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Abstract: Robotic High-Throughput Phenotyping (HTP) technology has been a powerful tool for
selecting high-quality crop varieties among large quantities of traits. Due to the advantages of
multi-view observation and high accuracy, ground HTP robots have been widely studied in recent
years. In this paper, we study an ultra-narrow wheeled robot equipped with RGB-D cameras for
inter-row maize HTP. The challenges of the narrow operating space, intensive light changes, and
messy cross-leaf interference in rows of maize crops are considered. An in situ and inter-row stem
diameter measurement method for HTP robots is proposed. To this end, we first introduce the stem
diameter measurement pipeline, in which a convolutional neural network is employed to detect
stems, and the point cloud is analyzed to estimate the stem diameters. Second, we present a clustering
strategy based on DBSCAN for extracting stem point clouds under the condition that the stem is
shaded by dense leaves. Third, we present a point cloud filling strategy to fill the stem region with
missing depth values due to the occlusion by other organs. Finally, we employ convex hull and plane
projection of the point cloud to estimate the stem diameters. The results show that the R2 and RMSE
of stem diameter measurement are up to 0.72 and 2.95 mm, demonstrating its effectiveness.

Keywords: agricultural robot; high-throughput phenotyping; RGB-D cameras; in-field crops; stem
diameter; point cloud processing

1. Introduction

Agricultural production is undergoing the ever-increasing challenges of global climate
change, natural disasters, and population growth. The global population is expected to
reach 10 billion [1,2], meaning that a 70% increment of crop yields has to be achieved over
the next 30 years to meet the growing demand for food [3,4]. To increase the crop yields,
molecular/genetic technology has been utilized in the breeding process [5]. However,
the manual phenotypic screening in breeding is usually high-cost, time-consuming, and
laborious, leading to a bottleneck in the further development of breeding technology [6,7].
The robotic HTP technique provides abundant phenotypic information in an automated
and effective way and considerably eases the manual workload of breeders to select high-
yield varieties from a large amount of samples [8]. Consequently, robotic HTP has been
one of the most attractive topics in agriculture [9].

Maize, one of the main food and economic crops, has been the focus of many breeders
in cultivating new varieties. High-throughput phenotyping of maize crops is a critical step
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to improve the yield. Particularly, the stem diameter of maize crops is an important index
to measure the lodging resistance [10], which requires the HTP robots to collect phenotypic
data of stems through inter-row shuttling. Unfortunately, the inter-row environment is
narrow, the lighting varies, and leaf-occlusion clutter is present. Furthermore, the depth
noise or error of three-dimensional (3D) sensors used to collect phenotypic data has a
negative effect on the estimation accuracy of phenotypic parameters. Low-quality depth
information cannot completely represent the 3D structure of crops [11,12]. Determining
how to overcome these difficulties to accurately estimate the stem diameter between crop
rows is urgent and challenging.

In our work, we study a stem diameter measurement pipeline on a self-developed
phenotyping platform equipped with an RGB-D camera and propose an HTP robot system
from data acquisition to analyze phenotypic parameters and measure the maize stem
diameters under complicated field conditions. The main contributions are summarized
as follows:

1. A strategy of stem point cloud extraction is proposed to cope with the stems in the
shade of dense leaves. This strategy solves the problem of extracting stem point
clouds under canopy with narrow row spacing and cross-leaf occlusion;

2. A real-time measurement pipeline is proposed to estimate the stem diameters. In this
pipeline, we present two novel stem diameter estimation approaches based on stem
point cloud geometry. Our approaches can effectively reduce the influences of depth
noise or error on the estimation results;

3. A post-processing approach is presented to fill the missing parts of the stem point
clouds caused by the occlusion of dense adjacent leaves. This approach ensures
the integrity of the stem point clouds obtained by RGB-D cameras in complex field
scenarios and improves the accuracy of stem diameter estimation.

We hope that the study of stem diameter estimation for high-stem crops, such as maize,
in real and complex field scenarios can accelerate the development of field phenotypic
equipment and technology.

2. Related Works
2.1. HTP Platforms

Field-based HTP is a multi-scale crop observation technique based on phenotyping
platforms equipped with multiple types of sensors [13]. Currently, the common phe-
notyping platforms can be roughly divided into three types: fixed, aerial, and mobile
platforms [14]. Based on the inherent properties of these platforms, phenotyping parame-
ters can be obtained at various scales, from organ level to plot level. Generally, the fixed
platforms fitted with visual and laser sensors allow for high-accuracy monitoring of dif-
ferent crop organs with a 360◦ view [15,16]. However, they only obtain the phenotyping
parameters of fixed plots. Aerial platforms, such as Unmanned Aerial vehicles (UAVs),
enable rapid observation of crops at the plot level [17]. However, the sensing accuracy
gradually decreases with increases in flight altitude [18,19]. Mobile platforms, especially
mobile robots, are a new type of phenotyping platform that can travel freely in breeding
fields. This high mobility gives them a unique ability: they can automatically obtain pheno-
typic parameters between narrow crop rows in different plots [20,21]. Therefore, the mobile
robots used for phenotypic observation integrate the dual advantages of fixed and aerial
platforms, which is significant for promoting the rapid development of phenomics [22].

2.2. HTP Robots

As an interdisciplinary subject of agronomy, computer science, and robotics, pheno-
typing technologies based on mobile robots equipped with various phenotyping sensors,
named with HTP robots, have been widely reported [23–26]. The representative HTP robots
come from some of the top research institutions, such as Carnegie Mellon University [27,28]
and the University of Illinois at Urbana-Champaign [29,30]. Their HTP robots focus on
crop row phenotyping of high-stem crops (maize, sorghum, and sugarcane, for example)



Remote Sens. 2022, 14, 1030 3 of 20

by stereo cameras and/or depth cameras. Ref. [28] presented a deep–learning-based online
pipeline for in situ sorghum stem detection and grasping. Ref. [29] developed a tracked
HTP robot from design to field evaluation, and measured the stem height and width of
energy sorghum based on their previous work. Ref. [30] described high-precision control
and corn stand counting algorithms for an autonomous field robot. Additionally, Ref. [31]
employed the “Phenomobile”, a phenotyping robot [32] equipped with 3D LIDAR to obtain
the row spacing and plant height of a maize field. The highlight of this work is that the
HTP robot could obtain parcel-level phenotyping parameters by moving along the side of
a road in a breeding field, rather than traveling between crop rows.

2.3. Phenotyping Sensors

These advanced robots have exhibited excellent performance in terms of plant pheno-
typing, which benefits from phenotyping sensors used to perceive crop information. Color
digital cameras, spectrometers (hyperspectral and multispectral), thermal infrared cameras,
etc. are widely used on HTP robots [33]. In addition, some 3D sensors, stereo cameras,
depth cameras, and LIDAR, can be used to obtain crop 3D data. Based on the sensing
data, crops’ morphological and structural parameters can be extracted [34]. Although these
sensors work well in phenotyping, they usually only capture a single type of data. For
example, color digital cameras and LIDAR can only capture RGB images and 3D point
clouds, respectively. Stereo cameras can calculate the depth values of observed targets from
two RGB images with different perspectives, but they have heavy computation loads [35].
In recent years, RGB-D cameras have received sufficient attention in the application of
HTP [36,37], because they can obtain color and depth images in the same frame at close
range, which makes them a potential alternative to color cameras and LIDAR. In our work,
we conduct phenotyping using a self-developed phenotyping platform equipped with an
RGB-D camera.

2.4. Maize Phenotyping

Field-based maize phenotyping is difficult under natural growing conditions because
of the disturbance of lighting conditions and crossover/shading of leaves from adjacent
shoots that occurs in the later growth stages. Thus, many phenotyping studies have focused
on the early growth stages, observing the maize canopy with top-view and relatively regular
scenarios [38–40]. Ref. [39] proposed an approach to extract morphological and color-related
phenotypes that uses an end–to–end segmentation network from top-view images at the
seeding stage. Ref. [40] utilized image sequences obtained by UAV to reconstruct a 3D
model of maize crops and estimated the leaf number, plant height, individual leaf area,
etc. Ref. [38] developed a robot system composed of a four-degree robotic manipulator, a
ToF camera, and a linear potentiometer, which used deep learning and conventional image
processing to detect and grasp maize stems in a greenhouse. Admittedly, some exploratory
studies have been carried out in real open fields, as mentioned in references [27,29]. Ref. [41]
described a 3D reconstruction and point cloud processing pipeline of maize crops in the
native environment, and realized the extraction of main parameters for individual plant
phenotypic characteristics. However, some key technologies, such as feature recognition,
phenotypic parameter extraction, and occlusion mentioned above, still need to be addressed
in a better way. The maize yield is directly influenced by lodging tolerance. Related studies
have shown that lodging can cause 80% yield losses, depending on the crop and field
location [42]. The stem strength of crops is an important index of lodging tolerance. Herein,
our research interests focus on the automatic measurement of maize stem diameters during
the mature stage in the natural environment.

3. Materials and Methods
3.1. HTP Platform

Maize plants usually have row spacing of 0.5–0.8 m for most cultivation patterns
of equal row spacing. To extract the phenotypic parameters automatically under these
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cultivation patterns, we developed an ultra-narrow phenotyping robot platform that can
move between maize crop rows [43]. The mechanical dimensions of the platform are
0.80 m × 0.45 m × 0.40 m (length × width × height, not counting the height of the mast),
with a mass of 40 kg. In addition, a retractable mast could be mounted on the robot platform.
It is used to fix sensors to observe crop organs during any growth period of maize. The
maximum height of the mast can reach 2.2 m.

The robot system adopted a distributed design. We divided it into three control units:
driving module, navigation module, and phenotypic data acquisition module. The driving
module was a wireless remote-control system and the navigation module was a control
system based on an industrial personal computer (IPC). The bottom controller of the robot
was an STM32 development board, which was used for the motion control of four electronic
governors by connecting to a central expansion board. The four electronic governors were
four deceleration motors connected to the wheel bearing. The navigation module used a
Global Navigation Satellite System (GNSS) and a laser scanner to realize the mapping and
navigation in the field based on Cartographer, a simultaneous localization and mapping
(SLAM) algorithm. Notes that the navigation module was an integral part of our robot,
but it was not the research focus of this paper. The data acquisition module consisted of
an RGB-D camera and four lighting devices, which could ensure that the robot walking
under the dense canopy could still capture sufficient 3D information of crops, even in poor
lighting conditions. The robot software algorithms we developed were coded under Robot
Operating System (ROS) based on Ubuntu 20.04. The schematic of our HTP robot platform
is shown in Figure 1. The specifications and parameters of our robot are shown in Table 1.
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Figure 1. The schematic of HTP robot platform. (a) is the system control schematic. (b) (1) mast; (2)
display screen; (3) power and communication interfaces; (4) sensor trays; (5) IPC; (6) GPS receiver; (7)
laser scanner; (8) robot body.

Table 1. The specifications and parameters of our HTP robot.

Specifications Parameters Specifications Parameters

Size 0.80 m × 0.45 m × 0.40 m Mass 40 kg
Operating temperature −15–50 ◦C Carrying capacity 30 kg

Working time 4 h Voltage 24 V
Climbing gradient 25◦ Maximum velocity 0.30 m/s

Mobile mode Wheeled model Obstacle clearing capability 0.15 m
Steering mode Differential steering Ground clearance 0.10 m

Working environment In-row Applied coding interface ROS, C++, Python

3.2. Field Data Collection

We conducted field experiments at the Beijing Academy of Agriculture and Forestry
Sciences in August 2020. We selected a planting area of 18 × 22 m2 as the experimental
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area, which was composed of three parts: crops, crop rows, and aisles. Our robot could
move freely through the crop rows and aisles in the teleoperation mode. Usually, the stem
portion at the base of crops had a greater impact on the lodging resistance. To ensure that
the sensor’s field of view covered the basal stem area as much as possible, we fixed the
RGB-D camera (Intel® RealSense D435i) to a tray with a height of 0.5 m. Besides, due to the
poor lighting conditions under dense crop canopies, we also installed four LED lighting
devices on sensor trays. These LED lights were kept on as the robot worked between crop
rows. To prevent the camera lens from being blocked by the messy maize leaves, we kept
the camera lens facing opposite to the moving direction of the robot, which could reduce
the contact frequency between the camera lens and the leaves. In this way, the RGB-D
camera could capture the stems on either side of the crop rows.

The specific experimental scheme is shown in Figure 2. The aisle divided the experi-
mental field into two areas of 10 × 18 m2. For each area, the crop row spacing was 0.6 m.
The robot collected phenotypic data from 8 crop rows at a speed of 0.1 m/s. In addition, to
enrich our data sets, we kept our robot moving in an aisle with a width of 1.4 m to collect
phenotypic data for both sides of the crop areas. The arrows in Figure 2 show the route
traveled by our robot.
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During our experiments, the resolutions and frequencies of the RGB and depth images
from the RealSense D435i cameras were set to be 640 × 480 and 30 fps, respectively. The
cameras captured approximately 360 samples of maize plants. It is worth noting that we
marked the maize plants in the experimental areas with different color flags and measured
120 sets of the stem diameters manually beside the flags as the benchmark values to verify
the measurement performances. The experimental scenarios are shown in Figure 3.

3.3. Data Processing

The comprehensive framework of our algorithm for calculating the stem diameters
using the RGB-D camera consisted of two steps: (1) extracting the point cloud for the maize
stems, which consisted of stem detection, mask processing, and point cloud extraction;
(2) estimating the stem diameters with the two approaches we proposed—one is based on
point cloud convex hull (SD-PCCH), and the other is based on the projection of point cloud
(SD-PPC). In addition, we filled the missing stem point cloud in the process of calculating
the stem diameters. Figure 4 shows the flowchart for the whole data processing framework.
To speed up the coding process, we developed the data processing project using Point
Cloud Library (PCL).
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3.3.1. Extraction of Stem Point Cloud

Stem detection is a critical pre-processing step, which helps to accurately extract
regions of interest (ROI) from noisy data. A faster RCNN model, a two-stage object detector,
can be well applied to real-time detection for field stems. The model consists of three parts:
the backbone, Region Proposal Network (RPN), and classification and regression module.
The backbone is a convolutional layer used to extract the feature maps of input images. We
adopted a residue network based on the ResNet50 as the backbone. At the same time, a
feature pyramid network (FPN) was introduced into the backbone to improve the precision
of the feature maps. RPN is a core network of the Faster RCNN, which is used to quickly
generate potential regions of interest. The classification and regression module used the
feature in each ROI to identify the ROI classes and generate the object bounding boxes.

Due to the limited number of labeled images, we adopted transfer learning technology
to accelerate the convergence rate of model training in small sample datasets. The Faster
RCNN model was initialized using weights pretrained from the Pascal VOC 2012 dataset,
a large annotated image dataset open to the public. In the model training, we annotated a
total of 1800 images with maize stems in the format of Pascal VOC 2012. These images in-
cluded typical field scenes under different lighting intensities (e.g., strong lighting intensity,
backlighting, and exposure) and field of views (e.g., close-distance and long-distance).
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As the maize stem was the only object to be detected, the number of classes for the
detection model was set to 2, i.e., background and stem. The Faster RCNN model training
was performed using stochastic gradient descent (SGD) by the momentum optimizer with
an initial learning rate of 0.005, a momentum of 0.9, and a weight decay of 0.0005. To
improve the stability of model convergence, the learning rate was adjusted once every
5 epochs according to the ratio factor of 0.33. Based on the Pascal VOC 2012 training
model, a total of 300 epochs were used to ensure the model convergence for the maize stem
detection task. The model weights were saved for each iteration of the epoch. We chose
the model weight with the highest accuracy for stem detection. Our dataset was trained
on a graphic workstation, Dell Precision 7920 Tower (2 Xeon Silver 4214R @ 2.4 GHz CPU
cores, 128 GB RAM, and NVIDIA GeForce RTX 3070 (8 GB)), using the operating system of
Ubuntu 20.04 with Pytorch 1.6.0.

The stems detected by the Faster RCNN model were annotated with red bounding
boxes based on their pixel coordinates. To better extract all of the pixel values of these stems
based on the color information, the inner pixels of the bounding boxes were filled with
red rectangles to highlight the stem pixels, named mask processing. Generally, the HSV
color space represents the color characteristics of an object better than RGB space. Thus, we
converted the RGB images with rectangular markers to the HSV space for post-processing.
We defined the red mask threshold in the HSV space as follows:

Lower_red =
(

Huemin Saturationmin Valuemin
)

Upper_red =
(

Huemax Saturationmax Valuemax
) (1)

where Huemin = 50, Saturationmin = 100, Valuemin = 100, Huemax = 70, Saturationmax = 255,
and Valuemax = 255. According to the mask area, the pixel coordinates of stem regions
could be extracted. To better distinguish the stem and background pixels in color image,
the background pixels were replaced with zeros.

In general, the stem point cloud could be obtained based on RGB images and their
corresponding depth images. All of the depth values of stems in the depth images could
be extracted according to the coordinates of the stem pixels in the RGB images. These
depth values were used to calculate the stem point cloud based on camera parameters.
Specifically, stem point cloud extraction contains three steps: (1) judging whether each
pixel coordinate belongs to the stem region according to the color information. It can be
seen from the above that the color values of the stem area were not zeros, while the color
values of the background pixels were zeros; (2) obtaining the non-zero coordinates of the
RGB images, which were the stem coordinates of the depth images. Therefore, the depth
values of stems could be extracted according to non-zero coordinates; and (3) generating a
3D point cloud from the depth values of stems and camera parameters. The equations for
calculating the 3D points are:

Pz =
d

camera_ f actor

Px = (u−camera_cx)×pz
camera_ f x

Py = (v−camera_cy)×pz
camera_ f y

(2)

where Pz, Px, and Py represent the spatial coordinates of the 3D point, d is the depth value of
the current pixel, u and v represent the pixel coordinates of the depth image, camera_cx and
camera_cy determine the aperture center of the camera, camera_fx and camera_fy represent
the focal length of the camera on the X and Y axes, respectively, and camera_factor is the
scale factor for the depth image.

Normally, the extraction of stem point clouds is fulfilled after calculating all of the
3D points in the detected rectangle markers. However, the stem detection model will
recognize all maize stems within the camera’s field of view, resulting in multiple maize
stem point clouds for each frame. Additionally, one stem may be divided into multiple
point clouds due to the occlusion of leaves. Figure 5a shows both cases. Thus, we need to
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accurately detect every stem and cluster point clouds belonging to the same stem. DBSCAN
(Density-Based Spatial Clustering of Application with Noise) is an excellent clustering
algorithm for point clouds that have significant density characteristics [44]. This algorithm
can be used to cluster stem point clouds, since the point clouds belonging to the same stem
have higher density characteristics. For DBSCAN, we set the threshold of neighborhood
distance to 0.01 m, and the minimum number of points in the core point field to 20. To
improve the efficiency of clustering, we introduced a KD-Tree search algorithm to search
neighborhood points for DBSCAN.
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In fact, the existing DBSCAN algorithm may have led to the mis-clustering of stem
point clouds. For example, two plants were divided into four parts, which were considered
to be four plants by DBSCAN, as shown in Figure 5a. As a result, we propose an improved
DBSCAN, named with 2D-DBSCAN, as shown in Figure 5. 2D-DBSCAN can realize
accurate clustering of stem point clouds. We assumed that the growth direction of crops is
roughly parallel to the vertical axis (Y-axis) of the 3D coordinates. Then, a stem could be
divided into several segments at different heights along the Y-axis. 2D-DBSCAN consists
of three steps:

(i). The stem point clouds in Figure 5a are projected onto the X-Z plane;
(ii). DBSCAN is used to cluster each stem in a 2D plane, as shown in Figure 5b;
(iii). The stem point clouds after clustering are restored to a 3D space, as shown in Figure 5c.

The white rectangle in Figure 5c indicates that the stems divided into multiple point
clouds are clustered into one cluster. Note that the grey point cloud in Figure 5c is the
missing part caused by occlusion or observation error. We give an in-depth introduction
for the approach of filling the missing stem parts in the subsequent section.

3.3.2. Estimation of Stem Diameters

We used two approaches, SD-PCCH and SD-PPC, to estimate the stem diameters of
maize plants based on the point cloud clustering results. Among them, SD-PCCH used
the volume and height of the point cloud convex hull to calculate the stem diameters. This
approach assumed that the geometry of the detected maize stem parts was semi-cylindrical.
The estimation process is shown in Figure 6a. SD-PPC is another approach to calculating
the stem diameters, which is based on the projection of the point cloud on a 2D plane.
Figure 6b shows the calculation process for SD-PPC.

SD-PCCH estimates the stem diameters by constructing a convex hull. The convex
hull is a convex polygon formed by connecting the outermost points of a point cloud
cluster. Convex hull detection is often used in object recognition, gesture recognition, and
boundary detection. Thus, based on the geometry of the stem point cloud, the volume and
height of the point cloud can be estimated by convex hull detection algorithms. SD-PCCH
consists of four steps: (1) conducting pre-processing, such as statistical filtering, to remove
the noise points from the point cloud cluster; (2) generating the point cloud convex hull
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based on the Convex Hull function in PCL, and obtaining the volume of the convex hull; (3)
obtaining the minimum and maximum values of the Y-axis (Ymax and Ymin) for each stem
point cloud; and (4) regarding the convex hull as a semi-cylinder based on the geometric
characteristics of the stem. Note that the volume of the convex hull is half of the volume of
the cylinder, because the point cloud covers only half of the stem. In step (iii), the height of
the stem is calculated by:

H = Ymax −Ymin (3)
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In this way, the stem diameters can be calculated as:

D = 2

√
2V
πH

(4)

where D and V are the width and volume of the semi-cylinder, respectively.
The estimation of stem diameters is effective using the convex hull of point clouds

because the shape of the convex hull can be regarded as a semi-cylinder, which is similar to
the real morphological structure of stems. However, this approach has a high requirement
for the reconstruction precision of the stem point cloud. We know that the convex hull is
composed of the vertex coordinates of the point cloud in all directions. Thus, even a small
number of outliers will have a great influence on the measurement accuracy of stems. As
shown in Figure 7, this image is a stem point cloud generated by 2D-DBSCAN clustering.
We can see that there are a few outliers around the stem, such as the points within the red
circular area. As a result, the convex hull generated by the point cloud has a larger volume
than the actual stem, which will result in a larger stem diameter.

Here, we propose the second approach for measuring stem diameters, SD-PPC. As
mentioned above, the depth values of the point cloud, that is, in the Z-axis direction,
are sometimes inaccurate, which will affect the stem measurement accuracy, as shown in
Figure 8a. However, mapping on the X–Y plane can eliminate the influence of inaccurate
depth values, as shown in Figure 8b, which can accurately describe the characteristics
of the stem. As a result, we used the projection of the stem point cloud on the X–Y
plane to estimate the stem diameters, as shown in Figure 8. This approach consisted of
seven steps. (1) Pre-processing. This step is the same as the pre-processing for SD-PCCH.
(2) Establishing a plane projection model, which reassigns the Z values of the point cloud
to zeros. In this way, the point cloud changes from 3D to 2D, as shown in Figure 8b.
(3) Generating a virtual point cloud. This point cloud is used to fill in the missing data
area due to leaf occlusion. The detailed method is described in Section 3.3.3. (4) Creating
a concave hull representation of the projected point cloud to extract the concave polygon
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of the 2D point cloud. (5) Using the polygon area calculation function of PCL to obtain
the area of the point cloud on the X–Y projection plane. (6) Searching the minimum and
maximum values on the Y-axis according to the 2D point cloud coordinates. (7) Calculating
the stem diameters with the following equation:

Wstem =
Sarea

Ymax −Ymin
(5)

Here, Wstem is the stem diameter, Sarea is the polygon area of the point cloud on the X-Y
projection plane, and the Ymax and Ymin represent the maximum and minimum values on
the X-axis for 2D point cloud coordinates, respectively.

Remote Sens. 2022, 13, x FOR PEER REVIEW 10 of 21 
 

 

stem point cloud; and (4) regarding the convex hull as a semi-cylinder based on the geo-
metric characteristics of the stem. Note that the volume of the convex hull is half of the 
volume of the cylinder, because the point cloud covers only half of the stem. In step (iii), 
the height of the stem is calculated by: 

max minH Y Y   (3)

In this way, the stem diameters can be calculated as: 

22 VD
H

  (4)

where D and V are the width and volume of the semi-cylinder, respectively. 

The estimation of stem diameters is effective using the convex hull of point clouds 
because the shape of the convex hull can be regarded as a semi-cylinder, which is similar 
to the real morphological structure of stems. However, this approach has a high require-
ment for the reconstruction precision of the stem point cloud. We know that the convex 
hull is composed of the vertex coordinates of the point cloud in all directions. Thus, even 
a small number of outliers will have a great influence on the measurement accuracy of 
stems. As shown in Figure 7, this image is a stem point cloud generated by 2D-DBSCAN 
clustering. We can see that there are a few outliers around the stem, such as the points 
within the red circular area. As a result, the convex hull generated by the point cloud has 
a larger volume than the actual stem, which will result in a larger stem diameter. 

 
Figure 7. The point cloud with outliers. 

Here, we propose the second approach for measuring stem diameters, SD-PPC. As 
mentioned above, the depth values of the point cloud, that is, in the Z-axis direction, are 
sometimes inaccurate, which will affect the stem measurement accuracy, as shown in Fig-
ure 8a. However, mapping on the X–Y plane can eliminate the influence of inaccurate 
depth values, as shown in Figure 8b, which can accurately describe the characteristics of 
the stem. As a result, we used the projection of the stem point cloud on the X–Y plane to 
estimate the stem diameters, as shown in Figure 8. This approach consisted of seven steps. 
(1) Pre-processing. This step is the same as the pre-processing for SD-PCCH. (2) Establish-
ing a plane projection model, which reassigns the Z values of the point cloud to zeros. In 
this way, the point cloud changes from 3D to 2D, as shown in Figure 8b. (3) Generating a 
virtual point cloud. This point cloud is used to fill in the missing data area due to leaf 
occlusion. The detailed method is described in Section 3.3.3. (4) Creating a concave hull 
representation of the projected point cloud to extract the concave polygon of the 2D point 
cloud. (5) Using the polygon area calculation function of PCL to obtain the area of the 
point cloud on the X–Y projection plane. (6) Searching the minimum and maximum values 
on the Y-axis according to the 2D point cloud coordinates. (7) Calculating the stem diam-
eters with the following equation: 

Figure 7. The point cloud with outliers.

Remote Sens. 2022, 13, x FOR PEER REVIEW 11 of 21 
 

 

max min

area
stem

SW
Y Y




 (5)

Here, Wstem is the stem diameter, Sarea is the polygon area of the point cloud on the X-
Y projection plane, and the Ymax and Ymin represent the maximum and minimum values 
on the X-axis for 2D point cloud coordinates, respectively. 

 

Figure 8. 2D point cloud contour extraction. (a) 3D point cloud. (b) the projection of the cloud on 
the X-Y plane. (c) the point cloud contour used to generate concave hull. 

3.3.3. Filling Strategy for Missing Stem Parts in the Point Cloud 
In the above section, we have realized the real-time estimation of stem diameters with 

our pipeline. However, the stem point cloud extracted usually has missing regions due to 
occlusions of plant leaves and holes in depth images of RGB-D cameras. These regions 
split the point cloud belonging to the same stem into two or more parts, which then affects 
the stem measurement results. In Section 3.3.1, we proposed the 2D-DBSCAN to accurate 
cluster the 3D stem points. In this section, we need to fill in the missing parts after clus-
tering, as the gray point cloud shows in Figure 5c. Here, we propose a missing point cloud 
filling strategy based on the grid division, as shown in Figure 9, which consists of six steps: 
(i). Traversing the point cloud from the minimum value to the maximum value for the 

Y coordinate at a grid threshold interval of 0.003 m on the Y-axis. The range of the 
traversal is given by: 

 max min0 Ny yi i



     (6)

where i is the number of rows traversed on the Y-axis, α is 0.003 and indicates that the 
grid threshold of the traversal interval is 0.003 m, and ymax and ymin present the maximum 
value and minimum value of the point cloud coordinates on the Y-axis, respectively. 
(ii). For the region between row i and row i +1 on the Y-axis during the traversal process, 

if the region has 3D points, that is, Equation (7) is satisfied, the region does not need 
to be filled; 

 min min 1yy i P y i        (7)

where Py represents the coordinate value of existing 3D points along the Y-axis. 
(iii). If the requirements of the previous step are not met, point cloud filling is performed 

on the correspondence region; 
(iv). The number of points that need to be filled in this region can be expressed as: 

max min 1 Nx xK K



     (8)

where xmax and xmin represent the maximum and minimum values of the point cloud on 
the X-axis, respectively, and K is the number of points that need to be filled. 

Figure 8. 2D point cloud contour extraction. (a) 3D point cloud. (b) the projection of the cloud on the
X-Y plane. (c) the point cloud contour used to generate concave hull.

3.3.3. Filling Strategy for Missing Stem Parts in the Point Cloud

In the above section, we have realized the real-time estimation of stem diameters
with our pipeline. However, the stem point cloud extracted usually has missing regions
due to occlusions of plant leaves and holes in depth images of RGB-D cameras. These
regions split the point cloud belonging to the same stem into two or more parts, which then
affects the stem measurement results. In Section 3.3.1, we proposed the 2D-DBSCAN to
accurate cluster the 3D stem points. In this section, we need to fill in the missing parts after
clustering, as the gray point cloud shows in Figure 5c. Here, we propose a missing point
cloud filling strategy based on the grid division, as shown in Figure 9, which consists of
six steps:
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(i). Traversing the point cloud from the minimum value to the maximum value for the
Y coordinate at a grid threshold interval of 0.003 m on the Y-axis. The range of the
traversal is given by:

0 ≤ i < ymax−ymin
α (i ∈ N+) (6)

where i is the number of rows traversed on the Y-axis, α is 0.003 and indicates that the
grid threshold of the traversal interval is 0.003 m, and ymax and ymin present the maximum
value and minimum value of the point cloud coordinates on the Y-axis, respectively.

(ii). For the region between row i and row i + 1 on the Y-axis during the traversal process,
if the region has 3D points, that is, Equation (7) is satisfied, the region does not need
to be filled;

ymin + α·i < Py < ymin + α·(i + 1) (7)

where Py represents the coordinate value of existing 3D points along the Y-axis.

(iii). If the requirements of the previous step are not met, point cloud filling is performed
on the correspondence region;

(iv). The number of points that need to be filled in this region can be expressed as:

K = xmax−xmin
α + 1 K ∈ N+ (8)

where xmax and xmin represent the maximum and minimum values of the point cloud on
the X-axis, respectively, and K is the number of points that need to be filled.

(v). The X and Y coordinates of the added points are given by:

{
X = xmin + α·Kj 0 < Kj < K

Y = ymin + α·i (9)

(vi). The Z values of the points are set to 0 s. The reason is that the approach of calculating
the stem diameters by SD-PPC does not need the Z values. Meanwhile, for the SD-
PCCH approach, the convex hull already encloses the missing point cloud area, so
there is also no need to calculate the Z values.
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Figure 9. The point cloud filling strategy.

It is worth noting that SD-PCCH does not need to fill the point cloud for missing
areas, because the approach for measuring the stem diameters only relies on the point
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cloud convex hull. On the contrary, the point cloud filling strategy is applicable to SD-
PPC, because SD-PPC needs to extract the contour of the point cloud to calculate the stem
diameters. Missing areas easily cause the wrong point cloud contour.

4. Results
4.1. Extraction of Stem Point Clouds

The extraction of stem point clouds consists of two steps: stem detection and point
cloud extraction. Figure 10 shows the stem detection result of Faster RCNN under natu-
ral scenarios. These scenarios include strong lighting/backlighting, close-distance/long-
distance, etc. Here, we used the mean average precision (mAP) to evaluate the performance
of the stem detection model. mAP is the area covered by the PR (Precision–Recall) curve.
mAP is computed as: 

Precision = TP
TP+FP

Recall = TP
TP+FN

AP = ∑ Precision
NC

mAP =
∑Q

q=1 AP(q)
Q

(10)

where TP, FP, and TN are true positive, false positive, and true negative, respectively, NC is
the object number of C class in all images, and Q is the number of the detected object. Since
the maize stem is the only detection object in our model, Q = 1. Figure 11 shows the loss
curve and PR curve after model convergence. We found that mAP of stems was 67%.

The stem point cloud extracted based on the stem detection results is shown in
Figure 12. Figure 12b shows the mask processing results based on the stem bounding
box. Figure 12c shows the ROI of the extracted stem coordinates. Figure 12d shows the
stem point cloud obtained from the depth image based on the RGB-D camera parameters.
Noting that the stem area coordinates in the color image are completely the same as those
in the depth image for RGB-D camera frames, the stem depth values in the depth image
can be extracted according to the stem pixel location in the color image.
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4.2. Visualization of Convex Hull and 2D Projection of Point Cloud

Building convex hulls and plane projections of stem point clouds are key steps to
implement SD-PCCH and SD-PPC. Figure 13 shows the results of constructing convex hulls
and plane projections of stem point clouds. Figure 13b shows the point clouds of each stem
obtained by 2D-DBSCAN clustering from Figure 13a. Figure 13c,d show the convex hulls
and plane projections of each stem extracted, respectively.

4.3. Point Cloud Filling

Figure 14 shows the results of our proposed point cloud filling strategy. The red
areas are the point clouds obtained from the depth images, and the gray areas are the
filling points. Our approach can join point clouds belonging to the same stem. It is worth
noting that point cloud filling does not significantly affect the measurement results of
stem diameters, but can avoid multiple measurements for the same observed stem in the
SD-PPC. The reason is that split stems without filling will generate two or more point
cloud contours.
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4.4. Stem Diameter Estimation with SD-PCCH and SD-PPC

In this section, we compare and analyze the stem diameter measurement results of our
approaches with the manually measured values. Specifically, we evaluate the measurement
accuracy of the two approaches, SD-PCCH and SD-PPC. Figures 15 and 16 show the
comparison results of our two approaches with the manual measurement values, where
the horizontal and vertical coordinates represent the manual measurement values and
the estimated values by our approaches, respectively. We used approximately 120 sets
of stem samples from the testing dataset to estimate the stem diameters. We employed
R2 and RMSE to evaluate the stem diameter estimation results. R2 shows the similarity
between the estimated error and manual measurement error, where R2 = 1 means that the
two types of error are the same. RMSE is the root-mean-square error, which emphasizes the
deviations between the estimated values and manual measurement values. R2 and RMSE
can be expressed as: 

R2 = 1− ∑n
k=1 (yk−

∧
yk)

2

∑n
k=1 (yk−y)2

RMSE =

√
1
n

n
∑

i=1
(yk −

∧
yk)

2 (11)

where n is the data sample size, yk and
∧
yk are the k-th manual measurement value and

estimated value, respectively, and y is the mean value of the manual measurement.
As can be seen from Figures 15 and 16, the two approaches both achieved good results.

The R2 and RMSE for SD-PCCH were 0.35 and 4.99 mm, respectively. The R2 and RMSE
for SD-PPC were 0.72 and 2.95 mm, respectively. The experimental results showed that
SD-PPC had better measurement accuracy than SD-PCCH. The reason is that the noise
points of the depth values increased the volumes of the point cloud convex hulls, which
caused the stem diameters to increase accordingly. On the contrary, the stem diameter
estimation was not affected by the depth values of the point clouds for SD-PPC.

We also performed a statistical analysis of the measurement result distribution for
the SD-PCCH, SD-PPC, and manual measurement values, as shown in Figure 17. The
results showed that SD-PPC had a higher measurement accuracy than SD-PCCH, because
the maximum, minimum, and median of SD-PPC were in better agreement with the
results of the manual measurements than those of SD-PCCH. Meanwhile, according to the
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interquartile range, we found that the estimated values of SD-PPC were more concentrated
around the median compared to those of SD-PCCH.
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Additionally, we compared our stem diameter estimation results with those previously
reported in [25,27]. We took R2, RMSE, and the Mean Absolute Error (MAE) as evaluation
indexes. We add MAE as a comparison term because it is insensitive to outliers generated
by the estimated values. This can better express the robustness of different algorithms to
the stem diameter estimation results. MAE is computed as:

MAE =
1
n

n

∑
k=1
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∧
yk
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where yk and
∧
yk are the k-th manual measurement value and estimated value, respectively.

The comparison results are shown in Table 2. We found that our stem diameter estimation
results were better than those of [25] and [27], because our R2 was greater and RMSE/MAE
were smaller compared with those of [25] and [27]. Also, we compared SD-PCCH with
SD-PPC, and found that SD-PPC had better estimation results than SD-PCCH in all metrics.

Table 2. The comprehensive evaluation results for SD-PCCH and SD-PPC.

Stem Diameter Estimation
Our Algorithms

[27] [25]
SD-PCCH SD-PPC

R2 0.35 0.72 - 0.27
RMSE (mm) 4.99 2.95 - 5.29
MAE (mm) 3.98 2.36 3.87 4.43

5. Discussion

Robotics-based high-throughput phenotyping has the potential to break the pheno-
typic bottleneck. Particularly, the study of HTP robots based on ground mobile platforms
has been proven to be an effective way to accelerate automatic phenotyping [27,29,45].
Currently, HTP robots can realize non-contact measurement for crop morphological param-
eters by equipping them with sensing devices. In this study, we present a stem diameter
measurement pipeline using a self-developed mobile phenotyping platform equipped with
an RGB-D camera. The experiments show that the pipeline can meet the requirements
of automatic measuring for maize stems in fields. More generally, our pipeline has good
generalization capabilities for measuring the stem diameters of high crops in an ideal data
collection condition. There is no denying that the existing measurement pipeline still has
some challenges and limitations: (1). real-time performance. It is difficult for phenotyping
robots to process large amounts of phenotype data online in field conditions due to the
limitations of hardware devices; and (2). multi-parameter measurements. Our pipeline is
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currently used to estimate the stem diameters. How to achieve simultaneous measurement
of multiple phenotypic parameters is a direction to be explored in the future. Currently, we
need to address the following issues:

(i) Improving the stem detection accuracy of convolutional neural network. We used the
existing two-stage object detector Faster-RCNN to identify field stems. The mAP of
stem detection after network convergence was 67%. This may be caused by the strong
lighting changes and the inconspicuous color characteristics of stems under the crop
canopy. In the future, we hope to improve the detection accuracy of the detector by
labeling more data sets and adjusting the network structure;

(ii) Evaluating the 3D image quality of RealSense D435i. RealSense D435i cameras have
been proven to have excellent ranging performances under natural conditions. How-
ever, it is still necessary to evaluate the depth value accuracy for different crop organs
to improve the 3D imaging quality. It will be helpful to improve the measurement
accuracy of maize stem diameters;

(iii) Improving the real-time phenotyping performances of our algorithm pipeline. Cur-
rently, our algorithm pipeline is implemented on a graphics workstation. During our
experiment, the bag recording function of ROS was used to obtain crop images in the
field. These image data were parsed and used on the graphics workstation to run our
phenotyping algorithm. In the future, our algorithm will be processed in real-time
with an edge computing module on our HTP robot;

(iv) Extending our algorithm pipeline to different crop varieties. At present, maize crops
are our main focus. However, the algorithm pipeline we proposed is expected to
be applied to other common high-stem plants, such as sorghum, sugarcane, etc.
Furthermore, we believe that our method can also be used for the measurement of
the phenotypic parameters of various crop organs by only adjusting some necessary
algorithm parameters.

6. Conclusions

This paper aimed to investigate a high-throughput phenotyping solution based on
mobile robots and RGB-D sensing technologies. An in situ and inter-row stem diameter
measurement pipeline for maize crops was proposed. In this pipeline, we used Faster
RCNN to detect stems in color images and employed the point clouds converted from depth
images to measure the maize stem diameters. We first solved the inaccurate clustering
problem of stem point clouds caused by dense leave occlusions using a dimension reduction
clustering algorithm based on DBSCAN. Then, we presented a point cloud filling strategy
to fill the missing depth values of the stem point clouds. Finally, we proposed two stem
diameter-estimation approaches (e.g., SD-PCCH and SD-PPC) by analyzing the geometric
structures of the stem point clouds. Here, SD-PCCH and SD-PPC calculated the stem
diameters using the 3D point cloud convex hull and the 2D projection of point clouds,
respectively. The comparison of our approaches with other existing literatures showed
that SD-PCCH and SD-PPC were effective in measuring stem diameters. In addition, since
SD-PPC avoids the effect of depth noise on the estimation results, SD-PPC has higher
measurement accuracy than SD-PCCH. By analyzing 120 test samples, the R2 and RMSE of
SD-PPC were up to 0.72 and 2.95 mm, respectively.

Currently, greenhouse or controlled scenarios are still dominant for high-throughput
phenotyping [9]. However, field-based crop cultivation is the main mode for food produc-
tion. In-field phenotyping is still in the exploratory stage due to some intractable problems,
such as intensive lighting changes, leaf-occlusion clutter, etc. The phenotyping robot we
developed is exactly for in situ measuring the stem diameters of field crops. We hope that
our algorithm pipeline can improve the phenotype screening efficiency, and can better
serve breeders in the future. Meanwhile, we are also trying to integrate more advanced
algorithms in our robot to realize online measurement for multiple phenotypic parameters,
such as leaf length, leaf number, leaf angle, etc.
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