methods; for KSM, the OA curves of SAM are below 
those of other matching methods when the noise standard deviation is greater than about 
0.003. For SM and KSM, SCA has higher mapping accuracies than SAM and SGA in the 
noise standard deviation range of about 0.006 to 0.01. In addition, for any mapping 
method, the OA curves of SCGA are always above those of SGA, which means SCGA can 
effectively improve the mapping accuracy of SGA. 

 
Figure 9. Mineral mapping accuracies of the AVIRIS image after adding zero-mean Gaussian noise: 
(a–d) are the mapping accuracies based on SM, NKSM, NAKSM, and SKSM, respectively. 

Table 2 shows the average mineral mapping time of different classifiers, which is 
obtained under the same conditions. It can be seen that, in terms of the total mapping 
time, SM takes more than 71 min to complete the four matching processes, while NKSM, 
NAKSM, and SKSM only need about 7, 10, and 6 min to obtain much better mineral map-
ping results, respectively. Specifically, for SAM, NKSM, NAKSM, and SKSM save about 
51%, 33%, and 57% of the mapping time; for SCA, the mapping time of NKSM, NAKSM, 
and SKSM only accounts for 6%, 8%, and 5% of the mapping time of SM, respectively; for 
SGA, 48%, 28%, and 54% of the mapping time is saved by the three KSM mapping meth-
ods; for SCGA, NKSM, NAKSM, and SKSM save about 95%, 93%, and 96% of the mapping 
time, respectively. Furthermore, through clustering-matching, the mineral mapping effi-
ciency of SCA and SCGA is improved much more than that of SAM and SGA, which have 
similar performance in mineral mapping time. Moreover, NAKSM takes at least 36 s more 
than NKSM to complete the clustering-matching process. In addition, for each matching 
method, the mineral mapping time of SKSM is less than NKSM and NAKSM. Compared 
with NKSM and NAKSM, SKSM saves about 12% and 38% of the total mapping time, 
respectively. 
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Table 2. Average mineral mapping time of SM and KSM. 

Time (sec) SM NKSM NAKSM SKSM 
SAM 201.8196 99.5971 136.1710 86.7398 
SCA 1812.1085 102.4428 142.2040 90.5664 
SGA 187.2481 97.6556 134.8296 85.6867 

SCGA 2079.9541 104.1109 155.0557 92.2011 
Total 4281.1302 403.8064 568.2603 355.1941 

5. Discussion 
In terms of mineral mapping accuracy, KSM outperforms SM, and even the mini-

mum overall accuracies of KSM are higher than those of SM. This occurs because the noise 
in the pixel spectrum can be removed to some extent by averaging, and the cluster centers 
of k-means are exactly updated by averaging. As shown in Figure 10, averaging not only 
smooths the spectral curves of alunite and kaolinite, but it also preserves their spectral 
absorption features. Among the three KSM mapping methods, NKSM performs worse 
than NAKSM and SKSM in OA, because the W and H matrices initialized by NNDSVD 
contain a number of zeros, which has a certain impact on its clustering-matching results. 
By replacing zeros with the average of all elements of the AVIRIS image, NAKSM has a 
higher mapping accuracy than NKSM. However, since this ensemble average may lose 
the distribution of some minerals with fewer pixels, the NAKSM classifiers using SGA 
and SCGA lost some chalcedony samples and have worse mapping accuracies than the 
corresponding SKSM classifiers. 

 
Figure 10. Original and averaged spectrum of (a) alunite and (b) kaolinite. 

KSM also performs much better than SM in mineral mapping efficiency, despite the 
fact that the algorithm complexity of KSM is greater than that of SM. Compared with SM, 
KSM can save more than 95% of the mapping time. This is because KSM uses the cluster 
centers to match the spectral library, rather than using per-pixel matching, and K (i.e., 481) 
is much less than the pixel number (i.e., 122,500) of the AVIRIS image. Moreover, the fast-
clustering ability of k-means also contributes to the improvement of mapping efficiency. 
Due to the sparsity of NNDSVD, the mapping efficiency of NKSM is higher than that of 
NAKSM. In addition, since SMNMF does not require matrix factorization and only needs 
to find several pixels to initialize the H matrix, while NNDSVD and NNDSVDa need two 
SVD processes, SKSM outperforms NKSM and NAKSM in mapping efficiency. Therefore, 
it can be said that SMNMF is a simple and effective NMF initialization method. Neverthe-
less, since SMNMF uses SM to initialize the coefficient matrix, it needs the support of a 
spectral library. 

Figure 11 shows the average overall accuracies of 20 random clustering-matchings of 
KSM with different K values. It can be seen that, for each KSM mapping method, with the 
increase of K, the average overall accuracies of the four matching methods gradually in-
crease, and the mapping accuracy at K = 481 is much higher than that at K = 6. Therefore, 
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for k-means clustering, setting K to the spectral curve number of the USGS mineral spec-
tral library or larger is conducive to improving its mineral mapping accuracy. 

 
Figure 11. Average overall accuracies of 20 random clustering-matchings of KSM with different K 
values: (a–c) are the mapping accuracies based on NKSM, NAKSM, and SKSM, respectively. 

In terms of the four matching methods, Figure 7 and Table 1 show that SGA has 
higher mapping accuracies than SAM and SCA for the original AVIRIS image, denoting 
that shape similarity can accurately reflect the spectral differences of fine objects when 
SNR is high enough. However, as shown in Figures 8 and 9, SM–SGA demonstrates worse 
mapping performance than do SM–SAM and SM-–SCA when SNR is lower, which means 
that SGA is more sensitive to noise than SAM and SCA. This is the case because SGA 
calculates the reflectivity difference when obtaining the shape similarity between two 
spectral vectors. Furthermore, Figure 9 shows that SCA outperforms SAM and SGA in 
mineral mapping at low SNR, indicating that, through decentralization, SCA can reduce 
the influence of noise on matching accuracy. By combining the correlation and shape sim-
ilarity of two spectral curves, SCGA has slightly higher mapping accuracies than SGA at 
high SNR, and it shows a similar mapping performance with SCA at low SNR. That is, the 
two variants of SAM (i.e., SGA and SCA) demonstrate good mapping performance at high 
and low SNR, respectively, while their combination (i.e., SCGA) could achieve promising 
mapping results at both high and low SNR. 

It is well-known that mean filtering (MF) also removes noise from images by averag-
ing. The difference between KSM and MF is that KSM can ensure that the pixels used to 
calculate the average are of the same type, while MF cannot guarantee this. Compared 
with KSM, MF has three undeniable shortcomings in mineral mapping. One is that aver-
aging the pixel values of different mineral types will render the MF mapping results fuzzy. 
Figure 12 shows the mineral mapping results of the AVIRIS image based on MF, whose 
window length is set as 3. It can be inferred from Figures 6 and 12 that, compared with 
KSM, MF blurs out the details of the mineral mapping results, indicating that it is not the 
averaging but the averaging of the pixel values of different types that makes the mapping 
results fuzzy. 

 
Figure 12. Mineral mapping results of the AVIRIS image based on MF: (a–d) are the mapping results 
of SAM, SCA, SGA, and SCGA, respectively. 
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Another shortcoming of MF in mineral mapping is that the mixing of different min-
eral types in the filtering window will pose a great influence on its mineral mapping ac-
curacies. The more kinds of minerals in the filtering window, the higher the mixing level. 
In order to analyze the influence of the mixing of various mineral types on the mapping 
results of KSM and MF, 30 AVIRIS images with different mixing levels were achieved 
using an iterative procedure. In each iteration, the positions of 4000 pixels of the AVIRIS 
image were randomly exchanged to make the mineral types within the 3 * 3 filtering win-
dow inconsistent. The mixing level of these AVIRIS images increases as the iteration pro-
gresses. Quantitatively, it can be seen from Figure 13 that, for each matching method, with 
the increase of mixing level, the mapping accuracy of MF decreases gradually. This occurs 
because the mixing of different mineral types causes the average spectrum of MF to be 
unable to accurately represent the spectral features of the middle pixel in the filtering win-
dow, which results in a matching error. The OA of KSM remains stable at the same level, 
no matter which matching or mapping method is used. That is, the mapping results of 
KSM are independent of the mixing of different mineral types because it can take the av-
erage of the same mineral type by clustering. Furthermore, compared with KSM, MF 
demonstrates lower mapping efficiency because of its per-pixel matching method. 

 
Figure 13. Mineral mapping accuracies of 30 AVIRIS images with different mixing levels: (a–d) are 
the mapping accuracies based on NKSM, NAKSM, SKSM, and MF, respectively. 

Considering that k-means falls easily into the local optimal solution, a clustering al-
gorithm with global search ability, such as genetic algorithm, simulated annealing algo-
rithm, and particle swarm optimization, can be used in clustering-matching to further im-
prove the mapping accuracy. However, as previously mentioned, complex clustering al-
gorithms may reduce the mapping efficiency of clustering-matching. In addition, despite 
the good mineral mapping results achieved by the proposed KSM mapping approach, the 
dependence of clustering-matching on the spectral library may limit its application. 
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6. Conclusions 
This work proposes an unsupervised clustering-matching mapping idea and com-

bines k-means and SM for hyperspectral mineral mapping. The experimental results show 
that this combination could effectively reduce the fragmentation of the matching results 
and greatly improve mapping efficiency compared with that of traditional spectral match-
ing technology. The average mineral mapping accuracy of KSM is about 35% higher than 
that of SM at most, and more than 95% of the mapping time can be saved, denoting that 
clustering-matching is an efficient, unsupervised mineral mapping method. During the 
clustering-matching process, the following conclusions can be addressed as well: 
• In feature extraction, the proposed NMF initialization method based on SM performs 

better than the widely used matrix factorization initialization method in mapping 
accuracy and efficiency. 

• For k-means clustering, setting K to the spectral curve number of a mineral spectral 
library or larger can effectively improve the mineral mapping accuracy of clustering-
matching. 

• In terms of the four matching methods, the proposed combined matching method 
can achieve promising mapping results at both high and low signal-to-noise ratios. 

• In noise reduction, although both KSM and mean filtering remove noise by averag-
ing, KSM does not blur out the details of the mineral mapping results and has a 
greater mapping efficiency. Most importantly of all, KSM is independent of the mix-
ing of different mineral types. 
Our work here may not only be helpful for autonomous mineral mapping, but it may 

also provide reference for the rapid and autonomous identification of other fine objects. 
Future research on more efficient clustering algorithms may help further improve the 
mapping results. 
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