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Abstract: Since hyperspectral satellite images (HSIs) usually hold low spatial resolution, improving
the spatial resolution of hyperspectral imaging (HSI) is an effective solution to explore its potential
for remote sensing applications, such as land cover mapping over urban and coastal areas. The
fusion of HSIs with high spatial resolution multispectral images (MSIs) and panchromatic (PAN)
images could be a solution. To address the challenging work of fusing HSIs, MSIs and PAN images,
a novel easy-to-implement stepwise fusion approach was proposed in this study. The fusion of
HSIs and MSIs was decomposed into a set of simple image fusion tasks through spectral grouping
strategy. HSI, MSI and PAN images were fused step by step using existing image fusion algorithms.
According to different fusion order, two strategies ((HSI+MSI)+PAN and HSI+(MSI+PAN)) were
proposed. Using simulated and real Gaofen-5 (GF-5) HSI, MSI and PAN images from the Gaofen-1
(GF-1) PMS sensor as experimental data, we compared the proposed stepwise fusion strategies with
the traditional fusion strategy (HSI+PAN), and compared the performances of six fusion algorithms
under three fusion strategies. We comprehensively evaluated the fused results through three aspects:
spectral fidelity, spatial fidelity and computation efficiency evaluation. The results showed that
(1) the spectral fidelity of the fused images obtained by stepwise fusion strategies was better than that
of the traditional strategy; (2) the proposed stepwise strategies performed better or comparable spatial
fidelity than traditional strategy; (3) the stepwise strategy did not significantly increase the time
complexity compared to the traditional strategy; and (4) we also provide suggestions for selecting
image fusion algorithms using the proposed strategy. The study provided us with a reference for the
selection of fusion strategies and algorithms in different application scenarios, and also provided an
easy-to-implement solution and useful references for fusing HSI, MSI and PAN images.

Keywords: stepwise image fusion; hyperspectral image (HSI); multispectral image (MSI); panchro-
matic (PAN) image; Gaofen-5 (GF-5); Gaofen-1 (GF-1); spectral grouping

1. Introduction

In recent years, with the launches of various hyperspectral satellites [1], hyperspectral
images (HSIs) have been frequently used in many applications, such as coastal wetland
mapping, species classification of mangrove forests, and so on. HSIs with detailed spectral
information are particularly important in the analysis of the land-cover for coastal envi-
ronmental monitoring, disaster monitoring, precision agriculture, forestry surveying and
urban planning [1], because HSIs with high spectral resolution can provide better perfor-
mance for qualitative and quantitative analysis of geographic entities. However, limited by
the sensitivity of photoelectric sensors and transmission capability, the spatial resolution of
HSIs is not sufficient for some applications [2], such as the monitoring of air pollution [3],
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land and sea surface temperatures [4,5], heavy metals in soil and vegetation [6], water
quality [7], land cover [8,9] and lithological mapping [10]. In recent years, the development
of accurate remote sensing applications has increased the requirement for images with both
high spatial and spectral resolution.

The fusion of HSIs with high spatial resolution images is an excellent solution to obtain
images with both high spectral and spatial resolution [11]. Image fusion can break through
the mutual restriction of spatial and spectral resolution [12], integrate the advantages of
HSIs and high spatial resolution images, and obtain HSIs with high spatial resolution [13,14].
Integrating the complementary advantages of HSI, MSI and PAN images in the same
area through image fusion technology will greatly improve the application potential and
prospects of all three. According to different combinations of input data source, HSI
fusion strategies can be divided into three categories: (1) HSI+MSI, (2) HSI+PAN and
(3) HSI+MSI+PAN. Currently, most of the HSI fusion studies have focused on the first two
categories, and few studies have focused on the last category.

Since pan-sharpening can be considered a special case of the HSI–MSI fusion problem,
spectral grouping strategies have been proposed to generalize existing pan-sharpening
methods to the more challenging HSI–MSI fusion. Specifically, an HSI–MSI fusion frame-
work was proposed in [15] which divided HSIs into multiple groups of images according to
spectrum and fused the groups with their corresponding channels of MSIs. A similar idea
was also proposed in [2], in which the HSI–MSI fusion was automatically decomposed into
multiple groups of weighted pan-sharping problems. Selva et al. also proposed a frame-
work called hyper-sharpening that effectively applied the MRA-based pan-sharpening
methods to HSI–MSI fusion [16]. Fusing images by exploiting the inherent spectral char-
acteristics of the scene via a subspace is another method for HSI–MSI fusing [12,14,17,18],
and a Bayesian method based on a maximum a posteriori (MAP) estimation which used a
stochastic mixing model (SMM) to estimate the underlying spectral scene was one of the
first proposed methods [12]. Another kind of popular approach for fusing HSI and MSI was
spectral unmixing, and several methods were proposed [19–21]. Unmixing-based fusion ob-
tained endmember information and high-resolution abundance matrices from the HSI and
MSI, and the fused image can be reconstructed by multiplying the two resulting matrices.

HSI–MSI fusion can only obtain HSIs with the same spatial resolution as the MSIs.
To obtain HSIs with higher spatial resolution, several HSI–PAN fusion methods were
proposed [22–25]. However, most of the existing HSI–PAN fusion methods focused on
increasing the spatial resolution by two–five times. In [22,24,25], the spatial resolution
ratios of several groups of HSI and PAN image were three times and five times, and in [23],
it was three times. In practical applications, the HSI fusion problems with spatial resolution
ratios of 10 times or more are challenging [26].

Considering the limitations of HSI–MSI and HSI–PAN fusion, HSI–MSI–PAN fusion is
a potential solution. Using the integrated fusion framework proposed by Meng et al., spatial
(high-frequency) and spectral (low-frequency) components of multi-sensor images were
decomposed using modulation transfer function (MTF) filtering, and then they were fused
by automatically estimating the fusion weights [27]. Shen et al. also proposed an integrated
method for fusing multiple temporal-spatial-spectral scales of remote sensing images. The
method was designed based on the maximum a posteriori (MAP) framework [28], and the
efficacy of the method was only validated using simulated images. Besides, the fusion of
HSI–MSI–PAN is theoretically complex, and there are few reliable methods validated with
real data available at present. How to fuse HSI–MSI–PAN simply and effectively is still an
urgent problem to be solved.

To the best of our knowledge, in terms of the strategy for fusing HSI, MSI and PAN
images, existing studies in the literature have generally adopted the integrated fusion
strategy [27,28], and have not explicitly proposed the concept of stepwise fusion. Since
the spectral grouping strategy has been successfully applied in the literature [2,15,16] and
many MSI–PAN fusion algorithms have been proposed, can HSI–MSI–PAN fusion be
theoretically simplified into several groups of sequential HSI–PAN fusion problems?
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Therefore, the aim of this study is to explore the effectiveness of fusing HSI, MSI and
PAN images using stepwise and spectral grouping strategies with existing pan-sharping
algorithms, and also to compare the performances of different algorithms. With HSIs of
Gaofen-5 (GF-5), MSIs and PAN images obtained from the Gaofen-1 (GF-1) PMS sensor
as a case, an easy-to-implement stepwise and spectral grouping approach for fusing HSI,
MSI and PAN images was proposed and evaluated. Adopting the stepwise and spectral
grouping strategy, the fusion of HSI, MSI and PAN images was decomposed into a set
of MSI–PAN fusion problems, and six state-of-the-art pan-sharpening algorithms were
evaluated and compared within this framework.

The rest of this paper was organized as follows: In Section 2, the study area and image
data are introduced. The stepwise and spectral grouping approach, as well a comparison
of MSI–PAN fusion algorithms are described in Section 3. In Section 4, we compare the
performances of different fusion strategies and algorithms, considering different image
types. Some important issues are discussed in Section 5, and the final conclusions are
drawn in Section 6.

2. Materials
2.1. Study Area and Image Data

A group of GF-5 HSI, GF-1 MSI and PAN images partially covering Hong Kong, China,
were used in this study. Hong Kong (22◦08′ N–22◦35′ N, 113◦49′ E–114◦31′ E) is a coastal
city located in the south of China. As shown in Figure 1, the image contains multiple types
of geographical entities such as buildings, roads, vegetation, water, etc. The difference
between the capturing times (acquisition time of images in Table 1) of the three images is
only 3 days, which may avoid feature differences in time scale.
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Figure 1. Geographical location of study area. On the right is the 30 m GF-5 HSI with true color
display (R: 639 nm; G: 549 nm; B: 472 nm).

The GF-5 satellite was successfully launched on 9 May 2018 [29]. The visible shortwave
infrared hyperspectral camera of the GF-5 satellite can obtain 330 spectral channel data
in the spectral range from visible light to shortwave infrared (400–2500 nm) at a spatial
resolution of 30 m. The spectral resolution of the VNIR and SWIR spectrometer is 5 nm and
10 nm [1], respectively. The GF-1 satellite was successfully launched on 26 April 2013 [30].
The GF-1 satellite is equipped with two panchromatic/multispectral (PMS) cameras and
four wide field view cameras. The PMS data have four spectral bands at 8 m spatial resolu-
tion and a panchromatic (PAN) band at 2 m spatial resolution with the spectrum ranging
from 450 to 900 nm [31]. The details of GF-5 and GF-1 optical sensors are shown in Table 1.
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Table 1. Details of GF5 and GF1 optical sensors.

Image Data GF-5 HSI GF-1 MSI GF-1 PAN

Launch time of sensors 9 May 2018 26 April 2013 26 April 2013

Spectral range/nm 400–2500

450–520

450–900
520–590
630–690
770–890

Number of bands 330 4 1

Spectral resolution/nm 5 (VNIR) - -
10 (SWIR) - -

Spatial resolution/m 30 8 2

Acquisition time of images 5 October 2018 2 October 2018 2 October 2018

2.2. Data Preprocessing

Data preprocessing work was carried out first, including radiometric calibration, at-
mospheric correction, ortho correction, image registration, and image clipping. First of
all, the GF-5 HSI, GF-1 MSI and PAN image were calibrated according to the absolute
radiance calibration coefficients of satellites. The digital number (DN) of GF-5 HSI and
GF-1 MSI was calibrated to the radiance; the DN of GF-1 PAN image was calibrated to
the top of atmosphere reflectance. Fast line-of-sight atmosphere (FLAASH) atmospheric
correction was performed on the GF-5 HSI and GF-1 MSI to obtain the surface reflectance.
ASTER GDEM 30 m resolution digital elevation data (http://www.gscloud.cn, accessed
on 30 December 2021) was used to orthorectify the three images, and the images were
resampled using the cubic convolution method. GF-5 HSI and GF-1 PAN were registered
with high accuracy based on GF-1 MSI. To facilitate the subsequent fusion experiments,
GF-5 HSI was sampled from 30 m to 32 m. On the premise that the three images have
been registered with high precision, the aligned data covering the same area can be easily
obtained by clipping the three images with the same vector range. Slight alignment devia-
tions due to excessively large resolution ratios (such as 32 m and 2 m) were unavoidable,
however their impact on fusion was minimal and was ignored in our study.

3. Methods
3.1. Grouping Fusion Framework

Hyperspectral remote sensing images with hundreds of nanometer-wide narrow
bands can obtain continuous and fine spectral responses of targets within a certain spectral
range [32]. The spectrum of multispectral image has local discontinuities, and the spectral
ranges of HSI and MSI do not completely overlap. The fusion of HSI and MSI in the
non-overlapping spectral range usually causes spectral distortion [33].Therefore, some
studies proposed the HSI–MSI grouping fusion framework [2,15,16], which can retain the
local spectral information of images and minimize spectral distortion by fusing the images
of each overlapping spectral interval one by one [15].

For HSIs and MSIs from the same scene, it is assumed that the HSI has P bands,
the MSI has Q bands, and P > Q. As shown in Figure 2, the Q bands of MSI are divided
into x spectral intervals mx (x = 1, 2, 3, . . . , Q) band by band. According to the spectral
correspondences between HSI and MSI, the P bands of HSI are divided into y spectral
intervals hy (y = 1, 2, 3, . . . , Q), and each spectral interval is a multi-band image. The
spectral intervals where HSI and MSI do not overlap (the gray region in Figure 2) do not
participate in the image fusion process.

The spectra of GF-5 HSI and GF-1 MSI can be divided into four overlapping spectral
intervals: 450–520 nm, 520–590 nm, 630–690 nm and 770–890 nm. The corresponding bands
of GF-5 HSI and GF-1 MSI in each spectral interval are shown in Table 2.

http://www.gscloud.cn
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Figure 2. Spectral correspondences between hyperspectral image and multispectral image.

Table 2. Spectrums of GF-5 HSI and GF-1 MSI.

Group Spectral Interval (nm) GF-1 MSI Band Index GF-5 HSI Band Index

1 450–520 1 15–31
2 520–590 2 32–47
3 630–690 3 57–71
4 770–890 4 90–118

According to the spectral correspondences in Figure 2 and Table 2, the spectral overlaps
of HSI and MSI are first obtained. As shown in Figure 3, the single MSI band (MSI1, MSI2,
. . . , MSIn) and multiple HSI groups (HSI1, HSI2, . . . , HSIn) are then fused in groups
to obtain multiple sets of fused images (HSI_MSI1, HSI_MSI2, . . . , HSI_MSIn). Finally,
multiple sets of fused images are stacked by wavelength to get the final fused image
(HSI_MSI). This grouping fusion framework simplifies the HSI–MSI fusion into several
groups of image fusion tasks, in which a multi-band image is fused with a single-band
image. In such cases, a single task can be easily implemented using traditional fusion
methods, such as the six fusion algorithms mentioned in this study.
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3.2. Stepwise Fusion Approach

Grouping fusion strategy is an effective solution for HSI–MSI fusion. However, to
obtain HSIs with higher spatial resolution, higher spatial resolution panchromatic images
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should be used. Two stepwise approaches could be adopted to fuse HSI, MSI and PAN
images, and HSI and PAN images can also be fused directly (Figure 4).
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(1) Strategy (HM)P (HSI+MSI)+PAN: A Low spatial resolution HSI and a medium
spatial resolution MSI are first fused using the above-mentioned grouping fusion frame-
work. A medium spatial resolution HSI is obtained and then further fused with high spatial
resolution PAN image to obtain a high spatial resolution HSI.

(2) Strategy H(MP) HSI+(MSI+PAN): A medium spatial resolution MSI and a high
spatial resolution PAN image are first fused. A high spatial resolution MSI is obtained and
then further fused with a low spatial resolution HSI using spectral grouping, and a high
spatial resolution HSI is obtained.

(3) Strategy HP HSI+PAN: The most common and traditional method is to adopt
a directly HSI–PAN fusion, which can be directly implemented by many image fusion
algorithms.

The low, medium, and high spatial resolutions are defined relative to the resolution of
the HSI, MSI and PAN images, and do not represent the specific spatial resolutions.

3.3. Image Fusion Algorithms

The PAN-sharpening algorithms can be roughly cataloged into three types [34–36]:
component substitution-based (CS-based), multi-resolution analysis-based (MRA-based),
and subspace-based methods. The CS-based, MRA-based and subspace-based approaches
have been also extended from multispectral (MS) PAN-sharpening to hyperspectral pan-
sharpening [22]. Latest representative algorithms of these three categories are band-
dependent spatial-detail-based approaches with physical constraints (BDSD_PC) [37],
partial replacement adaptive component substitution (PRACS) [38], modulation trans-
fer function-generalized Laplacian pyramid (MTF_GLP) [35,39], morphological filters
(MF) [40], coupled nonnegative matrix factorization (CNMF) [21], principal component
analysis/wavelet model-based fusion (PWMBF) [41]. The codes of these algorithms are pub-
licly available for academical purpose through http://openremotesensing.net/kb/codes/
(accessed on 30 December 2021).

3.3.1. CS-Based Methods: BDSD_PC and PRACS

The CS-based methods use matrix transformation to project the HSI/MSI into a new
feature space, in which the spatial information is separated from the spectral information.
After histogram matching, the components containing the spatial information are replaced
with the PAN to realize the sharpening of the transformed HSI/MSI. Finally, by inversely
transforming the data, the HSI/MSI is restored to the original space, and the sharpening of
the HSI/MSI is completed [42]. The algorithms belonging to this class used in this study
are BDSD_PC [37] and PRACS [38].

http://openremotesensing.net/kb/codes/
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The band-dependent spatial-detail-based (BDSD) approach [43] started from an ex-
tended version of the generic CS-based method. When we are looking for a more robust
solution, physical constraints (PS) are widely used. Thus, a physically constrained opti-
mization called BDSD_PC which can improve the quality of the fused images, has been
proposed recently. The BDSD_PC algorithm is detailed in [37].

A new adaptive fusion method based on component substitution has been proposed
to merge PAN with HSI/MSI. This method generates high-/low-resolution synthetic
component images by partial replacement and uses statistical ratio-based high-frequency
injection [38]. In other words, the PAN image is not directly used for component substitu-
tion. The method is referred to as PRACS, and the specific implementation details of the
algorithm are shown in [38].

3.3.2. MRA-Based Methods: MTF_GLP and MF

The MRA-based methods originate from multi-resolution analysis. The method first
resamples the HSI/MSI, and then injects the spatial details of the PAN into the resam-
pled HSI/MSI to improve spatial resolution [35]. Two typical MRA-based methods are
MTF_GLP [35] and MF [40].

For MTF_GLP, the low-pass filtering is performed for PAN using a gaussian modula-
tion transfer function (MTF) filter. By subtracting filtered PAN from the original PAN, the
high spatial detail image is obtained. Then, by using the global gain coefficient, the method
injects the extracted detail image into HSI/MSI [35,39].

Restaino, etc. studied the application of nonlinear image decomposition schemes
to data fusion [40]. The nonlinear MRA scheme is implemented with a morphological
pyramid based on morphological half gradients. The approach can be recast into the general
MRA fusion scheme. Due to the use of morphological filters for the detail extraction phase,
this method is called MF [44].

3.3.3. Subspace-Based Methods: CNMF and PWMBF

Subspace-based methods include unmixing-based approaches and Bayesian-based
approaches [36]. CNMF is a typical unmixing-based approach. The HSI/MSI and PAN are
unmixed by alternately using nonnegative matrix factorization (NMF) [45] to obtain the
hyperspectral endmember and high-spatial-resolution abundance matrices. Fused images
can be obtained by combining these two matrices [21].

By maximizing a posteriori (MAP) probability density of the full-resolution im-
ages, Bayesian-based approaches enhance spatial resolution [35,46]. We used one typical
Bayesian-based approach named PMWBF. The PWMBF method can handle HSI, MSI and
PAN based on the MAP estimation of the undecimated wavelet transform (UDWT) coeffi-
cients for the principal components (PCs) of the fused image. The fusion is performed in
the lower dimensional PC subspace; therefore, we only need to estimate the first few PCs,
instead of every spectral reflectance band. This algorithm is detailed in [41].

3.4. Evaluation of Image Fusion Performances

The performance of an image fusion algorithm was evaluated from three aspects:
spectral fidelity, spatial fidelity and computation efficiency measures. The qualitative evalu-
ation used visual interpretation, and the quantitative evaluation used four commonly used
quantitative indicators, including spectral angle mapper (SAM) [44], relative dimensionless
global error in synthesis (ERGAS) [35], peak signal-to-noise ratio (PSNR) and spatial corre-
lation coefficient (SCC) [35]. The first three indicators evaluated the spectral fidelity, and
the last indicator evaluated the spatial fidelity.

3.4.1. Spectral Metrics

SAM [44] calculates the spectral angle between corresponding pixels of reference and
fused images. The SAM index at the j-th pixel is defined as:
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SAM(vj, v̂j) = arccos(
vT

j v̂j

||vj ||2 ||v̂j ||2
) (1)

where v is the reference image, v̂ is the fused image and vj∈Rn×1 and v̂j∈Rn×1 represent
the spectral signatures of the j-th pixel in the reference image and the fused image. A larger
SAM means a more severe spectral distortion of the fused images. A SAM value equal to
zero denotes absence of spectral distortion [47].

In 2000, Ranchin and Wald proposed ERGAS [48], which provides a global statistical
measure of spectral distortion of the quality of the fused data [35], it is defined as:

ERGAS(x, x̂) = 100d

√√√√√ 1
m

m

∑
i=1

||xi − x̂i ||22
(

1
n

1T
nxi)2

(2)

where xi∈Rn×1 and x̂i∈Rn×1 represent the i-th band of the reference image and fused image,
respectively, d is the ratio of the spatial resolution between the HSI and PAN images and n
is the number of pixels in the images. A larger ERGAS means greater spectral distortion.

The PSNR evaluates the spatial reconstruction quality of fused images. It is the ratio
between the maximum power of a signal and the power of residual errors [35], which is
defined as:

PSNR(xi, x̂i) = 10× log10(
max(xi)

2

||xi − x̂i ||22/P
) (3)

where max(xi) is the maximum pixel value in the i-th reference band image. A larger PSNR
value indicates a better result.

3.4.2. Spatial Metrics

SCC [35] is used to measure the spatial information correlation of two images. Edge
detection technology (Sobel operator is used in this study) is used to extract edge infor-
mation from fused and PAN images. Using the edges from PAN image as reference, the
correlation coefficient between the edges from fused and PAN images is calculated. The
SCC is defined as follows:

SCC(M, N) =
∑e

i=1(Mi −M)(Ni −N)√
∑e

i=1(Mi −M)2 ∑e
i=1(Ni −N)2

(4)

where M and N are the reference edge image and the edge image to be evaluated. Mi and
Ni are samples of M and N; e is the total number of samples; M and N are the mean of M
and N. The range of SCC is between 0 and 1, and a high SCC indicates that the similarity of
spatial information between the fused image and the reference image is high.

3.4.3. Computational Efficiency Metrics

The running time is recorded to evaluate the computational efficiency of different
fusion strategies and algorithms, and the unit of running time is seconds. All the fusion
methods were implemented in MATLAB R2020a, and their codes were run on a Win10 com-
puter with an Intel Core i7-9700 processor and 40 GB RAM.

4. Experimental Results
4.1. Experimental Setup

Two groups of HSI, MSI and PAN images were used in this study. Following the
above stepwise approaches, 2 m HSI can be obtained by fusing GF-5 HSI, GF-1 MSI and
PAN images. However, no 2 m HSI can be used as a reference image to quantitatively
evaluate the spectral fidelity of the fused image. Therefore, the spectral fidelities of fusing
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real GF-5 and GF-1 images were only qualitatively evaluated, while the spatial fidelities
were qualitatively and quantitatively evaluated.

The quality of a fused image can be evaluated on the degraded spatial scale [49].
Therefore, simulated images can also be used to evaluate image fusion performances. A
group of simulated images were obtained by downsampling the real HSI, MSI and PAN
images. The details of simulated images are shown in Table 3. Since real 32 m/pixel
GF-5 HSI can used as a reference image, a fused 32 m/pixel HSI was quantitatively and
qualitatively evaluated in this study.

Table 3. Details of simulated and real experimental data.

Data Multi-Source Images Spatial Resolution(m) Image Size

Simulated Data
GF-5 HSI 512 50 × 50
GF-1 MSI 128 200 × 200
GF-1 PAN 32 800 × 800

Real Data
GF-5 HSI 32 80 × 80
GF-1 MSI 8 320 × 320
GF-1 PAN 2 1280 × 1280

For each group of images, comparative experiments were carried using (HM)P, H(MP)
and HP strategies, and BDSD_PC, PRACS, MTF_GLP, MF, CNMF and PWMBF algorithms,
respectively. The details of these strategies and algorithms are presented in Figure 4 and
Section 3.3.

In this section, we first present and compare the results over the full scenes, and then
we compare the fusion performances over vegetation and built-up areas. For vegetation ar-
eas, the spectral signature is more important for classifying vegetation species and retrieval
biochemical indices. However, for built-up areas, the spatial details might be more impor-
tant to recognize land use types. Therefore, we mainly focus on evaluating the spectral
distortion over vegetation areas and evaluating spatial distortion over built-up areas.

4.2. Performance over the Whole Image
4.2.1. Performance Using Simulated Images

The spatial resolution of images obtained by fusing the simulated HSI–MSI–PAN
images is 32 m/pixel. The reference and fused images are displayed in true color with
the same band combination (R: 639 nm; G: 549 nm; B: 472 nm). Figure 5 shows the fused
results of simulated GF5 and GF1 images. Tables 4–8 present the SAM, ERGAS, PSNR, SCC
and computational efficiency of the fused images, respectively. The mean values of the
quantitative metrics obtained by the same fusion algorithm with three fusion strategies are
shown in the last column of the tables, and the last column (Mean) in the tables below has
the same meaning.

Visual evaluation of spectral and spatial distortions: Comparing the results of the
three rows in Figure 5, the strategies (HM)P and H(MP) are generally better than the HP
strategy in terms of spectral and spatial fidelity. The results of the (HM)P and H(MP)
strategies are visually similar. Through our visual comparison, the spatial details of the
BDSD_PC, MF and CNMF algorithms are much better than others. The results of these
algorithms are similar from the perspective of spectral fidelity, and only the vegetation
areas of the results using BDSD_PC algorithm are slightly brighter.

Quantitative evaluation of spectral and spatial distortions: The quantitative evalua-
tion results further confirmed that under most algorithms, strategies (HM)P and H(MP)
perform better than HP, with only a few exceptional cases. For example, using HP strategy,
the results of MF and CNMF algorithms are slightly better than (HM)P and H(MP) in terms
of spatial fidelity. For all algorithms, the performances of (HM)P and H(MP) strategies are
equivalent. In terms of spectral fidelity, as can be seen from the last column of Tables 4–6,
the BDSD_PC algorithm performed the worst, and the performances of the other five
algorithms were not much different. It can be seen from the last column of Table 7 that
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the results using CNMF and MF have the best spatial fidelity, followed by PWMBF and
BDSD_PC, MTF_GLP, and the worst is PRACS.
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Table 4. SAM index of fusion results using simulated GF5 and GF1 images. A smaller value indicates
better performance.

Algorithm (HM)P H(MP) HP Mean

BDSD_PC 11.112 10.722 8.816 10.217
PRACS 4.787 4.674 5.298 4.920

MTF_GLP 5.242 4.905 5.806 5.318
MF 4.652 3.866 4.964 4.494

CNMF 3.900 4.181 4.353 4.145
PWMBF 4.840 5.424 6.290 5.518

Table 5. ERGAS index of fusion results using simulated GF5 and GF1 images. A smaller value
indicates better performance.

Algorithm (HM)P H(MP) HP Mean

BDSD_PC 2.052 2.080 2.272 2.135
PRACS 1.584 1.585 1.873 1.681

MTF_GLP 1.531 1.521 1.830 1.628
MF 1.698 1.574 1.831 1.701

CNMF 1.604 1.627 1.803 1.678
PWMBF 1.534 1.593 1.863 1.663
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Table 6. PSNR index of fusion results using simulated GF5 and GF1 images. A larger value indicates
better performance.

Algorithm (HM)P H(MP) HP Mean

BDSD_PC 61.335 61.130 60.051 60.838
PRACS 66.731 66.689 63.621 65.680

MTF_GLP 67.417 67.519 63.819 66.252
MF 65.451 67.037 63.785 65.424

CNMF 66.215 65.880 63.964 65.353
PWMBF 67.465 66.738 63.477 65.893

Table 7. SCC index of fusion results using simulated GF5 and GF1 images. A larger value indicates
better performance.

Algorithm (HM)P H(MP) HP Mean

BDSD_PC 0.823 0.835 0.583 0.747
PRACS 0.658 0.657 0.520 0.612

MTF_GLP 0.701 0.694 0.576 0.657
MF 0.908 0.886 0.945 0.913

CNMF 0.905 0.914 0.934 0.918
PWMBF 0.830 0.852 0.722 0.801

Table 8. Computational time (in seconds) of fusing simulated GF5 and GF1 images. The background
color here is to mark the total running time of the strategies (HM)P, H(MP) and HP, respectively, so as
to distinguish it from the separate running time of the step 1 and step 2.

(HM)P H(MP)
Algorithm

Step 1 Step 2 Total Step 1 Step 2 Total
HP Mean

BDSD_PC 14.852 13.856 28.708 0.740 5.246 5.986 12.976 15.890
PRACS 54.654 171.978 226.633 0.839 52.129 52.967 202.296 160.632

MTF_GLP 2.590 25.044 27.633 1.534 8.867 10.400 8.404 15.479
MF 6.207 6.348 12.556 0.455 9.031 9.486 8.264 10.102

CNMF 5.802 33.179 38.981 4.734 48.049 52.783 19.015 36.926
PWMBF 1.021 3.940 4.961 1.652 8.101 9.753 3.929 6.214

Computational efficiency evaluation: Using four algorithms (MTF_GLP, MF, CNMF
and PWMBF), the computational efficiency of strategy HP is better than those of strategies
(HM)P and H(MP), but there is not much difference. It is worth noting that the efficiency
of H(MP) is much higher than that of (HM)P and HP when using BDSD_PC and PRACS
algorithms. As can be seen from Table 8, the fusion of a single-band image and a 77-band
image in HP and the second step of (HM)P consumes too much time. However, with
the fewer bands involved in each fusion in the H(MP) strategy, the computational time
decreased dramatically, which indicated that the time complexity of CS-based algorithms
may be related to the number of bands in the image. The efficiency of the H(MP) strategy
is generally better than that of (HM)P, except for the CNMF and PWMBF algorithms. It can
be seen from the last column of Table 8 that the ranking of computational efficiency from
high to low is PWMBF, MF, MTF_GLP, BDSD_PC, CNMF and PRACS.

Summary: In most cases, the spatial and spectral fidelity of strategies (HM)P and
H(MP) is better than HP, and the performance of strategies (HM)P and H(MP) is similar.
From the algorithm point of view, BDSD_PC has the worst spectral fidelity, and the other
five algorithms are similar; the spatial fidelity sorted from good to bad is CNMF, MF,
PWMBF, BDSD_PC, MTF_GLP, PRACS. In most cases, the stepwise strategy does not
significantly increase the computational load when it fuses one more image than HP,
and H(MP) reduces time complexity compared to HP and (HM)P when using CS-based
algorithms. The efficiency of the H(MP) strategy is better than that of (HM)P. From the
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perspective of the algorithms, the computational efficiency sorted from high to low is:
PWMBF, MF, MTF_GLP, BDSD_PC, CNMF, PRACS.

4.2.2. Performances Using Real Images

The spatial resolution of fused image using real GF5 and GF1 images is 2 m/pixel.
Since there is no real 2 m HSI, only visual evaluation is performed to evaluate the spectral
distortions of fused images. The fusion results are presented in Figure 6, and Tables 9 and 10
shows the SCC and computational efficiency of performances using real GF5 and GF1 images.

Table 9. SCC index of fusion results using real GF5 and GF1 images. A larger value indicates better
performance.

Algorithm (HM)P H(MP) HP Mean

BDSD_PC 0.983 0.982 0.997 0.987
PRACS 0.751 0.726 0.653 0.710

MTF_GLP 0.913 0.900 0.977 0.930
MF 0.962 0.961 0.976 0.966

CNMF 0.978 0.960 0.911 0.950
PWMBF 0.670 0.724 0.675 0.690

Table 10. Computational time (in seconds) of fusing real GF5 and GF1 images.

(HM)P H(MP)
Algorithm

Step 1 Step 2 Total Step 1 Step 2 Total
HP Mean

BDSD_PC 21.295 34.911 56.205 1.215 11.641 12.857 31.491 33.518
PRACS 145.614 592.949 738.563 1.818 173.443 175.262 580.711 498.179

MTF_GLP 5.013 63.237 68.250 3.540 22.332 25.872 21.134 38.419
MF 21.902 15.999 37.901 0.916 21.326 22.242 25.915 28.686

CNMF 10.059 86.835 96.894 11.588 105.678 117.266 52.481 88.880
PWMBF 1.594 11.001 12.595 4.254 22.999 27.253 11.180 17.009
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Visual evaluation of spectral and spatial distortions: For most algorithms, the spec-
tral distortions of results using the proposed stepwise strategies are better than those of the
HP strategy. However, the (HM)P and H(MP) strategies and the HP strategy have different
performances in terms of spatial fidelity. The spectral and spatial fidelities of the results us-
ing (HM)P and H(MP) strategies are visually similar. Using the three strategies, the results
of the CNMF algorithm are significantly different, indicating that the algorithm is more
sensitive to strategies. From the perspective of spatial distortion, BDSD_PC, MF, and CNMF
performed well, followed by MTF_GLP, and PRACS and PWMBF performed poorly.

Quantitative evaluation of spatial distortions: The (HM)P and H(MP) strategies did
not always outperform the HP strategy in terms of spatial fidelity. As shown in Table 9,
the stepwise approaches outperformed HP when using PRACS, CNMF and PWMBF algo-
rithms. However, using the other three algorithms, they provide comparable performances
compared to the HP strategy. The two stepwise strategies performed similarly in terms of
spatial fidelity, from our visual comparison and quantitative metrics in Table 9. It can be
seen from the last column of Table 9 that the spatial fidelity of results using BDSD_PC and
MF are the best, followed by CNMF and MTF_GLP, and PRACS and PWMBF are the worst.

Computational efficiency: Under MTF_GLP, CNMF and PWMBF algorithms, the
computational efficiency of strategy HP is better than that of strategies (HM)P and H(MP),
and it is opposite for the other three algorithms. Particularly, when using BDSD_PC and
PRACS algorithms, the fusion of a single-band image and a 77-band image in HP and the
second step of (HM)P consumes too much time, which results in much higher efficiency of
H(MP) than (HM)P and HP. This illustrates that the complexity of CS-based algorithms may
increase as the number of bands to be fused increases. The efficiency of strategy H(MP) is
generally better than that of strategy (HM)P, except for the CNMF and PWMBF algorithms.
It can be seen from the last column of Table 8 that the computational efficiency from high
to low is PWMBF, MF, BDSD_PC, MTF_GLP, CNMF, and PRACS.

Summary: The spectral fidelity of strategies (HM)P and H(MP) is better than strategy
HP, and the spatial fidelity of (HM)P and H(MP) is not always better than HP, in some cases
slightly worse than strategy HP. The spectral and spatial information of (HM)P and H(MP)
are similar. From the algorithm point of view, the spectral fidelity of the CNMF algorithm
is very poor, and the other five algorithms are similar. The spatial fidelity is ranked from
good to bad is BDSD_PC, MF, CNMF, MTF_GLP, PRACS, PWMBF. The computational
efficiency of HP and the stepwise strategies is comparable, and strategy H(MP) is better
than strategy (HM)P. From the perspective of the algorithm, the computational efficiency is
sorted from high to low: PWMBF, MF, BDSD_PC, MTF_GLP, CNMF, PRACS.

4.3. Performances over Vegetation Areas

The fused images of simulated and real data all contain multiple types of features.
Therefore, the evaluation that has been performed above in Section 4.2 is for all features. To
evaluate the performances over vegetation areas, several sub-images were clipped from
the fused images, then the performances were evaluated. Since we mainly focus on the
spectral details over vegetation areas, we conducted visual and quantitative evaluations on
spectral distortion, and conducted only visual evaluations on spatial distortion.

4.3.1. Performances Using Simulated Images

Figure 7 shows the vegetation area of fused image using simulated images. Tables 11–13
show the results of quantitative metrics over vegetation areas in Figure 7. From the visual
inspection, (HM)P and H(MP) outperformed the HP strategy in restoring spectral infor-
mation under the various algorithms. The similar result is also demonstrated with the
quantitative assessment in Tables 11–13.
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Table 11. SAM index of vegetation areas fusion results using simulated GF5 and GF1 images. A
smaller value indicates better performance.

Algorithm (HM)P H(MP) HP Mean

BDSD_PC 2.360 2.403 1.956 2.240
PRACS 1.476 1.414 1.690 1.527

MTF_GLP 1.145 1.151 1.478 1.258
MF 1.315 1.195 1.409 1.306

CNMF 1.379 1.410 1.653 1.481
PWMBF 1.318 1.343 1.504 1.388

Table 12. ERGAS index of vegetation areas fusion results using simulated GF5 and GF1 images. A
smaller value indicates better performance.

Algorithm (HM)P H(MP) HP Mean

BDSD_PC 1.378 1.339 1.376 1.364
PRACS 0.785 0.772 0.856 0.804

MTF_GLP 0.652 0.658 0.795 0.701
MF 0.772 0.693 0.786 0.750

CNMF 0.820 0.802 0.941 0.854
PWMBF 0.755 0.749 0.818 0.774

Table 13. PSNR index of vegetation areas fusion results using simulated GF5 and GF1 images. A
larger value indicates better performance.

Algorithm (HM)P H(MP) HP Mean

BDSD_PC 51.743 51.909 51.828 51.827
PRACS 62.255 62.590 60.795 61.880

MTF_GLP 66.265 66.019 62.563 64.949
MF 62.780 64.844 62.712 63.445

CNMF 61.298 61.680 58.714 60.564
PWMBF 63.791 64.162 62.103 63.352
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For the different fusion algorithms except for CNMF, the derived fusion results have
no significant difference in terms of spectral distortion by using the (HM)P and H(MP)
strategies. The spectral distortions of fused results using PRACS, MTF_GLP, MF and
PWMBF algorithms are visually similar. From quantitative assessment, the BDSD_PC
algorithm lacks precision according to the SAM, ERGAS and PSNR metrics. For the CNMF
algorithm, the fused image suffered from serious spectral distortion with different fusion
strategies (Figure 7e,k,q).

For vegetation areas, we are usually concerned with the spectral information restora-
tion in image fusion. From the perspective of spatial information, the fused images in
Figure 7 also demonstrate that the BDSD_PC, MF and CNMF algorithms achieved a vivid
visual effect, while the PRACS and PWMBF algorithms obtained blurry results.

4.3.2. Performances Using Real Images

Figure 8 shows the vegetation area of real GF5 and GF1 images fusion, and the visual
evaluation of the spectral information was performed.

According to visual inspection, the PRACS and PWMBF algorithms achieved similar
performance by using different strategies. From the results derived from other algorithms,
the (HM)P and H(MP) strategies outperformed the HP strategy in image fusion. The CNMF
algorithm suffers from serious spectral distortion using strategy H(MP) (Figure 8k), and
beyond that, the (HM)P and H(MP) strategies have similar performance in terms of spectral
fidelity. The results of the three strategies under the CNMF algorithm have obvious spectral
distortions, and the spectral information of the results using the other five algorithms
are similar.
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Visually, we can find that in the vegetation area, the spatial information of the algo-
rithms BDSD_PC, MTF_GLP, MF, CNMF is better than PRACS and PWMBF.
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4.3.3. Summary of Performance on Vegetation

Summary: On vegetation areas, the spectral information of strategies (HM)P and
H(MP) is generally better than that of strategy HP, and (HM)P and H(MP) are similar. From
the algorithm point of view, BDSD_PC and CNMF have severe spectral distortion, and the
other four algorithms perform similarly.

Suggestions for selecting fusion strategies and algorithms: Generally, from the ex-
periments based on simulated data and real data, the strategies (HM)P and H(MP) are the
better choices. For the regions where the spectral information restoration is most important,
e.g., vegetation regions, the MF, MTF_GLP, PRACS and PWMBF algorithms achieved
better image fusion results; from the visual evaluation, only the MF, MTF_GLP algorithms
achieved high performance in spatial detail restoration.

4.4. Performances over Built-Up Areas

To evaluate the performances over built-up areas, several sub-images were clipped
from the fused images, then the performances were evaluated. Since we mainly focused on
the spatial details over built-up areas, we conducted visual and quantitative evaluations on
spatial distortion, and conducted only visual evaluations on spectral distortion.

4.4.1. Performances Using Simulated Images

Figure 9 presents fused images of a built-up area using simulated images. The quan-
titative SCC metrics are presented in Table 14. For most algorithms, the results obtained
using (HM)P and H(MP) strategies are better than HP in terms of spatial fidelity. Observing
the quantitative metrics, the HP strategy slightly outperformed (HM)P and H(MP) using
MF and CNMF algorithms.
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Table 14. SCC index of built-up area fusion results using simulated GF5 and GF1 images. A larger
value indicates better performance.

Algorithm (HM)P H(MP) HP Mean

BDSD_PC 0.941 0.943 0.850 0.911
PRACS 0.865 0.865 0.843 0.858

MTF_GLP 0.891 0.887 0.850 0.876
MF 0.985 0.986 0.989 0.987

CNMF 0.985 0.982 0.988 0.985
PWMBF 0.929 0.933 0.881 0.914

For all algorithms, there exists no significant differences using strategy (HM)P and
H(MP), from both quantitative metrics and visual comparisons. Comparing the images and
quantitative metrics, we can find MF and CNMF performed better than other algorithms,
and the PRACS algorithm performed the worst.

4.4.2. Performance Using Real Images

Figure 10 presents the selected built-up areas from the fused real GF5 and GF1 images.
Table 15 presents the quantitative metrics over the presented built-up area.

It can be seen from Figure 10 that for these algorithms, there is no significant difference
in spatial distortion using the three strategies. However, it can be seen from Table 15 that
when using BDSD_PC, MTF_GLP and MF, strategy HP performed better. When using
PRACS, CNMF and PWMBF, strategies (HM)P and H(MP) performed better. The SCC val-
ues of Strategies (HM)P and H(MP) are close. Comparing the image fusion algorithms, MF,
BDSD_PC and CNMF performed well in preserving spatial details. MTF_GLP produced
acceptable results, while PRACS and PWMBF performed poorly.
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Table 15. SCC index of built-up areas fusion results using real GF5 and GF1 images. A larger value
indicates better performance.

Algorithm (HM)P H(MP) HP Mean

BDSD_PC 0.981 0.981 0.994 0.986
PRACS 0.706 0.690 0.597 0.664

MTF_GLP 0.880 0.867 0.917 0.888
MF 0.987 0.985 0.996 0.989

CNMF 0.995 0.980 0.923 0.966
PWMBF 0.609 0.628 0.590 0.609

Although we pay more attention to the spatial details of the fused images, we can still
easily see that CNMF and PWMBF resulted in more spectral distortion.

4.4.3. Summary of Performances over Built-Up Areas

Combining the evaluation results of the two built-up areas, the spatial information
of strategies (HM)P and H(MP) is generally better than that of strategy HP, and strategies
(HM)P and H(MP) are similar. From the algorithm point of view, the spatial information of
MF, CNMF and BDSD_PC is better, followed by the poor spatial information of MTF_GLP,
PWMBF, and PRACS.

Suggestions for selecting fusion strategies and algorithms: Comparing the perfor-
mances over built-up areas in both simulated and real images, we suggest spending more
time on selecting a better fusion algorithm, rather than selecting the strategy. MF, CNMF,
and BDSD_PC achieved better image fusion results in terms of spatial fidelity. From the
visual evaluation, only the MF algorithms achieved high performance in spectral details
restoration.

5. Discussion
5.1. Comparison of Strategies (HM)P, H(MP) and HP

Spectral fidelity: Generally, the spectral fidelity performance using the proposed
strategies (HM)P and H(MP) was better than that of strategy HP. This is because MSI acted
as a bridge, which enabled better integration of spectral information. It also illustrated the
effectiveness of the stepwise and spectral grouping approach.

Spatial fidelity: From the perspective of spatial fidelity, the stepwise approach was
not always better than the traditional strategy. In some cases, it was even slightly worse
than the traditional HP approach. Nevertheless, combining all the experimental results, we
still found that the stepwise strategies were significantly better than the traditional one.

Computational efficiency: In most circumstances, the efficiency of strategy HP was
better than that of strategies (HM)P and H(MP), but there was not much difference, which
may be due to the fact that (HM)P and H(MP) fuse one more image than HP. However,
when using CS-based algorithms, we founnd that H(MP) was more efficient than HP and
(HM)P, indicating that the stepwise fusion strategy may reduce the time complexity of the
CS-based methods. In most cases, the efficiency of strategy H(MP) was better than that of
strategy (HM)P.

Summary: Considering the spectral and spatial fidelity comprehensively, we found
that the stepwise approaches are better than traditional one. Moreover, the stepwise
fusion approach did not significantly increase the time complexity compared to traditional
methods, and strategy H(MP) reduced the time complexity compared to HP when using
CS-based algorithms (BDSD_PC and PRACS). We also found from the experimental results
that the two stepwise approaches always produce comparable results for most algorithms
and images. Therefore, we suggest fusing HSI, MSI and PAN images using stepwise and
spectral grouping strategies to obtain better results.
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5.2. Comparison of Fusion Algorithms Using Stepwise and Spectral Grouping Strategy

In order to compare different algorithms more concisely, we qualitatively classified
the performances into three levels: Good (G), Acceptable (A) and Poor (P). In this section,
the performances presented in Section 4 are collected and quantified into G, A or P. As we
discussed in Section 5.1, the proposed stepwise strategies outperformed the traditional HP
strategy in spectral and spatial fidelity, therefore, the HP strategy is ignored in this section.
Because the strategies (HM)P and H(MP) have comparable performance, we only count
the performance of (HM)P and H(MP) once. The performances of different algorithms’
spectral and spatial fidelity over different images and scenes were quantified and presented
in Table 16. Besides, to evaluate the overall performances of different algorithms, the worst
scores over different scenes and images were used, as presented in the last row of the table.

Spectral and spatial fidelity: It can be seen from Table 16, that the MF algorithm had
good performance in terms of spectral and spatial fidelity for different images and scenes.
The MTF_GLP algorithms performed slightly worse than MF for some areas and images.
However, the worst scores of MTF_GLP methods were As, therefore, their final scores
were A. The other four algorithms had some obvious defects in spectral or spatial fidelity,
making them obtain poor scores, and finally resulting in the scores of P.

Computational efficiency: As can be seen from Section 4.2, from an algorithmic point
of view, the computational efficiency of simulated data fusion is ranked as PWMBF > MF >
MTF_GLP > BDSD_PC > CNMF > PRACS, and the computational efficiency of real data
fusion is ranked as PWMBF > MF > BDSD_PC > MTF_GLP > CNMF > PRACS, so the
calculation efficiency of the six algorithms can also be divided into three levels in the
Table 17. As is showed in Table 17, in terms of computational efficiency of the algorithms,
MF and PWMBF are good, BDSD_PC and MTF_GLP are acceptable, and PRACS and
CNMF are poor. From the perspective of the types of fusion algorithms, the CS-based
algorithms have the lowest computational efficiency in general, while the MRA-based and
subspace-based algorithms have better and equivalent computational efficiency.

Table 16. Quantified performances of different algorithms’ spectral and spatial fidelity (G: good,
A: acceptable, P: poor).

Scenes Images Figure/Table BDSD_PC PRACS MTF_GLP MF CNMF PWMBF

Full Image
(Spectral/Spatial)

Simulated Figure 5/Tables 4–7 P/A G/P G/A G/G G/G G/A

Real Figure 6/Table 9 G/G G/P G/A G/G A/G G/P

Vegetation Area
(Spectral)

Simulated Figure 7/Tables 11–13 P G G G P G

Real Figure 8 G G G G P G

Built-up Area
(Spatial)

Simulated Figure 9/Table 14 A P A G G A

Real Figure 10/Table 15 G P A G G P

Overall Score P P A G P P

Table 17. Quantified performances of computational efficiency (G: good, A: acceptable, P: poor).

Scenes Image Figure/Table BDSD_PC PRACS MTF_GLP MF CNMF PWMBF

Full Image
(time complexity)

Simulated Figure 5
Table 8 A P A G P G

Real Figure 6
Table 10 A P A G P G

Overall Score A P A G P G

It should be noted that the comparison of the algorithms is different from some other
studies. We aim to evaluate the performances of these algorithms in fusing HSI, MSI and
PAN images, while other comparative analyses are generally focused on their performances
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fusing two images [11,36]. Performance in fusing images with contrasting spectral-spatial
resolutions has rarely been considered in previous studies [26].

Generally, by comparing the spectral fidelity, spatial fidelity and computational effi-
ciency of the algorithms, we recommend the MF algorithm to fuse HSI, MSI and PAN image
using a stepwise and spectral grouping strategy. In some cases, the MTF_GLP algorithms
is potential candidate.

5.3. Issues to Be Further Investigated

The approach in this study has some aspects to further investigated:
(1) According to the spectral correspondence, there are only 77 bands where the spectra

of GF-5 HSI and GF-1 MSI overlap. To improve the spatial resolution of HSI channels that
cannot be covered by the MSI spectrum, the ratio image-based spectral resampling
(RIBSR) [15] might be a solution.

(2) The stepwise fusion approach is prone to generate error accumulation, including
spatial distortions and spectral errors. For spatial errors, it is necessary to perform high-
precision registration of multi-source images during data preprocessing. As for spectral
distortions, the quantitative evaluation indices between the fused image and the original
HSI can be calculated after stepwise fusion to quantify the spectral distortions, and the
error compensation mechanism can be used to eliminate the error [27].

(3) This study is instructive for sensor design, specifically, the design of an imaging
system that integrates panchromatic, multispectral and hyperspectral sensors. However,
when the spatial resolution of hyperspectral images and panchromatic images is deter-
mined, the optimal spatial resolutions of the MSI that can maximize the quality of fused
images is still an issue that needs to be investigated in the future.

6. Conclusions

In this study, we have demonstrated the effectiveness of fusing HSI, MSI and PAN
images using a stepwise and spectral grouping strategy. Two stepwise strategies were
compared with a traditional one-step fusion strategy, and six state-of-the-art image fusion
algorithms were adopted and compared. From this study, we can draw the following
conclusions:

(1) Image fusion performances of different strategies: Compared with the traditional
fusion strategy HP, the results of the stepwise fusion strategy (HM)P and H(MP) have
better spectral fidelity. However, from the perspective of spatial fidelity, the strategies
(HM)P and H(MP) do not always outperform the strategy HP. Nevertheless, considering
all the experimental results, we still found that the stepwise strategies were better than the
traditional one, while the spectral and spatial fidelity of the stepwise strategies (HM)P and
H(MP) were comparable.

(2) Image fusion performances of different algorithms: Six algorithms are evaluated
with the stepwise fusion strategy. The spectral and spatial fidelity of the results of the
MF algorithm was the best, followed by MTF-GLP. Although the results of BDSD_PC and
CNMF had good spatial fidelity, the spectral fidelity was poor, whilst PRACS and PWMBF
had better spectral fidelity and poor spatial retention.

(3) Computational efficiency of the fusion strategies: The stepwise strategy does not
significantly increase the computational load when it fuses one more image than HP, and
stepwise strategy H(MP) reduces the time complexity compared with HP when using
CS-based algorithms. Under most algorithms, strategy H(MP) is more computationally
efficient than strategy (HM)P.

(4) Computational efficiency of the fusion algorithms: From the algorithm point of
view, PWMBF and MF have the highest computational efficiency, followed by MTF_GLP,
BDSD_PC, and the worst is CNMF, PRACS. From the perspective of the types of fusion
algorithms, the CS-based algorithms have the lowest computational efficiency in general,
while the MRA and subspace-based algorithms have better and equivalent computational
efficiency.
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The stepwise approach is proposed from a macro perspective, so that it is not limited
to specific fusion algorithms. Moreover, we have tested and compared six well-known
algorithms. The results provide us with a reference for selecting an image fusion algorithm.
This study has also inspired some new ideas for designing new sensor systems, such as new
satellite or drone platforms carrying sensors with different spatial and spectral resolutions.
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