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Abstract: This study presents an updated global mangrove forest baseline for 2010: Global Mangrove
Watch (GMW) v2.5. The previous GMW maps (v2.0) of the mangrove extent are currently considered
the most comprehensive available global products, however areas were identified as missing or
poorly mapped. Therefore, this study has updated the 2010 baseline map to increase the mapping
quality and completeness of the mangrove extent. This revision resulted in an additional 2660 km2 of
mangroves being mapped yielding a revised global mangrove extent for 2010 of some 140,260 km2.
The overall map accuracy was estimated to be 95.1% with a 95th confidence interval of 93.8–96.5%,
as assessed using 50,750 reference points located across 60 globally distributed sites. Of these
60 validation sites, 26 were located in areas that were remapped to produce the v2.5 map and
the overall accuracy for these was found to have increased from 82.6% (95th confidence interval:
80.1–84.9) for the v2.0 map to 95.0% (95th confidence interval: 93.7–96.4) for the v2.5 map. Overall,
the improved GMW v2.5 map provides a more robust product to support the conservation and
sustainable use of mangroves globally.

Keywords: mangroves; extent; mapping; sentinel-2; global mangrove watch

1. Introduction

At the United Nations Framework Convention on Climate Change (UNFCCC) Con-
ference of the Parties 26 (COP26) in 2021, an international agreement was made to end
deforestation by 2030. To ensure adherence to this, accurate global scale maps of forested
ecosystems will be critical. One such ecosystem is mangrove forests, which have witnessed
an elevated rate of loss compared to terrestrial forests over the past decades [1] with re-
gional losses exceeding 3%, driven by anthropogenic disturbances [1–3] such as conversion
to aquaculture [4] or agriculture [5], urban expansion [6], oil palm plantations [7], and
climate change [8]. Mangrove forests support a large number of ecosystem services [9], such
as carbon storage and sequestration [10], coastal protection [11], food production [9], and
tourism [12]. The ecosystem services of tidal mangroves and marshes were estimated to be
worth 193,843 USD per hectare per year for 2007, equating to 25 trillion USD annually [13].
Accurate baseline maps of extent are therefore essential for a local and global ecosystem
service accounting as well as verifying COP26 goals. Indeed, the ambitious goals set by
the Global Mangrove Alliance (GMA), to restore 20% of mangrove forests by 2030, require
accurate baselines upon which their efforts can be built. Furthermore, baseline maps are
the keystone for mapping environmental descriptors that characterise this ecosystem, such
as biomass [14], understanding the drivers of land cover change [2], and locating primary
regions for potential restoration.
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The Bunting et al. [15] Global Mangrove Watch (GMW) version 2.0 extent maps
have emerged as the primary global dataset for characterising mangrove extent. There
are a number of initiatives (e.g., GMA, GMW Portal; https://globalmangrovewatch.org;
accessed 8 January 2022) that are aiming to preserve and restore mangroves and wider
international objectives such as the UN Sustainable Development Goals (SDGs), for which
the existing Global Mangrove Watch (GMW) version 2.0 layers [15,16] are a key dataset and
are already used for reporting against. Currently, the GMW v2.0 [16] is the most up-to-date
mangrove extent at the highest spatial resolution available. However, all mangrove datasets
(i.e., [15–18]) published to date have areas that are missing (i.e., not mapped) or where
mapping quality is poor. These limitations are evident globally and are caused by, for
example, sensor specific characteristics (e.g., Landsat 7 Enhanced Thematic Mapper (ETM+)
scan-line error), limited data availability, excessive cloud cover, or a combination of the
above. These limitations degrade the performance of the map to meet the needs of the
COP26 and GMA global initiatives by the year 2030.

For the GMW version 2.0, Bunting et al. [15] used two random forest classifiers to
classify mangrove extent for the year 2010 from a combination of ALOS PALSAR and
Landsat sensor data. As demonstrated by [15,19,20], the L-band radar data used in GMW
v2.0 are sensitive to mapping mangrove change, while providing limited capability to
classify the mangrove extent. However, optical remotely sensed data, particularly those
with a Shortwave Infrared (SWIR) waveband, are well suited to the mapping of mangrove
forest extent [21]. More recently, a number of studies (e.g., [21–25]) have made use of
Sentinel-2 imagery and have demonstrated typical classification accuracies >90% for
mangrove extent using ensemble machine learning classification approaches (e.g., random
forests) through the Google Earth Engine platform. However, these studies have typically
been undertaken over small spatial extents or for a few countries (e.g., [25]), single countries
(e.g., [24]), or particular areas of interest at sub-national scales (e.g., [23]). Alternative
approaches to mangrove mapping that have focused on mapping through time have also
been proposed, such as [26,27], which have used the COntinuous monitoring of Land
Disturbance (COLD) [28] method to provide individual site level time-series maps of
mangrove extent. However, these time-series approaches are computationally intensive
and therefore difficult to apply at a global scale. Nevertheless, they have demonstrated the
ability of advanced machine learning and intensive computational processing for delivering
maps at the quality required for international reporting.

The aim of this work was to produce an update to the 2010 Global Mangrove Watch
version 2.0 [15] suitable for fully supporting the needs of ambitious global level targets
relating to mangrove forest preservation and restoration. Specific regions were identified as
missing or of poor quality within the GMW v2.0 product and a new method was, therefore,
proposed for achieving vastly improved mapping, combining higher-resolution data at
higher imaging cadence with advanced machine learning models. These results were
combined with the GMW v2.0 map to create the most complete map of mangrove extent
currently available and will form the basis of a subsequent study, updating the estimates of
mangrove change.

2. Materials and Methods

The analysis was undertaken on the SuperComputing Wales (SCW) High Performance
Computing (HPC) infrastructure using the Remote Sensing and GIS Library (RSGISLib) of
tools [29], the KEA image format [30] and the pbprocesstools [31] workload management
library to manage the workflow of tasks on the HPC.

2.1. Areas to Be Mapped

Through user feedback on the GMW v2.0 maps, 204 regions were identified to be either
missing or poorly mapped. As detailed by Bunting et al. [15], the choice of 2010 for the
baseline map was driven by the use of ALOS PALSAR data, coverage of which was most
complete for the year 2010 [15]. However, this resulted in Landsat-5 TM and Landsat-7
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ETM+ temporal composites affected by ETM+ scan-line error artefacts, particularly in areas
of high cloud cover (e.g., Niger Delta). These artefacts were, in some cases, present with
the GMW v2.0 maps. Areas identified that required (re-)mapping as part of this study are
shown in Figure 1

North Atlantic Ocean
North Pacific Ocean

South Pacific Ocean
Indian Ocean

South Atlantic Ocean

Africa

Asia

Australia

North America

Oceania

South America

Figure 1. Map of regions identified as in need of updating as part of the Global Mangrove Watch
(GMW) v2.5 analysis.

2.2. Mangrove Habitat Mask

Bunting et al. [15] developed a mangrove habitat mask which was used to limit the
classification of mangroves to those where mangroves can be expected to be present. For
example, mangroves must generally be close to water and at or close to mean sea level.
However, this mask was found to have been too tight in a number of regions (e.g., Florida,
USA) and therefore caused under-classification of mangroves. Ahead of the mapping, the
habitat mask was therefore revised, primarily through manually digitising regions to be
added, but also intersecting the maps of [17,18] to ensure that all regions mapped in those
products were fully located within the GMW habitat mask.

2.3. Mangrove Mapping

Bunting et al. [15] used the most appropriate and available data (i.e., Landsat TM
and ETM+ and ALOS PALSAR) for 2010 in the original mapping (v2.0). Therefore, to
improve the mapping, an approach that used alternative datasets was required. In this
case, Sentinel-2 imagery was used to map the areas outlined in Figure 1. For the analysis,
100 global mangrove/non-mangrove XGBoost classifiers [32] were trained and applied
to each Sentinel-2 acquisition. To produce a single unified classification, results from
all acquisitions and classifiers were merged to create a probability for each pixel to be
mangroves. This probability surface was then thresholded to produce the binary map,
which was subject to a manual Quality Assurance (QA) process to produce the Sentinel-
2-derived maps. These were then combined with the v2.0 2010 baseline and a change
detection using the 2010 ALOS PALSAR data was applied to create a revised GMW v2.5
2010 baseline. The processing stages are outlined in Figure 2.

2.3.1. Sentinel-2 Processing

The Sentinel-2 imagery was downloaded from the Google Cloud public dataset [33]
and, for the purpose of this work, processed to a 20-m pixel resolution (i.e., the 10-m
resolution Sentinel-2 image bands were resampled to 20 m using averaging) orthorectified
standardised surface reflectance product. For the 383 Sentinel-2 granules identified as
intersecting with the regions of interest (Figure 1), individual acquisitions were selected
for download based on cloud cover. Initially, the 10 acquisitions with the lowest cloud
cover (maximum cloud cover of 20%) were identified from the entire Sentinel-2 archive
(2015–2020). An iterative process was then followed where, for each granule, the scenes
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were downloaded and processed to produce a cloud mask. The combined cloud masks
were checked to estimate whether data were available for all mangrove regions within the
scene, as defined by the mangrove habitat mask. If more acquisitions were required, the
thresholds for the number of acquisitions and maximum cloud cover were increased. These
were increased to a maximum of 100 scenes and a maximum cloud threshold of 75%. In
total, 11,262 Sentinel-2 acquisitions were downloaded and used for this analysis.

2.4. Merging Mangrove Maps and Identify Change to 2010

2.3.1. Sentinel-2 Processing

2.3.3. Applying the Classification Models

2.3.2. Building the Classification Models

Resample
Mangrove
Mask

Merge
Mangrove
v2 Mask

Update
Mangrove

Mask to 2010Define
Low

Backscatter
Mask

QA
Mangrove
v2.5 Class

Apply 100
XGBoost
Classifiers

Merge
Sentinel-2
Scene

Classifications

Merge
Sentinel-2
Scenes

Generate
Mangrove
Class
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Figure 2. Flowchart of the methods used to generate the GMW v2.5 map for 2010.

To generate a standardised reflectance product for the classifications, the ARCSI
software [34] was employed, as successfully demonstrated in past studies [15,26,27,35]. The
ARCSI software uses the 6S model [36] through the Py6S module [37] parameterised using
the image header information and an aerosol optical depth estimated from a dark object
subtraction [15]. Using the method of Shepherd and Dymond [38], the resulting images
were normalised for a sensor view angle and local topography producing a standardised
reflectance product. A tropical atmosphere and maritime aerosol profile was used for
all scenes.

Cloud masking was undertaken using the product of two approaches. The FMask [39,40]
algorithm was applied using the Python-FMask implementation [41]. The s2cloudless [42]
LightGBM classifier [43] was also applied to each scene. The resulting s2cloudless classifi-
cation was further refined using a morphological closing (with a 5 × 5 circular operator)
followed by a morphological dilation (with a 7 × 7 circular operator). Finally, any cloud
objects were removed if they were less than 10 pixels in size. The final cloud mask was
defined as the intersection of the two masks. The cloud shadow mask was derived using
the approach implemented within FMask, as described in Zhu et al. [39].

Finally, a ‘clear sky’ mask was derived for each acquisition, defining the areas of
the scene to be used for further analysis. The ‘clear-sky’ mask aims to identify the larger
continuous parts of the image, removing small areas between clouds. The first step buffered
the cloud and cloud shadows by 30 km, clumping the remaining non-cloud regions. The
non-cloud clumps with an area greater than 3000 pixels were then selected and grown to
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the 10-km contour of the cloud and cloud shadow pixels. An example of the ‘clear sky’
mask is shown in Figure 3c.

a) 5 km b)

Clouds
Shadows
Clear Sky

5 km c) 5 km

Figure 3. An example of the clear sky mask for part of a Sentinel-2 scene, where (a) is the original
scene (false colour: near infrared (NIR), shortwave infrared band 1 (SWIR-1), and red bands) and
(b) is the resulting cloud and cloud shadow mask, which can been seen to have missed some clouds,
and (c) is the clear sky mask which has masked the regions around the cloud and cloud shadows.

2.3.2. Building the Classification Models

Classification of mangrove extent was undertaken on a scene-by-scene basis rather
than through the creation of image composites (i.e., merging multiple scenes using a metric
such as the greenest pixel). Image composites, whilst relevant for visualisation, often
have artefacts due to prevailing environmental conditions (e.g., wet or dry season or, in
the case of mangroves, tidal regimes) at the time of the acquisitions or processing errors
(e.g., missed cloud or cloud shadows). These artefacts can then impact the classification
result. An alternative is to classify each of the scenes independently and then merge those
results to create a single map.

To derive training data for the classification, 10,284 samples were created from the
existing GMW v2.0 map. These were manually checked against the Sentinel-2 imagery. For
regions not already within the GMW v2.0 product training regions, these were manually
defined. Non-mangrove regions were defined as regions outside of the GMW habitat
product, with points sampled randomly within this region and through manual selection
of regions giving a total of 52,555 sample points for training.

The resulting samples were then intersected with all 11,262 Sentinel-2 acquisitions, with
each scene masked to the relevant valid clear sky area. This resulted in 4,421,644 mangrove
and 9,830,388 non-mangrove pixel values to train the classifier. Given the volume of
sample data available, it was decided to split the training data into 100 sets, each with
400,000 samples (200,000 for mangroves and 200,000 for non-mangroves). Those samples
were then split into 3 sets for training (100,000 for each class), testing (50,000 for each class),
and validating (50,000 for each class) the model.

The XGBoost [32] binary classification algorithm was used for the analysis given its
ability to use large training datasets and allow transfer learning (i.e., further training of an
existing model). This method has been shown by John et al. [35] to provide good results
for the classification of land cover from Earth observation data. To optimise the hyper-
parameters of the XGBoost model, a subset of 20% was selected from the training (20,000 per
class) and validation (10,000 per class) samples. Bayesian optimisation was used to identify
the optimal hyper-parameters for each of the 100 classifiers. The range of values for the
parameters optimised is given in Table 1. Following identification of the hyper-parameters,
each of the 100 models was trained using the full dataset (i.e., 400,000 samples). The testing
accuracies of the models (using the 50,000 samples per class) were between 97–99%.
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2.3.3. Applying the Classification Models

To apply the 100 global XGBoost classifiers to the individual Sentinel-2 acquisitions,
the models were first further trained using the local training data from the Sentinel-2
acquisition, which was limited to 25,000 samples. This allowed the global classifier to be
locally optimised for the individual acquisitions. The classifiers were then applied to all
the acquisitions, with this creating 112,620 classifications. To avoid incorrect classification
of mangroves in areas where they would not be located (e.g., in mountainous areas), the
classification was only applied within an updated version of the mangrove habitat layer of
Bunting et al. [15].

Table 1. The range of hyper-parameter values from the 100 models.

Parameter Min. Low. Quartile Median Up. Quartile Max. Mode

eta 0.0835 0.236 0.299 0.299 0.489 0.299
gamma 0 0 0 4 4 0

max_delta_step 0 6 7 7 10 7
max_depth 8 13 13 16 20 13

min_child_weight 1 10 10 10 10 10
num_boost_round 68 100 100 100 100 100

subsample 0.752 0.818 0.839 1.0 1.0 0.818

The individual classifications were then merged in two steps to create a mangrove
probability for each pixel. The first step merged the 100 classifications applied to a scene to
create a single probability output image for the scene. The probability was calculated as
the number of times each pixel had been classified as mangroves (i.e., a value of 1 meant
that all 100 classifiers classified the pixel as mangroves, while a value of 0.1 meant that
only 10 classifiers classified the pixel as mangroves). The second step calculated the mean
probability from all the acquisitions for each pixel, providing a single probability surface
for all the areas mapped.

To derive the final binary mask of mangrove extent, a global threshold was applied
to the probability surface. The threshold was identified through a sensitivity analysis
using the mangrove samples based on the 0.1 increments (from 0.2 to 0.8). A mangrove
mask was generated for each threshold where the mask with the best agreement with the
mangrove samples used to train and test the XGBoost classifiers selected. A threshold
of 0.5 provided the greatest correspondence and was therefore applied to all the regions
updated using the Sentinel-2 imagery. For studies focused on specific regions, a further
local optimisation could be undertaken by selecting a local threshold. However, for this
study, a global threshold was applied as defining local regions would be difficult and could
result in boundary artefacts within the resulting maps.

Finally, a visual assessment of the mangrove extent was undertaken where polygons
identifying regions as incorrectly classified as mangroves were digitised with reference to
the Sentinel-2 imagery and high-resolution Google Earth, Mapbox Satellite, and Bing maps
imagery. The areas were then removed from the mangrove extent mask.

2.4. Merging Mangrove Maps and Identify Change to 2010

In addition to the new map produced from the Sentinel-2 analysis, two other man-
grove maps were used to resolve issues for particular areas. For the Sundarbans, in India
and Bangladesh, the mapping of Awty-Carroll et al. [26] for the year 2010 was added to the
Sentinel-2 maps to be merged with the GMW v2.0 products. The Sundarbans were signifi-
cantly affected by stripping from the Landsat ETM+ data within GMW v2.0. Additionally,
mangrove maps for the French overseas territories, where there was found to be a high
prevalence of cloud cover that reduces the availability of useable Sentinel-2 data, generated
by the French National Mangrove Observation Network [44], were used to improve the
new maps.

Following generation of the revised maps, these were merged with the existing GMW
v2.0 baseline for 2010 to create the updated 2010 GMW v2.5 baseline. However, the updated
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areas had been mapped with data acquired over the period from 2015 to 2020 and a change
detection was therefore required to backcast the map for 2010. 2010 ALOS PALSAR data
were used for this and therefore the new mapping was resampled (nearest neighbour)
onto the same 0.000222 degrees (∼25 m) pixel grid of the GMW v2.0 and ALOS PALSAR
data layers.

As demonstrated by Thomas et al. [3,19,20], mangroves produce a high backscatter
response in the L-band SAR data while the majority of non-mangrove surfaces (e.g., water
bodies and mudflats) have a low L-band backscatter. As a result, there is a change trajectory
between mangroves and non-mangroves, which was used by Thomas et al. [20] as the basis
for a methodology for mapping mangrove change. This was applied globally to produce
the GMW v2.0 change layers [16].

For implementation, a low backscatter mask was created for 2010 and used to remove
mangroves that were within the new map but not present in 2010. The mask was defined
using a combination of the ALOS PALSAR 2010 layer and the Landsat-based Pekel et al. [45]
water occurrence layer generated for the period 1984–2020. The analysis was undertaken
on a 1 × 1 degree grid, where the water occurrence layer was used to define areas that
could be considered as ‘permanent’ waterbodies, defined as a water occurrence between
>90 and <100. However, if no pixels were identified, then the threshold was lowered to
>70. For the pixels associated with ‘permanent’ waterbodies, the 99th percentile of the SAR
backscatter was calculated for both the Horizontal-Horizontal (HH) and Horizontal-Vertical
(HV) polarisations. The thresholds for classifying the water extent were then calculated for
both polarisations as:

SAR threshold = 99th percentile − (0.15 × 99th percentile). (1)

If no ‘permanent’ waterbody pixels were identified, then the SAR thresholds where
defined as −14 dB in the HH and −17 dB in the HV polarisations. To produce the low
backscatter mask, the SAR backscatter was thresholded with values below those calculated
above were used and the water occurrence layer had a value > 5.

The low backscatter mask was then used to mask all the tiles, including areas which
have not been remapped, updating the mangrove mask and aligning it with the ALOS
PALSAR data for 2010. Finally, a Quality Assurance (QA) process was undertaken where
the product was visually assessed against a variety of image sources, including high-
resolution Google Earth, Mapbox Satellite and Bing Maps imagery, the Sentinel-2 data,
2010 ALOS PALSAR, and 2010 Landsat imagery data. Polygons were manually drawn
for regions which should be removed from the map (i.e., not mangroves but areas that
had been mapped as mangroves) or added to the map (i.e., mangroves but areas that had
not been mapped as such). These QA edits were then rasterised and applied to the map
producing the final GMW v2.5 layer.

2.5. Accuracy Assessment

To assess the accuracy of the new v2.5 layer, 26 sites (Figure 4) where new mapping
had occurred were selected, representing a range of different mangrove settings, types, and
extents. Additionally, a further 34 sites (Figure 4) were distributed globally for assessing
the overall product accuracy. For each site, an area of 0.2 × 0.2 degrees was defined and
1000 random stratified points were defined for each class (mangroves and non-mangroves).
If there were less than 1000 mangrove pixels within the 0.2 × 0.2 degree area then all
mangrove pixels were defined as points and the number of mangrove reference points
was reduced. The 2000 points were then split into 200 point sets (i.e., 100 mangrove and
100 non-mangrove) where the sets were assessed in turn until the 95% confidence interval
for the macro F1-score was <5%. A minimum of 3 sets (i.e., 600 points) were assessed for
each site, where typically 5 sets were required (1000 points) although 10 sets were used for
one site. Points were manually annotated with a reference class through a combination of
high-resolution Google Earth, Mapbox Satellite and Bing Maps imagery, the Sentinel-2 and
2010 ALOS PALSAR, and Landsat imagery data. In total, 50,750 points were assessed and
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used for the accuracy assessment. For sites where the mapping was updated, the points
were also used to assess the improvement in map accuracy achieved through this study.

North Atlantic Ocean
North Pacific Ocean

South Pacific Ocean
Indian Ocean

South Atlantic Ocean

Africa

Asia

Australia

North America

Oceania

South America

GMW v2.5 Update
Extras

Figure 4. A map of the 60 sites used for the accuracy assessment. The 26 red points are over areas
which have been mapped with Sentinel-2 as part of the GMW v2.5 analysis while the 34 blue points
are further set of sites used to capture the global accuracy of the GMW v2.5 baseline rather than just
the areas updated.

3. Results
3.1. Remapped Regions Comparison

To compare the accuracy of the updated v2.5 and v2.0 GMW 2010 baselines, the
reference points for the 26 sites where the baseline has been updated were intersected with
both layers. Summary statistics calculated were an overall accuracy, cohen kappa, and F1
score (per-class and overall), with summaries are provided in Tables 2 and 3. In addition,
upper and lower confidence intervals for all metrics were calculated using bootstrapping.
It was not possible to calculate metrics, such as the allocation and quantity disagreement as
those metrics require a closed map where all pixels are allocated to a class such that the
area of the whole region can be used to normalise. However, for this study we only have a
single class of interest (i.e., mangroves).

As shown in Tables 2 and 3, the estimated accuracy of mapping in regions where the
quality was identified previously as poor or missed increased from 82.6% (80.1–84.9) to
95.0% (93.7–96.4). The range for the individual site accuracies also decreased from 44.7% to
12.4%, demonstrating that the quality of mapping for these areas remapped resulted in a
similar quality of mapping for all regions.

Table 2. For the region mapped to create v2.5, this table contains an overview of the accuracy statistics
from the GMW v2.0 baseline, which can be compared to the statistics in Table 3.

Stats (GMW V2.0) Overall 95th Confidence Site Median Site Min Site Max

Overall (%) 82.6 80.1–84.9 84.8 51.6 96.3
Kappa 0.655 0.607–0.698 0.734 0.393 0.927

Macro F1-Score 0.824 0.799–0.847 0.866 0.334 0.963
Mangrove F1-Score 0.807 0.777–0.834 0.848 0.603 0.964

Mangrove Recall 0.706 0.665–0.746 0.774 0.437 0.976
Mangrove Precision 0.942 0.916–0.964 0.952 0.747 0.994

Other F1-Score 0.841 0.817–0.860 0.885 0.668 0.964
Other Recall 0.953 0.934–0.971 0.976 0.628 1.0

Other Precision 0.752 0.717–0.787 0.818 0.502 0.974

This improvement in mapping accuracy can be seen visually and is illustrated in
Figures 5–7. Figure 5a provides a typical example of a region that was affected by the
Landsat ETM+ striping but was remapped to improve the output Figure 5b. Figure 6a
illustrates an area in Colombia where some areas of mangroves were missed but have
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now been mapped in GMW v2.5 (Figure 6b). Figure 7 illustrates an example where the
habitat mask was too restricted in GMW v2.0 but has been improved within GMW v2.5
by expanding the habitat mask. In terms of the accuracy statistics (Table 3), the example
shown in Figures 6 and 7 represents a region where the accuracy will have significantly
improved, while Figure 5 resulted in only a modest statistical improvement but is visually
much improved.

Table 3. For the region mapped to create v2.5, this table contains an overview of the accuracy statistics
from the GMW v2.5 baseline, which can be compared to the statistics in Table 2.

Stats (GMW V2.5) Overall 95th Confidence Site Median Site Min Site Max

Overall (%) 95.0 93.7–96.4 96.3 87.4 99.8
Kappa 0.901 0.874–0.928 0.926 0.748 0.995

Macro F1-Score 0.951 0.937–0.964 0.963 0.872 0.997
Mangrove F1-Score 0.951 0.938–0.965 0.963 0.887 0.998

Mangrove Recall 0.936 0.901–0.915 0.982 0.803 1.0
Mangrove Precision 0.951 0.951–0.982 0.973 0.83 1.0

Other F1-Score 0.950 0.935–0.963 0.962 0.857 0.997
Other Recall 0.966 0.949–0.982 0.974 0.854 1.0

Other Precision 0.934 0.911–0.956 0.948 0.756 1.0

0.00 0.02 0.04 0.06 0.08 0.10
+1.3830000000e2

8.40

8.38

8.36

8.34

8.32

8.30
a)

GMW v2.0 (2010)

2 km

0.00 0.02 0.04 0.06 0.08 0.10
+1.3830000000e2

b)
GMW v2.5 (2010)

2 km

Figure 5. Comparison of GMW v2.0 (a) and v2.5 (b) products illustrated with an example from
West Papua, Indonesia, where remapping with Sentinel-2 removed artefacts from Landsat ETM+ in
GMW v2.0.

3.2. Overall Accuracy Assessment

Using all 60 sites, the overall accuracy statistics for the v2.5 map was calculated and
presented in Table 4. The global assessment estimated an overall accuracy of 95.1% with
a 95th confidence interval (i.e., 95% likelihood that the true value is within the range) of
93.8 and 96.5%. This was similar to those published by Bunting et al. [15] for v2.0, which
estimated an overall accuracy of 94.0% with a 99th confidence interval of 93.6 and 94.5%.
This is to be expected with only approximately 33% of the map having been remapped
(i.e., replaced) and with only minor changes masking low backscatter pixels applied to
all regions alongside the overall high estimated accuracy of the v2.0 map. However, as
demonstrated in Table 2, the local accuracy of the v2.0 map could be as low as 51% where
areas were missed.
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Figure 6. Comparison of GMW v2.0 (a) and v2.5 (b) products, illustrated with an example from
Colombia, where regions had been omitted in GMW v2.0 but included in GMW v2.5.
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Figure 7. Comparison of GMW v2.0 (a) and v2.5 (b) products, illustrated with an example from
Florida, USA, where the habitat mask was too restricted when used in the production of GMW v2.0
which has been improved for the GMW v2.5 product.

3.3. Area Statistics

The global mangrove extent mapped in v2.5 was 140,260 km2, an increase of 2660 km2

(2.5%) over the v2.0 GMW map, which had a global total of 137,600 km2. Table 5 provides a
range of example countries, some with significant changes in mangrove extent between
v2.5 and 2.0. A full country table of mangrove extents for v2.5 and v2.0 has been provided
in Appendix A Table A1.
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Table 4. The overall GMW v2.5 accuracy assessment summary.

Stats (GMW V2.5) Overall 95th Confidence Site Median Site Min Site Max

Overall (%) 95.1 93.8–96.5 96.5 77.8 99.8
Kappa 0.902 0.876–0.930 0.930 0.556 0.995

Macro F1-Score 0.951 0.938–0.965 0.964 0.768 0.997
Mangrove F1-Score 0.951 0.937–0.964 0.964 0.720 0.998

Mangrove Recall 0.956 0.937–0.973 0.984 0.803 1.0
Mangrove Precision 0.947 0.926–0.964 0.969 0.570 1.0

Other F1-Score 0.952 0.938–0.965 0.966 0.817 0.997
Other Recall 0.947 0.923–0.966 0.968 0.696 1.0

Other Precision 0.956 0.938–0.973 0.986 0.756 1.0

Table 5. Example country statistics illustrating the changes between GMW v2.5 and v2.0. A full table
has been provided in Appendix A (Table A1).

Country GMW v2.5 (ha) 2010 GMW v2.0 (ha) 2010 Diff (ha) Diff (%)

Angola 28,969 37,346 −8377 −22.4
Australia 988,842 1,006,021 −17,179 −1.7
Bahrain 59 82 −23 −28.4
Bangladesh 444,159 416,283 27,876 6.7
Benin 3390 84 3307 3957.0
Bermuda 8 0 8 −
Colombia 262,212 231,187 31,025 13.4
Fiji 49,984 51,166 −1182 −2.3
French Guiana 59,466 50,187 9279 18.5
Indonesia 2,801,795 2,688,955 112,840 4.2
Mauritius 345 703 −357 −50.9
Mozambique 298,841 301,125 −2284 −0.8
Nigeria 847,894 695,775 152,119 21.9
Papua New
Guinea 445,785 476,167 −30,382 −6.4

United States 209,544 193,609 15,935 8.2

Global 14,025,986 13,760,074 265,912 1.9

Within the GMW v2.5 data, there are 121 countries with mangroves. Twelve countries,
including Bermuda, were missing from the GMW v2.0, however they (and their areas)
have now been added to the GMW v2.5 dataset. These were mostly small island nations
where persistent cloud cover limits the acquisition of useable remote sensing data. The
observed changes at a national level are variable, with 15 countries (e.g., Mozambique)
having mangrove area differences of less than 1% between GMW v2.5 and v2.0, while
50 countries (e.g., Australia) had between 1–5% of change. The small changes between the
two maps were attributed to the low backscatter pixel mask that was applied to all tiles.
However, for countries with a small area of mangroves, these changes can be significant in
percentage terms. For example, the area of mangroves mapped in Bahrain was 28% greater
in the GMW v2.0.

Of the remaining 44 countries, 18 had a net change between the GMW v2.5 and v2.0
between 5–10% of their mangrove area, with 11 between 10–20% and 10 between 20–50%
and 5 with a net change greater than 50% of the GMW v2.0 area. Many of the countries
with the largest change area were those with small mangrove extents (e.g., Bahrain or
Mauritius). However, in some regions remapped with Sentinel-2, substantial areas were
either removed from the GMW v2.5 map (e.g., Angola had 8377 ha of fewer mangroves;
Figure 8) or were added (e.g., Benin had 3307 ha more mangroves; Figure 9), with this
improving the mangrove mask accuracy for these regions. In the GMW v2.0 map, a number
of areas (e.g., Florida; Figure 7) were omitted because of the restricted GMW habitat mask,
which was used to limit areas where mangroves could be classified. Improvements in this
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mask along with the remapping effort has allowed new areas to be included within the
GMW v2.5 map.

However, some regions were found to have a mixture of substantial omissions and
commissions within the v2.0 dataset. For example, Fiji, which was remapped with Sentinel-
2, had an overall net change of −2.3% between v2.0 and v2.5. However, there were also
significant regions of additional mangrove within Fiji in v2.5 as a processing error in the
v2.0 product caused the mangroves in the west of the island nation (i.e., −180–−178) to
be missed.

The improvement in mapping through the use of the Sentinel-2 data was significant in
areas of high cloud cover and particularly in regions such as French Guiana (18.5%), Papua
New Guinea (−6.4%), Nigeria (21.9%), and Colombia (13.4%; Figure 6). These areas had
often significant striping artefacts present from the use of Landsat ETM+ data in the GMW
v2.0 map (e.g., Figure 5).

These changes in the mapped mangrove area are not due to changes on the ground
but rather to better input data (i.e., Sentinel-2) or new knowledge (e.g., improvements to
the habitat mask) that have allowed us to generate a more accurate mangrove map for 2010.
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b)
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Figure 8. Comparison of GMW v2.0 (a) and v2.5 (b) products, illustrated with an example from
Angola, where there were errors of commission within the GMW v2.0 product which were improved
for the GMW v2.5 product.
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Figure 9. Comparison of GMW v2.0 (a) and v2.5 (b) products, illustrated with an example from
Benin, where regions had been omitted in GMW v2.0 but included in GMW v2.5.
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4. Discussion

To meet the requirements of global initiatives to achieve ambitious targets on the
preservation and restoration of forested ecosystems, accurate and timely maps of the extent
are critical. To date, the GMW has produced the most contemporary and comprehensive
maps of global mangrove ecosystems. However, poorly mapped and omitted regions were
present in the v2.0 dataset. We successfully identified 204 regions in need of updating or
inclusion and proposed a new method to refine the maps in the selected locations. Our
approach was able to increase the low accuracy of the map in these regions from 82.6%
to 95.0%, bringing them in line with the level of overall accuracy of the global map. This
updated map is better suited to meet the needs of the COP26 goal of ending deforestation
by 2030 and the GMA goal of restoring 20% of mangroves by 2030. Accurate baselines are
critical to measuring the success of such ambitious targets and ensuring accountability in re-
porting. With the accuracy of the updated regions mapped here increased by approximately
10%, GMW v2.5 is situated as the primary global scale mangrove extent product.

4.1. Data and Methods

As outlined by Thomas et al. [20], radar data used for the GMW v2.0 are limited in its
ability to discern mangrove extent. Here, Sentinel-2 was relied upon for high-resolution
high-cadence imagery, with spectral bands suited to wetland vegetation mapping. Sentinel-
2 data are acquired as often as once every 5 days and do not suffer from the instrument
degradations that impacted the Landsat 7 ETM+ imagery used for generating the GMW
v2.0 2010 baseline. This provides a dense stack of imagery from which to derive a baseline
map for afflicted regions. As an improvement over GMW v2.0, image composites were not
used as these can result in image artefacts and inconsistent imaging conditions between
images which can lead to classification confusion. Instead, each image was classified
separately and a probabilistic approach was used to determine the mangrove extent. This is
a more robust approach as it can provide additional minimum and maximum bounds and
thus allows flexibility on definitions of extent and transparency on uncertainties. Despite
this, errors do persist in specific locations. While the overall accuracy of the map was 95.1%,
the ranges on a site-by-site basis was from 87.4% to 99.8%. In some locations, this was
caused by the limitations of using moderate spatial resolution (i.e., 20–30-m resolution
Sentinel-2, Landsat, and ALOS PALSAR) imagery to map very fine fringes and fragmented
stands (e.g., Figure 10), that often are associated with human disturbance. These areas are
challenging to identify and interpret and reliably differentiate from other vegetation types,
even using very high spatial resolution imagery (i.e., <3 m). Access to local knowledge
and field data is increasingly important for achieving high quality results in these locations.

a) 1 km b) 1 km

Figure 10. Example of fragmented mangroves from Sulawesi, Indonesia. (a) 30-m Landsat 8 imagery
from 2016 (false colour: NIR, SWIR-1, and Red bands) and (b) 30-m Landsat 8 imagery from 2016
overlain with the GMW v2.5 baseline (green), illustrating the resulting v2.5 map for these fragmented
areas of mangroves, which only maps the larger regions for mangroves and not the finer detail.
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The use of the XGBoost classifier [32] provided the use of a gradient boosted decision
tree, which can take advantage of larger training datasets than alternative methods such as
random forests. This has advantages over the random forest algorithm used in GMW v2.0,
by improving upon the single model through use of an iterative approach and training
ensemble models in succession, with each new model correcting errors in the previous one.
This is considered a more robust approach to ensemble learning. Our updated method also
used a unique approach to classifier training, by using combinations of both local and global
training data in order to derive results that are locally tuned but are also representative of
the global mangrove extent.

4.2. Future Baseline Mapping

Going forward, we advocate that a new global baseline at a 10-m spatial resolution
using Sentinel-2 be produced. Such a baseline would align well with other global datasets
produced using Sentinel-2 and Landsat imagery. JAXA are also reprocessing the ALOS
PALSAR and ALOS-2 PALSAR-2 products such that they align with this spatial baseline.
Additionally, using Sentinel-2 data, this study and others (e.g., [21–25]) have demonstrated
that optical remotely sensed data with a shortwave infrared channel (e.g., Landsat and
Sentinel-2) can provide a reliable classification of mangroves and differentiation from
other vegetation types in most regions. Regions where other wet tropic forests share a
boundary with mangroves (e.g., Papua New Guinea and French Guiana) are however still
challenging for classification. The additional spatial resolution (i.e., 10 m) should further
help discriminate small mangrove patches, such as river edges and where disturbance and
loss/gain patterns are complex. The spatial registration of the radar data used in GMW
v2.0 has been found to have 1 or 2 pixels (i.e., 25–50 m) of mis-alignment with the latest
Landsat (Collection 1 and 2) and Sentinel-2 datasets. The creation of a low backscatter mask
is thought to align the remapped areas with the GMW v2.0 datasets. However, by using
the ALOS PALSAR data alone, discrimination of mangroves from other vegetation types
is poor, so the uncertainty in mapping the landward extent of mangroves is greater, with
this also being the case for the GMW v2.0 dataset. JAXA are set to reprocess their L-band
SAR data in order to alleviate this registration issue. Thus, future mapping efforts should
maximise the use of these datasets when available.

5. Conclusions

The paper presented an updated version of the GMW mangrove extent baseline for
2010, producing version 2.5 of this dataset. The update focused on particular areas that were
identified as being poor in quality (e.g., due to Landsat ETM+ stripping) or were missed
in the GMW v2.0 product. The analysis demonstrated an increase in overall accuracy for
updated regions from 82.61% (95th confidence interval 80.1–84.9%) for the GMW v2.0
product to 95.0% (95th confidence interval 93.7–96.4%) for the GMW v2.5 product. To our
knowledge, this renders the GMW v2.5 baseline for 2010 as being the most complete global
map of mangrove extent. This baseline will be used as the basis for an update to the GMW
v3.0 change product, also extending the period from 1996–2016 to 1996–2020, which will be
the subject of a forth-coming publication.
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Appendix A. National Mangrove Extent

Table A1. Country level 2010 mangrove extents for both GMW v2.5 and v2.0.

Country GMW v2.5 (ha) 2010 GMW 2.0 (ha) 2010 Difference (ha) Difference (%)

American Samoa 33 19 14 74.8
Angola 28,969 37,346 −8377 −22.4
Anguilla 1 1 0 −0.9
Antigua and Barbuda 863 889 −25 −2.9
Aruba 26 34 −7 −22.1
Australia 988,842 1,006,021 −17,179 −1.7
Bahamas 93,139 99,318 −6179 −6.2
Bahrain 59 82 −23 −28.4
Bangladesh 444,159 416,283 27,876 6.7
Barbados 14 14 0 −1.8
Belize 44,507 44,784 −277 −0.6
Benin 3390 84 3307 3957.0
Bermuda 8 0 8 −
Bonaire, Sint Eustatius and Saba 165 166 −2 −1.0
Brazil 1,081,106 1,107,207 −26,101 −2.4
British Virgin Islands 83 90 −7 −7.7
Brunei 11,491 11,163 328 2.9
Cambodia 58,517 59,230 −714 −1.2
Cameroon 199,109 191,326 7783 4.1
Cayman Islands 4148 4199 −50 −1.2
China 14,221 15,084 −863 −5.7
Colombia 262,212 231,187 31,025 13.4
Comoros 99 103 −3 −3.2
Cook Islands 3 0 3 −
Costa Rica 36,475 36,872 −397 −1.1
Côte d’Ivoire 5890 6131 −241 −3.9
Cuba 332,816 337,113 −4297 −1.3
Curaçao 7 7 0 −1.2
Democratic Republic of the Congo 24,017 25,810 −1793 −6.9
Djibouti 545 498 47 9.4
Dominica 2 2 0 −9.9
Dominican Republic 18,741 18,942 −201 −1.1
Ecuador 146,544 139,416 7128 5.1
Egypt 147 180 −33 −18.2
El Salvador 37,589 37,665 −76 −0.2
Equatorial Guinea 25,904 25,984 −80 −0.3
Eritrea 6918 7006 −88 −1.3
Fiji 49,984 51,166 −1182 −2.3
French Guiana 59,466 50,187 9279 18.5
French Polynesia 122 0 122 −
French Southern Territories 672 0 672 −
Gabon 176,632 177,091 −458 −0.3

https://github.com/globalmangrovewatch/gmw_gap_fill_2020
https://github.com/globalmangrovewatch/gmw_gap_fill_2020
https://doi.org/10.5281/zenodo.5828339
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Table A1. Cont.

Country GMW v2.5 (ha) 2010 GMW 2.0 (ha) 2010 Difference (ha) Difference (%)

Gambia 60,673 61,294 −621 −1.0
Ghana 20,021 20,557 −536 −2.6
Grenada 190 195 −5 −2.7
Guadeloupe 3713 3735 −22 −0.6
Guam 57 0 57 −
Guatemala 23,523 23,709 −187 −0.8
Guinea 222,286 223,849 −1562 −0.7
Guinea−Bissau 262,631 262,616 15 0.0
Guyana 28,640 27,472 1168 4.3
Haiti 14,432 14,635 −203 −1.4
Honduras 59,732 60,372 −640 −1.1
India 370,984 352,052 18,933 5.4
Indonesia 2,801,795 2,688,955 112,840 4.2
Iran 7587 7912 −325 −4.1
Jamaica 9411 9520 −109 −1.1
Japan 918 987 −69 −7.0
Kenya 52,888 53,788 −900 −1.7
Kiribati 135 0 135 −
Liberia 18,938 19,153 −215 −1.1
Madagascar 260,271 260,986 −715 −0.3
Malaysia 515,743 520,071 −4329 −0.8
Maldives 97 0 97 −
Marshall Islands 6 0 6 −
Martinique 2052 1700 352 20.7
Mauritania 177 104 73 70.4
Mauritius 345 703 −357 −50.9
Mayotte 702 589 113 19.2
Mexico 939,502 953,651 −14,150 −1.5
Micronesia 9084 8399 685 8.2
Mozambique 298,841 301,125 −2284 −0.8
Myanmar 496,686 501,116 −4430 −0.9
New Caledonia 33,593 29,625 3967 13.4
New Zealand 30,216 30,627 −411 −1.3
Nicaragua 73,988 74,988 −1000 −1.3
Nigeria 847,894 695,775 152,119 21.9
Oman 111 116 −5 −4.3
Pakistan 63,600 65,240 −1641 −2.5
Palau 6014 6183 −169 −2.7
Panama 153,337 154,477 −1140 −0.7
Papua New Guinea 445,785 476,167 −30,382 −6.4
Peru 4569 4083 486 11.9
Philippines 260,993 265,108 −4115 −1.6
Puerto Rico 8685 8869 −184 −2.1
Qatar 428 444 −16 −3.6
Republic of Congo 2063 0 2063 −
Saint Kitts and Nevis 28 29 −1 −3.0
Saint Lucia 164 166 −2 −1.1
Saint Vincent and the Grenadines 31 33 −2 −5.5
Saint−Martin 14 15 0 −3.0
Samoa 264 305 −40 −13.3
São Tomé and Príncipe 0 0 0 12.0
Saudi Arabia 5367 6824 −1457 −21.4
Senegal 128,077 128,934 −856 −0.7
Seychelles 385 107 277 258.2
Sierra Leone 160,038 127,759 32,279 25.3
Singapore 534 540 −6 −1.2
Solomon Islands 55,519 51,424 4094 8.0
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Table A1. Cont.

Country GMW v2.5 (ha) 2010 GMW 2.0 (ha) 2010 Difference (ha) Difference (%)

Somalia 2253 2098 154 7.4
South Africa 2573 2637 −64 −2.4
Sri Lanka 18,941 20,164 −1223 −6.1
Sudan 433 366 67 18.2
Suriname 77,108 78,154 −1046 −1.3
Taiwan 159 171 −12 −7.0
Tanzania 107,775 113,101 −5326 −4.7
Thailand 223,137 225,770 −2634 −1.2
Timor−Leste 957 983 −26 −2.7
Togo 21 0 21 −
Tonga 1193 872 321 36.8
Trinidad and Tobago 7696 5523 2173 39.3
Turks and Caicos Islands 10,420 12,260 −1840 −15.0
Tuvalu 9 0 9 −
United Arab Emirates 6759 7766 −1008 −13.0
United States 209,544 193,609 15,935 8.2
Vanuatu 1724 1782 −58 −3.2
Venezuela 275,325 287,130 −11,805 −4.1
Vietnam 157,028 159,952 −2924 −1.8
Virgin Islands, U.S. 197 206 −8 −4.1
Wallis and Futuna 29 0 29 −
Yemen 1314 1753 −439 −25.0

Global 14,025,986 13,760,074 265,912 1.9
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