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Abstract: In planetary construction, the semiautonomous teleoperation of robots is expected to
perform complex tasks for site preparation and infrastructure emplacement. A highly detailed 3D
map is essential for construction planning and management. However, the planetary surface imposes
mapping restrictions due to rugged and homogeneous terrains. Additionally, changes in illumination
conditions cause the mapping result (or 3D point-cloud map) to have inconsistent color properties
that hamper the understanding of the topographic properties of a worksite. Therefore, this paper
proposes a robotic construction mapping approach robust to illumination-variant environments. The
proposed approach leverages a deep learning-based low-light image enhancement (LLIE) method to
improve the mapping capabilities of the visual simultaneous localization and mapping (SLAM)-based
robotic mapping method. In the experiment, the robotic mapping system in the emulated planetary
worksite collected terrain images during the daytime from noon to late afternoon. Two sets of
point-cloud maps, which were created from original and enhanced terrain images, were examined for
comparison purposes. The experiment results showed that the LLIE method in the robotic mapping
method significantly enhanced the brightness, preserving the inherent colors of the original terrain
images. The visibility and the overall accuracy of the point-cloud map were consequently increased.

Keywords: planetary construction; robotic mapping; SLAM; low-light enhancement; 3D point-cloud
map; deep learning

1. Introduction

The international space community has been increasingly committed to returning
humans to the Moon, leading to the establishment of a permanent base and, eventually,
the Mars base (Figure 1) [1]. In situ resource utilization (ISRU) technology, which aims to
produce consumables from raw materials on the surfaces of the Moon and Mars, is one of
the key enablers of sustainable human exploration and habitation [2–5]. For instance, water
ice, recently discovered on the Moon and Mars [6–9], is used to generate hydrogen, oxygen,
water, fuel, and propellants for life support [10,11]. Regolith is another available resource
to produce construction materials such as bricks and blocks [12,13]. Three-dimensional
(3D) construction printing technology has been proposed as a robust and efficient means to
construct planetary infrastructure under extreme environments [14–17].

Planetary construction necessitates collaborative efforts from a variety of fields, one of
which is 3D terrain mapping for on-site construction planning and management. Different
from Earth construction, various types of teleoperated robots are expected to build a plane-
tary base and infrastructure [14,18,19]. A highly detailed and accurate 3D terrain map is
essential for planning robotic construction operations such as site preparation and infras-
tructure emplacement. Although planetary remote sensing data have been used to create
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global terrain maps [20,21], their spatial resolutions are insufficient to support robotic con-
struction. Rover-based 3D mapping is compulsory to understand the topographic aspect
of construction candidate sites. However, due to the homogeneous and rugged planetary
terrains in a global navigation satellite system (GNSS)-denied environment, the rover’s
mapping capabilities are limited. Thus, recent studies have presented numerous 3D simulta-
neous location and mapping (SLAM) techniques that can dynamically estimate the current
position and automatically build a 3D point-cloud map of surrounding environments.
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Sensors mainly used in SLAM techniques include light detection and ranging (Li-
DAR) and cameras. LiDAR SLAM, which allows high-resolution and long-range obser-
vations, can improve the autonomous navigation of planetary rovers. Tong et al. [22]
and Merali et al. [23] presented a 3D SLAM framework using rover-mounted LiDAR and
demonstrated globally consistent mapping results over test areas. Shaukat et al. [24] pre-
sented camera–LiDAR fusion SLAM, in which LiDAR overcomes the camera’s field of view
and point density restrictions and allows the camera to obtain a semantic interpretation
of a scene. However, planetary rovers typically suffer from limited capabilities in terms
of power, computational resources, and data storage [25]. Furthermore, no LiDAR exists
that can be applied to contemporary planetary rovers. In this regard, visual SLAM, which
mainly uses a camera system, has been considered to develop a 3D robotic mapping method
for planetary surfaces. In comparison to LiDAR, the advantage of a camera system is that it
is relatively lighter and consumes less power per unit. Additionally, as point clouds with
color information can be generated, static and kinematic objects can be easily detected and
identified in the dynamic nature of worksites.

In this paper, two types of visual SLAM-based mapping approaches, monocular SLAM
and stereo SLAM, are considered. Both approaches rely on the quantity and quality of
feature points on image frames from a camera system. Monocular SLAM searches for
correspondences using a feature descriptor for each feature point between consecutive
image frames from a single camera. The corresponding feature points are then used to
estimate the camera pose, as well as to create point clouds. Thus, it is crucial not only to
choose suitable feature points as a landmark but also to use a robust feature-matching
method. For example, Bajpai et al. [26] proposed a biologically inspired visual saliency
model that semantically detects feature points. Tseng et al. [27] improved oriented FAST
and rotated BRIEF (ORB) to enhance feature matching in a single image sequence. However,
a single camera is not able to handle the sudden movement of a mobile platform. Additional
inertial and range sensors are required to avoid scale ambiguity and measurement drift on
rough terrains. In comparison to monocular SLAM, stereo SLAM matches corresponding
feature points on a pair of two image frames, recovering relatively accurate pose estimations
and 3D measurements [28]. Hidalgo-Carrió et al. [29] developed a sensor fusion framework
using a stereo camera, IMU, and wheel odometer. A Gaussian-based odometry error model
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was designed to predict nonsystematic errors to increase the localization and mapping
accuracy. Additionally, for longer and faster traversal in future planetary missions, a field-
programmable gate array (FPGA) was implemented in the rover as a computing device for
terrain mapping in combination with the IMU and wheel encoder [25].

However, there are limitations pertaining to the photogrammetric mapping principle,
such as the sparse nature of point clouds due to uniform or repetitive texture of surfaces,
inconsistent color of images due to daylight fluctuations, and even infeasibility of image
acquisition in dark illumination conditions. Therefore, with the recognized technical
limitations, the primary objective of this paper is to develop a novel approach employing
modern visual SLAM and low-light image enhancement (LLIE) methods robust to variant
illumination conditions at unstructured worksites. The remainder of this paper is organized
as follows. Section 2 briefly describes the LLIE methods. Section 3 describes the proposed
pipeline of the 3D robotic mapping approach. Section 4 presents the experimental setup
to validate the proposed approach, followed by visibility and accuracy assessments of the
mapping results. Finally, conclusions are discussed in Section 5.

2. Low-Light Image Enhancement Method

Generally, LLIE methods can be categorized into histogram equalization (HE), retinex
theory, and deep-learning-based methods. HE increases the global contrast of a given
image by mapping the pixel intensity distribution to a uniform frequency distribution
and thereby spreading out the intensity values, resulting in the enhancement of areas
with low contrast. However, relying on global contrast to improve the visibility of a
diverse range of objects in the foreground and background may result in an inferior image
due to the overenhancement of certain regions within the foreground. To avoid this
limitation, adaptive histogram equalization (AHE) was proposed, where the complete
image is divided into smaller patches, and histogram equalization is subsequently applied
to each patch [30,31]. The contrast-limited adaptive histogram (CLAHE) method was
proposed to reduce noise amplification by clipping the histogram at a predefined threshold
depending on the normalization of the histogram and, in turn, the size of the patch [32].
This clipped region, when redistributed among neighboring histograms, tends to improve
overall image quality. Other methods extend this principle by dividing the image into
sub-histograms based on the mean pixel value (bi-histogram equalization [33]), median
pixel value (dualistic subimage histogram equalization [34], recursive subimage histogram
equalization [35]), and minimum mean brightness error bi-histogram equalization [36].
These parts are subsequently processed individually before merging to obtain an enhanced
image. While these algorithms provide robust performance, they cannot be directly applied
to individual color channels in RGB images, as they dramatically change the color balance.

The retinex theory is modeled on the human visual system and decomposes an image
into an illumination map and a reflectance map in the scene [37]. Classical retinex-based
algorithms such as SSR [38] and MSR [39] estimate and remove the illumination map to
obtain enhanced images. However, since the illumination map represents scene lighting,
removing it results in enhanced images having artifacts near the edges. To overcome this
limitation, naturalness preserved enhancement (NPE) was proposed to obtain illumination
and reflectance maps using a bright-pass filter, thus preserving the naturalness of the
image [40]. Another approach formulates the decomposition process as an optimization
problem, wherein Fu et al. [41] proposed a weighted variational model for simultaneously
estimating reflectance and illumination maps. However, this method is sensitive to the
presence of noise in low-contrast regions, resulting in halo artifacts in the enhanced images.
LIME relies on illumination map estimation with the structure known prior to enhancing
low-light images [42]. Subsequently, BM3D is used for denoising with postprocessing.
However, due to less reliance on the reflectance map, amplified noise results in low-contrast
regions of the image.

Deep-learning-based models rely on the feature extraction and representation capabil-
ities of convolutional neural networks (CNNs) to enhance low-light images. LLNet was
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proposed as a stacked autoencoder framework for jointly performing the task of low-light
image enhancement and denoising of grayscale images [43]. Based on the retinex model,
LightenNet relies on enhancing the illumination map to obtain a natural-looking enhanced
image with better detail [44]. RetinexNet estimates both reflectance and illumination maps
using two CNNs that decompose an image into reflectance and illumination maps, fol-
lowed by enhancement of the illumination map while denoising the reflectance map [45].
MBLLEN utilizes multiple branches across different feature scales, subsequently enhancing
and fusing these features to generate enhanced images [46]. DeepFuse images captured at
multiple exposure levels are fused to generate well-lit images [47]. While deep-learning-
based methods represent the current state of the art, paired data sets representing low
illumination and well-lit conditions for a particular scene are required for training. Ad-
ditionally, a collection of such data sets is logistically expensive. Thus, to overcome the
reliance on paired training samples, EnlightenGAN [48] and Low-LightGAN [49] utilize
generative adversarial networks (GANs) to generate paired data sets without explicitly
constructing such data sets. A more recent model, DALE, relies on a visual attention
module to identify dark regions and uses these regions to estimate visual attention [50].

As illumination variations affect the performance of perception tasks in visual SLAM,
contrast enhancement was employed to improve the detection and matching of feature
points [51]. The color space conversion and guided filter-based method was introduced
to extract illumination-insensitive feature points [52]. However, these mathematically
predefined methods are not scalable for diverse illumination environments. Deep-learning-
based LLIE methods, which have been shown to outperform traditional methods [53,54],
have been increasingly adopted to visual SLAM [55–57]. Therefore, in this paper, mod-
ern deep-learning-based LLIE methods are experimentally investigated to enhance the
visual SLAM-based construction mapping approach, concerning the illumination-variant
conditions at planetary worksites.

3. Robotic Construction Mapping Approach

The 3D robotic mapping approach is designed to build a highly detailed 3D point-
cloud map for construction purposes. Different from planetary exploration into unknown
environments during a mission, planetary construction requires a rover to traverse within
a limited extent of a worksite. In planetary construction, rovers are required to revisit the
same site multiple times. However, uniform illumination conditions are not guaranteed
because viewpoints and solar altitudes are different for each visit to the worksite. Thus, the
visual SLAM technique with the LLIE method is designed to create a 3D dense point-cloud
map, ensuring a perceptually color-consistent representation of the test site.

A 3D robotic mapping approach, an extension of the visual stereo SLAM-based robotic
mapping method [58], was designed in response to construction mapping requirements.
The proposed method adopts stereo parallel tracking and mapping (S-PTAM) [59] as the
base SLAM framework, to which the dense mapping and LLIE methods are combined
to enhance construction mapping capabilities. The proposed method consists of three
threads: preprocessing, mapping, and localization (Figure 2). In the preprocessing thread,
the deep-learning-based LLIE method is selectively applied to stereo images from the
robotic mapping system. The images obtained under varying illumination conditions are
enhanced without oversaturating, contrasting, or stylizing the image. The LLIE method
leverages feature extraction and matching correspondences between stereo images. Because
the training data set for planetary terrain is not typically available, the deep learning model
is trained based on a subset of planetary terrain images. Furthermore, the enhanced image
set is used to train the disparity estimation deep network [60], and the disparity map is
then created for localization and dense mapping threads.
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In the localization thread, the camera trajectory relies on the quality and quantity of
feature matches between stereo pairs. In the feature-matching procedure, the disparity map,
along with the nearest neighbor distance ratio (NNDR) constraint, is used as an additional
constraint to increase feature matching concerning homogeneous planetary terrains. In
the first sequence, the camera pose, which is estimated by matching correspondences
between the terrain features and identical features, is set up as an origin. The sequent stereo
pairs are selected as a keyframe if the feature-matching number is less than 90% of that in
the previous keyframe. When the threshold is satisfied, the camera pose is sequentially
updated through triangulation between the feature matches of neighboring keyframes.
These keyframes are stored in the stereo keyframe database. For local adjustment of the
camera trajectory from the beginning, the bundle adjustment is repeatedly used to refine
the estimated camera pose. However, the locational error is inevitably accumulated and
propagated into the camera trajectory. It is necessary to recognize the already-visited place
for the global adjustment of the camera trajectory. Loop closure detection with 3D points
from the disparity map is used for global adjustment of the camera trajectory using the
graph optimization process.

In the mapping thread, the disparity map is the basis for creating a dense 3D point
cloud. However, an error in disparity values, which is caused by homogeneous (or tex-
tureless) terrains, is another concern for creating accurate point clouds. The structural
dissimilarity (DSSIM) threshold [61] is used to examine a pixel-wise correspondence be-
tween stereo pairs. The estimated disparity with DSSIM below the predefined threshold
is mapped to the 3D point cloud. In addition, the 3D point cloud from each image frame
is referenced in the local coordinate system. As the accuracy of stereo depth estimation
reduces at a longer distance, only points with a distance of less than 20 m are reprojected
and mapped.

All point clouds from every key frame are reprojected at a reference coordinate system
from the first frame in the image sequence. Additionally, a 3D grid with a predefined
resolution is used to register and manage 3D points. To manage a 3D point-cloud map
effectively, the 3D space is divided into a set of 3D grids with a predefined resolution.
Specifically, each of the image points reprojected onto the 3D space, carrying the RGB pixel
color information, are registered into the nearest grid in the 3D coordinate. Multiple points
originating from images at various timesteps can land on the same grid. Grids with the
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number of points less than the predefined threshold are considered noisy measurements to
be filtered out and recorded as unoccupied.

In addition, the number of reprojected points from each image frame can reach the
order of 100,000. The 3D grid helps in limiting memory usage. In the implementation, the
grid size was 2 × 2 × 2 cm3, and the minimal number of points in each grid was 5. The
RGB color associated with the grid was computed simply as the mean RGB values of the
contained points. Then, for each 3D grid, the associated occupancy and color information
were updated at every timestep. Application of the LLIE method at the initial stage helps
in providing consistent RGB color information across multiple frames over a long period
of mapping.

4. Experiments and Results
4.1. Overview

The proposed approach in Section 3 is applied to the emulated planetary worksite (test
site, hereinafter). To simulate the robotic mapping process, the robotic mapping system
collects terrain images to build a point-cloud map depicting the entire test site in Section 4.2.
Although all terrain images were taken during the day, changes in lighting conditions
caused the point clouds to have inconsistent color properties. The topographic aspects of
the test site are not clearly distinguished. Therefore, in the experiments, the deep-learning-
based LLIE methods are examined and selected to enhance the terrain images in Section 4.3.
The proposed mapping method combined with the selected LLIE method is used to create
the 3D point-cloud map for construction purposes. Additionally, for comparison purposes,
the visibility and the accuracy of the point-cloud maps based on original and enhanced
images (hereinafter referred to as original and enhanced point-cloud maps, respectively)
are assessed in Section 4.4.

4.2. Robotic Mapping System and Test Site

The robotic mapping system employed in this research is a four-wheeled mobile
platform with payloads consisting of a stereo camera system and a Wi-Fi router (Figure 3).
The stereo camera system has a 20 cm baseline, from which 15 stereo image frames with
a 484 × 366 resolution are collected per second while the mapping system is moving. A
camera mast with manual pan and tilt capabilities is ideal for effectively collecting terrain
images, minimizing the rover’s motions. The pan axis can rotate ± 180

◦
from the center,

and the tilt axis range is ± 45
◦
. Additionally, with the Wi-Fi-enabled router, the rover

and its camera system can be remotely operated to simulate the planetary construction
mapping process.

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 18 
 

 

its camera system can be remotely operated to simulate the planetary construction map-

ping process. 

 

Figure 3. Robotic mapping system. 

In planetary construction, flat areas with sparse rock distribution are likely to be con-

struction candidate sites due to their topographic and geotechnical feasibility to 

strengthen the foundation and stabilize the surface [62,63]. The field test site, which is 

located at the Korea Research Institute of Civil Engineering and Building Technology 

(KICT) (Figure 4), is designed for robotic mapping systems to simulate a construction 

mapping process. The dimensions are 40 m × 50 m, and rounded-pile and hollowed-out 

areas of different sizes are distributed over a flat ground with few rocks. In the experiment, 

the robotic mapping system slowly traversed the entire test site from noon to late after-

noon, occasionally stopping to recognize the current location and find a path to the next 

terrain feature. In the robotic operation, major terrain features (e.g., rock, crater, and 

mound) were repeatedly visited from different angles and positions. In the following sec-

tions, the terrain image set from the mapping system was used to experimentally select 

the LLIE method and to create the 3D point-cloud map of the test site. 

 

Figure 4. Emulated planetary worksite (test site). 

4.3. Image Enhancement under Varying Illumination Conditions 

In the experiment, six different LLIE methods (RetinexNet, DALE, DLN, DSLR, 

GLAD, KinD) were initially selected and trained on the LOL data set [45]. The LLIE meth-

ods were sequentially fine-tuned using 440 image pairs from an emulated terrain in the 

indoor laboratory, where diverse illumination conditions from a bright level to a dark 

level could be manually adjusted [64]. Another 60 images were used to validate the LLIE 

Figure 3. Robotic mapping system.



Remote Sens. 2022, 14, 1027 7 of 17

In planetary construction, flat areas with sparse rock distribution are likely to be con-
struction candidate sites due to their topographic and geotechnical feasibility to strengthen
the foundation and stabilize the surface [62,63]. The field test site, which is located at the
Korea Research Institute of Civil Engineering and Building Technology (KICT) (Figure 4),
is designed for robotic mapping systems to simulate a construction mapping process. The
dimensions are 40 m × 50 m, and rounded-pile and hollowed-out areas of different sizes
are distributed over a flat ground with few rocks. In the experiment, the robotic mapping
system slowly traversed the entire test site from noon to late afternoon, occasionally stop-
ping to recognize the current location and find a path to the next terrain feature. In the
robotic operation, major terrain features (e.g., rock, crater, and mound) were repeatedly
visited from different angles and positions. In the following sections, the terrain image set
from the mapping system was used to experimentally select the LLIE method and to create
the 3D point-cloud map of the test site.
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4.3. Image Enhancement under Varying Illumination Conditions

In the experiment, six different LLIE methods (RetinexNet, DALE, DLN, DSLR, GLAD,
KinD) were initially selected and trained on the LOL data set [45]. The LLIE methods
were sequentially fine-tuned using 440 image pairs from an emulated terrain in the indoor
laboratory, where diverse illumination conditions from a bright level to a dark level could
be manually adjusted [64]. Another 60 images were used to validate the LLIE methods.
The proposed approach was implemented using Python due to the easy integration of
deep learning models. The computation time per image frame was approximately 0.2 s on
the graphics processing unit (RTX 3070). Specifically, 0.1 s was used to perform the image
enhancement procedure on both stereo image inputs and another 0.1 s for visual tracking
with AKAZE [65].

To determine the robust LLIE method, four terrain images under different illumination
conditions were obtained from the test site. As cloud coverage and solar altitude contin-
uously change, the terrain images in Figure 5 have a different magnitude of brightness
and color property. In Figure 5a, the terrain image was taken under clear sky at noon, in
which the rock has a bright color with a shadow. However, the image quality depends
on the cloud coverage that reflects the sunlight. In Figure 5b,c, the terrain images become
incrementally darker as the cloud coverage increases. In addition, the low solar altitude in
the late afternoon caused the onboard camera to become underexposed. The terrain image
in Figure 5d consequently has the lowest brightness compared to the other images, with
the entire visual content degraded and the mound in the background hardly discernible.
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Figure 5. Terrain images with decreasing illumination conditions (a–d): (a) bright condition with clear
sky at noon; (b) overcast condition, partly cloudy in the afternoon; (c) overcast condition with full
cloud coverage in the afternoon; (d) darkest condition with low solar altitude in the late afternoon.

To ensure the image enhancement results from the darkest condition in the image
set, the LLIE methods were applied to the terrain image in Figure 5d. The image enhance-
ment results were then evaluated quantitatively and qualitatively, as shown in Table 1
and Figure 6 respectively. In Table 1, Naturalness Image Quality Evaluator (NIQE) [66]
and Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) [67], which are no-
reference image evaluation metrics, are used to quantify the enhanced image qualities.
NIQE measures the distance between the multivariate Gaussian model of the natural image
and the test image. Additionally, BRIQUE evaluates the test image based on natural scene
statistics. A smaller score from both NIQE and BRISQUE indicates better visually percep-
tual quality. Table 1 shows that GLAD is the best method from both evaluation metrics.
However, in some cases, different evaluation metrics assign a different score to the same
LLIE method in that each metric evaluates different aspects of the enhanced image. For
example, NIQE indicates that DLN and Kind achieve the second and third best scores,
respectively. However, the second and third best scores in BRISQUE are achieved by DSLR
and DLN, respectively.

Table 1. Performance of different models on dark images.

LLIE methods NIQE BRISQUE

RetinexNet 5.48 67.40
DALE 8.40 65.56
DLN 4.27 55.74
DSLR 5.07 52.38
GLAD 3.82 45.33
KinD 4.67 60.60
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These evaluation metric scores are not completely consistent with subjective human
perception; thus, the image enhancement results in Figure 6 is visually inspected. In
Figure 6a, RetinexNet severely stylizes and distorts the colors of the terrain features in
the image. DSLR in Figure 6 has the second highest score in BRISQUE, but random
and gridding artifacts are introduced within the image. Additionally, the entire image is
oversmoothed, which causes a loss of detail, especially for the gravels on the mound. In
Figure 6d, DALE reveals chromatic distortion surrounding the different artifacts. KinD in
Figure 6f improved the contrast, but visible color distortion is shown in the lower part of
the mound. Overall, GLAD (Figure 6e) and DLN (Figure 6c) improved the brightness the
best, maintaining clarity and color in the darkest conditions in Figure 5.

A second experiment was conducted to ensure consistent color restorations over the
terrain images with a different degree of brightness (Figure 5). GLAD and DLN were
selected from the first experiment due to their quantitatively and qualitatively stable per-
formances. Additionally, the image brightness is increased without severely degrading the
image quality. Figure 7 shows the image enhancement results from the four terrain images
in Figure 5. In Figure 7a, DLN generates slightly overexposed images but blurs the extent
of terrain features such as gravel, rock, and mound. Additionally, the different brightness
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is obviously observed when the first and last images are compared. However, in Figure 7b,
GLAD tends to demonstrate consistent color enhancement over all images, maintaining
the image quality. Additionally, the features in each image can be clearly identified in
comparison to those in the DLN-enhanced images. Therefore, GLAD is eventually selected
for enhancing the entire terrain image frames from the robotic mapping system.
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4.4. Robotic Mapping Results

Similar to construction on Earth, the first phase in planetary construction is site
preparation. The teleoperated construction robots are then employed to clear and grade
the ground before emplacing infrastructure such as roads, landing pads, and ISRU utilities.
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Therefore, to understand the terrain morphological characteristics of the worksite, on-site
robotic mapping is essential to create a highly detailed and accurate point-cloud map.

The proposed mapping method sequentially involved enhanced image pairs from
GLAD. Three-dimensional (3D) point clouds were then generated along the rover trajectory,
by which the test site in Figure 8 was reconstructed as a mapping result. In Figure 9, the
original and enhanced point-cloud maps are shown for comparison purposes. Multiple
circles in both point-cloud maps are blind spots that were inevitably made when the
rover-mounted camera was fully rotated. Additionally, to build the point-cloud map, the
rover slowly traversed around the entire test site, repeatedly visiting the same locations.
Terrain images were continuously influenced by changes in cloud coverage and solar
altitude from noon to late afternoon. Therefore, in Figure 9a, the original point-cloud map
consequently has the mixed nature of colors from beige to dark gray. However, in Figure 9),
the LLIE method visually improved the original terrain images to have relatively brighter
and more consistent colors irrespective of the illumination condition changes. Shapes and
distributions of terrain features (e.g., mound, crater) and obstacles (e.g., rock) are easily
identified in the enhanced point-cloud map.
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In Figures 10 and 11, point clouds of the rock, stone pile, crater, and mound in
both point-cloud maps are selected for visual inspection, each of which is indexed in
Figures 8 and 9. In the robotic mapping process, images of the same feature were taken
from different angles and distances. Point clouds are repeatedly created, blurring the
outlines of the terrain features. Therefore, even though images were obtained in better
lighting conditions, small features (e.g., pebble and stone) in all point clouds are hardly
discernible in Figures 10 and 11. However, in Figure 10, the perceptual appearance of
terrain features is degraded by the dark colors of the point clouds. Images of the stone
pile were taken under partial or full cloud coverage, and therefore, its appearance has
distorted color properties with indistinct outlines. Furthermore, the mound has an empty
space on the top due to the lower height of the rover-mounted camera system. Although
prior knowledge is given from the terrain image, the defects in point clouds make it more
difficult to identify the mound from the background. In contrast, Figure 11 shows that the
overall qualities of the point clouds are significantly improved, especially for the stone
pile and the mound. The rock, stone pile, and crater still have blurred outlines, but the
enhanced image set creates point clouds closer to their natural appearances, preserving
inherent colors and details. Additionally, for the mound, the brightness of the point clouds
is enhanced while restoring the colors from dark gray to beige. The visual perception is
much improved when the mounds in Figures 10 and 11 are compared to each other.
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Figure 10. Terrain features selected from original point cloud in Figure 9.

Accuracy assessment was conducted to investigate the influence of the enhanced
images on the quality of the point-cloud map. Terrestrial LiDAR (Trimble X7) was employed
to obtain the point cloud as a reference, to which the iterative closest point (ICP) was used
to optimally align the point-cloud maps in Figure 9. The root mean square error (RMSE)
measurements for the original and enhanced point-cloud maps are 0.29 m and 0.25 m,
respectively. As the test site has a flat and smooth surface, the enhanced image set does
not lead to a significant reduction in RMSE measurements. To rigorously analyze the
positional errors, the positional error distribution is geographically represented along with
the positional error histogram in Figure 12. The color index, ranging from blue to yellow-
green, represents the magnitude of positional errors along the x-axis of the histogram.
Generally, positional errors in both point-cloud maps are not uniformly distributed over
the test site. As the robotic mapping system mostly moved around the center of the test
site, positional errors in the marginal areas are often larger than the central area. However,
when the positional error distributions and histograms in Figure 12a,b are compared, the
enhanced point-cloud map has a larger blue extent, and its histogram has a narrower width.
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Accuracy assessment results indicate that the enhanced image set increases the overall
accuracy of the original point clouds.

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 18 
 

 

degraded by the dark colors of the point clouds. Images of the stone pile were taken under 

partial or full cloud coverage, and therefore, its appearance has distorted color properties 

with indistinct outlines. Furthermore, the mound has an empty space on the top due to 

the lower height of the rover-mounted camera system. Although prior knowledge is given 

from the terrain image, the defects in point clouds make it more difficult to identify the 

mound from the background. In contrast, Figure 11 shows that the overall qualities of the 

point clouds are significantly improved, especially for the stone pile and the mound. The 

rock, stone pile, and crater still have blurred outlines, but the enhanced image set creates 

point clouds closer to their natural appearances, preserving inherent colors and details. 

Additionally, for the mound, the brightness of the point clouds is enhanced while restor-

ing the colors from dark gray to beige. The visual perception is much improved when the 

mounds in Figures 10 and 11 are compared to each other. 

 

Figure 10. Terrain features selected from original point cloud in Figure 9. 

 

Figure 11. Terrain features selected from the enhanced point-cloud maps in Figure 9. 

Accuracy assessment was conducted to investigate the influence of the enhanced im-

ages on the quality of the point-cloud map. Terrestrial LiDAR (Trimble X7) was employed 

to obtain the point cloud as a reference, to which the iterative closest point (ICP) was used 

Figure 11. Terrain features selected from the enhanced point-cloud maps in Figure 9.

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 18 

to optimally align the point-cloud maps in Figure 9. The root mean square error (RMSE) 

measurements for the original and enhanced point-cloud maps are 0.29 m and 0.25 m, 

respectively. As the test site has a flat and smooth surface, the enhanced image set does 

not lead to a significant reduction in RMSE measurements. To rigorously analyze the po-

sitional errors, the positional error distribution is geographically represented along with 

the positional error histogram in Figure 12. The color index, ranging from blue to yellow-

green, represents the magnitude of positional errors along the x-axis of the 

histogram. Generally

(a) 

(b) 

Figure 12. Positional error histogram (left) and positional error distribution over the test site (right). 

Identical color index is used to represent a magnitude of positional errors in the original and en-

hanced point-cloud maps: (a) positional errors in the original point-cloud map; (b) positional errors 

in the enhanced point-cloud map. 

5. Discussion and Conclusions

Many space agencies worldwide have renewed their planetary exploration roadmap 

to return humans to the surfaces of the Moon and Mars. Numerous ideas and proposals 

have been presented to build a planetary base for sustained human exploration and hab-

itation. Planetary construction implies that various types of construction robots will re-

peatedly visit the same worksite to perform complex tasks such as excavation, grading, 

leveling, and additive construction. These robotic construction operations solely rely on 

images from the onboard camera system. However, illumination conditions may vary for 

each visit due to illumination-variant conditions such as solar altitudes and different 

Figure 12. Positional error histogram (left) and positional error distribution over the test site (right).
Identical color index is used to represent a magnitude of positional errors in the original and enhanced
point-cloud maps: (a) positional errors in the original point-cloud map; (b) positional errors in the
enhanced point-cloud map.



Remote Sens. 2022, 14, 1027 14 of 17

5. Discussion and Conclusions

Many space agencies worldwide have renewed their planetary exploration roadmap to
return humans to the surfaces of the Moon and Mars. Numerous ideas and proposals have
been presented to build a planetary base for sustained human exploration and habitation.
Planetary construction implies that various types of construction robots will repeatedly
visit the same worksite to perform complex tasks such as excavation, grading, leveling, and
additive construction. These robotic construction operations solely rely on images from the
onboard camera system. However, illumination conditions may vary for each visit due to
illumination-variant conditions such as solar altitudes and different weather, especially for
Mars. The inconsistent color property of images hampers the ability to recognize terrain
features, even at the returned location. Additionally, in the unknown environments of
worksites, prior knowledge of detailed topographic information is essential for construction
planning and management. It is critical to ensure that images from robots are maintained
in bright and consistent colors despite continually changing illumination conditions.

The proposed robotic mapping approach for planetary construction aims to build a
3D dense point-cloud map that depicts the worksite with perceptually color-consistent
properties. In the proposed approach, the stereo SLAM-based robotic mapping method,
which is based on S-PTAM, is combined with the LLIE method to enhance mapping
capabilities. The robotic mapping system, which was deployed at the emulated planetary
worksite, collected terrain images in a topographic surveying manner. All terrain images
were collected during the daytime from noon to late afternoon. However, changes in
weather and solar altitude resulted in the terrain images having inconsistent colors and
consequently affected the point-cloud map. Dark point clouds hid many terrain features
of interest, making it difficult to understand the topographic properties of the test site.
Therefore, the deep-learning-based LLIE method was experimentally selected, enabling the
original terrain images to have structural consistency with improved brightness and color.
The enhanced point-cloud map was then created and compared with the original point-
cloud map. The experiment results indicate that the robotic mapping method leverages
the LLIE method to improve the visibility and the overall accuracy of the original point-
cloud map. The brightness of the original point-cloud map was significantly improved,
preserving inherent colors and details. Additionally, the point-cloud map became closer to
the natural appearance of the test site.

The proposed approach shows promising results for planetary construction mapping.
Additionally, color restoration and consistent imagery have potential for use in scientific
investigations, such as geologic mapping. However, path planning, along with global
localization, is another concern to minimize robot motions for efficient mapping and
to historically align updated mapping results for construction monitoring. In addition,
technical constraints still remain for implementation. In the planetary construction process,
humans and robots are required to repetitively visit the worksite. The terrain image set
is then accumulated to fine-tune the LLIE methods for future robots. However, the LLIE
method in the proposed approach requires robots to use a large image set for training
purposes. Additionally, during mapping, a disparity map is computed at a high frame
rate. Heavy computation and a large data set pose great challenges to its application. The
proposed approach should be adjusted to be more lightweight and optimized with respect
to technical progress on the mechanical and hardware components of future planetary
construction robots.
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