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Abstract: The utility of unmanned aerial vehicles (UAV) imagery in retrieving phenotypic data
to support plant breeding research has been a topic of increasing interest in recent years. The
advantages of image-based phenotyping are related to the high spatial and temporal resolution
of the retrieved data and the non-destructive and rapid method of data acquisition. This study
trains parametric and nonparametric regression models to retrieve leaf area index (LAI), fraction
of absorbed photosynthetically active radiation (fAPAR), fractional vegetation cover (fCover), leaf
chlorophyll content (LCC), canopy chlorophyll content (CCC), and grain yield (GY) of winter durum
wheat breeding experiment from four-bands UAV images. A ground dataset, collected during two
field campaigns and complemented with data from a previous study, is used for model development.
The dataset is split at random into two parts, one for training and one for testing the models. The
tested parametric models use the vegetation index formula and parametric functions. The tested
nonparametric models are partial least square regression (PLSR), random forest regression (RFR),
support vector regression (SVR), kernel ridge regression (KRR), and Gaussian processes regression
(GPR). The retrieved biophysical variables along with traditional phenotypic traits (plant height, yield,
and tillering) are analysed for detection of genetic diversity, proximity, and similarity in the studied
genotypes. Analysis of variance (ANOVA), Duncan’s multiple range test, correlation analysis, and
principal component analysis (PCA) are performed with the phenotypic traits. The parametric and
nonparametric models show close results for GY retrieval, with parametric models indicating slightly
higher accuracy (R2 = 0.49; MRSE = 0.58 kg/plot; rRMSE = 6.1%). However, the nonparametric
model, GPR, computes per pixel uncertainty estimation, making it more appealing for operational
use. Furthermore, our results demonstrate that grain filling was better than flowering phenological
stage to predict GY. The nonparametric models show better results for biophysical variables retrieval,
with GPR presenting the highest prediction performance. Nonetheless, robust models are found
only for LAI (R2 = 0.48; MRSE = 0.64; rRMSE = 13.5%) and LCC (R2 = 0.49; MRSE = 31.57 mg m−2;
rRMSE = 6.4%) and therefore these are the only remotely sensed phenotypic traits included in the
statistical analysis for preliminary assessment of wheat productivity. The results from ANOVA and
PCA illustrate that the retrieved remotely sensed phenotypic traits are a valuable addition to the
traditional phenotypic traits for plant breeding studies. We believe that these preliminary results
could speed up crop improvement programs; however, stronger interdisciplinary research is still
needed, as well as uncertainty estimation of the remotely sensed phenotypic traits.

Keywords: biophysical variables retrieval; machine learning; multispectral imagery; phenotyping;
remotely sensed phenotypic traits; unmanned aerial vehicles; winter durum wheat; yield assessment
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1. Introduction

Yield is a major quantitative trait formed in a complex manner by all other traits
related to productivity. It is a leading feature in breeding programs and its improvement is
a major task that requires high-throughput phenotyping platforms. From the point of view
of plant breeding, yield per unit area is of considerable importance [1,2] and the primary
goal is to expand genetic diversity and develop new cultivars that perform better than those
grown in the target population of environments. Traditionally, breeders search for genetic
variation among winter durum wheat (Triticum turgidum L. var. durum) parents to derive
superior progeny from crossing and selection [2]. To meet this goal, high-throughput field-
phenotyping tools are needed [3]. Field phenotyping in plant breeding measures small
plots with limited resources available and time required for the measurements, considering
the quality of the acquired data and data analysis. Even if field-based high-throughput
phenotyping platforms remain a barrier for future breeding advances [4–6], the existing
relatively low-cost sensors and unmanned aerial vehicles (UAVs) provide possibilities for
producing extensive amounts of georeferenced data. Whilst challenging to manage, such
large datasets also offer opportunities for applying new modelling techniques, such as
machine learning [7] and increasing selection intensity, improving selection accuracy, and
improving the decision support system.

In recent years, a multitude of studies [4,8–10] have reviewed the platforms, sensors,
and applications for remote sensing technologies for field crop phenotyping. Today’s
consensus [11,12] is that UAVs can provide the spatial and temporal resolution needed
for high-throughput phenotyping of crops, thus addressing a current bottleneck in the
selection of superior genotypes in breeding and variety development programs. Plant
phenotypic traits are determined by genetic and environmental factors and the interaction
between them. The most studied [8] phenotypic traits in breeding programs are yield,
biomass, height, leaf area index (LAI), chlorophyll, nitrogen, and diseases. Phenotypic
traits are measured directly or retrieved using RGB, multispectral, hyperspectral, thermal,
and LiDAR sensors. However, the price for those different sensors is not the same and
the effort it takes to analyse the data is also very different. Still under development are
data-processing algorithms or tools [4] to convert the remotely sensed data into useful
phenotyping data for variety selection and plant growth in general.

Most wheat breeding programs rely on vegetation indices (VI) for the estimation of
grain yield and phenotypic traits. Different sensors mounted on UAV platforms have
been operated in the last ten years to collect remote sensing data in field-scale wheat trials.
Studies focused on assessing disease severity [13], the genotypic performance of durum
wheat under a wide range of growing conditions at four different phenological stages with
RGB, multispectral, hyperspectral, and thermal UAV sensors [14], and retrieving plant
height [15] from RGB UAV 3D digital surface models of crop field trials produced via
structure from motion (SfM) that shows growth rate. Many studies rely on VI to detect
with success senescence’s dynamic in bread wheat with normalised difference red-edge
index (NDREI) [16] in order to predict grain yield with NDVI [17] or GNDVI recorded at
early reproductive stages [18] or with hyperspectral VI (R810/R560) combined with plant
height and retrieved with linear nonparametric model (PLSR) [19].

Maize is another crop that is widely studied in plant phenotyping. Different studies
estimated maize yield from VI obtained from RGB camera, mounted on a UAV [20]; biomass,
with RGB camera, mounted on a UAV and neural networks [21]; plant-height growth and
canopy spectral dynamics [22], LAI with the coupled PROSPECT and SAIL radiative
transfer models (PROSAIL) [23]. Disease in maize was studied with disease-resistant
classification, with UAV VI [24], or with computer vision modelling based on neural
network and UAV data [25].

Studies on other crops, like barley, have found that UAV VIs can significantly separate
best and least performing genotypes [26] or that nitrogen use efficiency [27] can be assessed
with RGB and multispectral UAV VIs and thermal data. In sugar beet, LAI, leaf, and canopy
chlorophyll contents are retrieved with VIs and PROSAIL inversion approaches [28]. The
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study concluded that, providing that enough samples are included in the calibration set, VIs
provide slightly more accurate performances than PROSAIL inversion. Computer vision
models based on neural network and UAV data are successfully developed for panicle
detection in rice phenotyping experiments [29].

Instead of directly using the spectral bands to train nonparametric regression models,
an interesting approach is using VIs as input for nonparametric regression [30–32]. In
this case, the features are either retrieved by applying VIs and then the output of the best
performing parametric models is fed as an input to the nonparametric models, or just by
choosing one index, for example, NDVI. This method is applied to retrieving soybean yield
from UAV multispectral sensors, RGB, multispectral and thermal [30], UAV hyperspectral
sensor [32], and wheat yield from satellite NDVI [31] with high accuracy.

Biophysical variables and crop yield are traits of great interest to breeders since they
are directly related to crop productivity. They are often used as crop phenotypic traits
under field conditions [6]. Leaf area index, fraction of absorbed photosynthetically active
radiation (fAPAR), and fractional vegetation cover (fCover) have been recognised as essen-
tial variables by the Group on Earth Observations Global Agricultural Monitoring Initiative
(GEOGLAM) for the study of agriculture [33]. Chlorophyll, measured as leaf chlorophyll
content (LCC) and canopy chlorophyll content (CCC), is an important photosynthetic
pigment to the plant, largely determining photosynthetic capacity and hence plant growth.

When quantifying biophysical variables from remote sensing data, the retrieval meth-
ods are classified into four categories [34]: parametric, nonparametric, hybrid regression
methods, and physically based methods. Parametric and nonparametric methods also
apply to yield retrieval.

VIs and parametric functions are fitted to the biophysical variable or yield. Assuming
empirical relationships between VIs and crop characteristics, regression has been devel-
oped for yield estimation in wheat [35] or biophysical variables retrieval [36]. Although
vegetation indices are widely used, they depend only on a few available spectral bands
and the full spectrum of information in the available data is not exploited. Furthermore,
the VIs are created and tested with preselected bands, which makes them difficult to apply
to different remote sensing data. Therefore, instead of using the published VIs, formulas
of spectral bands are defined. The formulas with all available spectral bands are tested.
The parametric model is constructed by fitting the parametric function to the result of the
formula [37].

The nonparametric methods could be classified into linear and nonlinear [34,38].
Moreover, the nonlinear nonparametric methods are grouped into three families: kernel-
based machine learning regression, neural networks, and decision tree. Many machine
learning methods for yield estimation have been tested in precision agriculture [39].

Each method has its advantages and disadvantages; however, the most adopted
method for crop phenotyping by UAV remote sensing is mainly the empirical statistical
model [40]. The freely available toolbox, ARTMO [41], allows for a quick and easy construc-
tion of parametric and nonparametric regression models with any spectral bands. Even
though the nonparametric regression algorithms are more flexible and construct the models
with all available information (all remote sensing bands) and could better fit the data,
the parametric regression algorithm has the major advantage of being easily understood
and applied.

In the present research, our aim is: (1) to retrieve five biophysical variables of winter
durum wheat, LAI, fAPAR, fCover, LCC, and CCC, with UAV multispectral data and
parametric and nonparametric regression models. The biophysical variables retrieved
with robust models are considered as remotely sensed phenotypic traits; (2) to statistically
analyse the remotely sensed traits, in complement to traditional phenotypic traits that
breeders collect, to detect genetic distance in the studied winter durum wheat genotypes.
This analysis is conducted to evaluate the usefulness of the remotely sensed phenotypic
traits in the breeding process as sources of information for the formation of new and
highly productive wheat varieties; (3) to estimate grain yield of winter durum wheat
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with UAV multispectral data and parametric and nonparametric regression models at
different phenophases.

2. Materials and Methods
2.1. Site (Field) and Experimental Design of the Study

The study took place in the 2020/2021 growing season on the territory of the breeding
fields of the Field Crops Institute, Chirpan (FCI-Chirpan), Bulgaria (Figure 1). The geno-
types were of winter durum wheat (Triticum turgidum L. var. durum) and were grown
on flat terrain. The altitude varies between 208–209 m a.s.l. and the soil is classified
as Pellic Vertisol, according to the World Reference Base for Soil Resources classification
system [42]. The climate in the region is temperate continental, with a poorly expressed
Mediterranean influence. Therefore, the conditions of the natural environment favour the
growth of winter durum wheat. Meteorological conditions during the year of the study
were characterised by higher temperatures than the multiannual norm (12.7% over the
average). The harvest year was favourable in terms of soil moisture and rainfall higher than
the average (8.5% over the average) and was suitable for obtaining a high yield (Table 1).

Figure 1. Study area. (A)—Location of FCI-Chirpan in Bulgaria. (B)—Location of the breeding
experimental field. (C)—Orthophoto map of the breeding experimental field divided into 208 plots
and two competitive variety trials (CVTs); each CVT has 26 genotypes with 4 replicates.
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Table 1. Meteorological characteristics during the vegetation of durum wheat in FCI-Chirpan for the
2021 harvest and the average meteorological date for the multiannual period. The data are from the
FCI-Chirpan weather station situated less than 500 m from the test site.

Months Average Daily Air
Temperature, ◦C

Monthly Amount of
Precipitation, mm

2020–2021 г. 1928–2021 г. 2020–2021 г. 1928–2021 г.
October 15.2 12.7 67.3 38.6

November 6.6 7 7.4 47.3
December 5.8 1.4 70.4 54.0

January 3.2 −0.2 108.6 44.3
February 4.5 1.7 25.8 37.7

March 5.2 5.7 39.1 37.0
April 10.3 11.8 84.0 45.2
May 16.9 16.9 34.9 64.1
June 20.6 20.7 42.8 65.4
July 25.6 23.2 49.0 54.1
Sum 113.9 100.9 529.3 487.7

Percentage of the sum
for multiyears period 12.7 100 8.5 100

Fifty genotypes of durum wheat varieties and breeding lines grown in rainfed field
conditions were distributed in two competitive variety trials (CVTs), CVT 1 and CVT 2,
each of them comprising 26 genotypes. In CVT 1, 18 old and modern Bulgarian varieties
and 8 newly developed breeding lines were grown and in CVT 2, there were 24 newly
developed breeding lines. The varieties Predela and Mirela were sown in each trial as a
standard (Table A1). The CVTs were conducted to evaluate grain yield (GY), yield-related
traits, disease resistance, and grain quality in new durum wheat varieties and advanced
breeding lines, created in FCI-Chirpan. The experiment was repeated over a minimum
of three years. This organisation of the field experiment and statistical processing of data
allow distinguishing the variation due to non-genetic factors, including field heterogeneity
associated with soil differences, and reduce the error of the experiment.

The trials were organised by complete block design in four replications (Figure 1).
Genotypes were sown on 05.11.2020 (CVT 1) and 06.11.2020 (CVT 2) on plots with an area
of 13.2 m2 (12 × 1.10 m). The distance between the genotypes was 0.5 m and between the
replications 2 m. Each genotype was sown with 550 germinated seeds per m2. The standard
technology for growing durum wheat breeding materials in FCI–Chirpan was applied.
The predecessor was winter peas. One-time nitrogen (N) fertilisation with fertiliser rate of
100 kg/ha of active substance nitrogen in February 2021 was applied. In addition, 92 kg/ha
active substance P2O5 was applied before the sowing of durum wheat. Fertilization with N
and P was carried out each year in the experimental field, based on the results of long-term
fertilisation experiments in the FCI–Chirpan, and including the results of appropriate
agrochemical analyses for the content of essential macro elements in soil and plants [43].
The long-term results show that the highest agronomic efficiency of nitrogen for grain and
grain protein was obtained at a moderate rate of N. The agronomic efficiency of nitrogen
for grain protein shifted slightly and decreased with the increase of the fertilising rate over
N120 [43]. The experiment was treated against weeds with an herbicide combination of
Sekator OD and Puma Super 7.5 EB. No pesticides for disease or pest control were utilised
to be able to select resistant genotypes and no pathogens and pests in density above the
economic threshold (ET) value were observed in the durum wheat vegetation. Brown
rust, yellow rust, and leaf spot pathogens caused by fungal septoria (STB) pathogens were
observed in the experiments at very low density during May and in relatively low density
during June.
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2.2. Data Acquisition

The most important observations and largest number of data collection in wheat
breeding programs are usually conducted and collected during the principal development
stages, flowering (BBCH5) and grain filling (BBCH7). Those stages under our climatic
conditions occur in May and June. In this study, data from two sources have been combined,
ground-measured data and data from UAV. They were obtained during the two field
campaigns conducted May–June 2021 (Table A2). The field campaigns were conducted in
this period because the durum wheat was in the flowering and grain filling phenological
development stage, which is appropriate for forecasting the potential crop grain yield. The
ground-measured data, LAI, fAPAR, fCOVER, and LCC, were collected from the trials of
the first and second replication.

UAV images of the two CTVs were gained during the collection of ground-measured
data. GPS data for accurate georeferencing of the UAV multispectral images were acquired
as well.

2.2.1. Phenological Development Stages and Traditional Phenotypic Traits

During the field campaigns, traditional phenotypic data and ground measurements
were collected (Table A2). These were as follows: phenological development stage, regis-
tered using BBCH identification keys [44,45]; plant height (cm), measured from the ground
surface to the end of the spike without the awns on the main stem; number of produc-
tive tillers (tillering), measured at full maturity phenophase of the plants and just before
the harvest. The data were collected from the middle of each plot, characterising the
studied genotypes.

2.2.2. Grain Yield (GY)

The GY (kg/plot) was collected at the agricultural full maturity phenophase of the
plants by mechanical harvesting with a classic plot combine separately for each plot on
14 July 2021 (CVT 1) and 15 July 2021 (CVT 2). The GY of a plot is obtained after weighing,
with an electronic scale, the harvested grain from a plot. The GY averaged from the four
replications of each genotype are described in Table A1.

2.2.3. Biophysical Variables Measured by Non-Invasive Methods

The crop’s biophysical variables, LAI, fAPAR, fCover, were measured with the in-
strument AccuPAR PAR/LAI Ceptometer, L.P.-80, during the two field campaigns. The
parameter χ (angular leaf distribution) in the instrument was set at 0.96, which is the
default value for wheat. An external sensor, assembled on a tripod and levelled, was
used to record the incident radiation over the vegetation. This helps to minimise errors
in cases where solar light changed quickly due to variable cloudiness. A series of above-
and below-canopy measurements was used by the instrument to derive two parameters: t,
which is the share of incoming radiation, let through the vegetation, and r, which is the
share of incoming radiation, reflected by the vegetation (and soil) and reaching the sensor
located above the vegetation. To derive t, a total of 10 measurements per plot (replication)
were made and averaged, providing more representative vegetation canopy information.
The fAPAR, LAI, and fCover were derived from the measured t and r, either automatically
by the instrument (with LAI) or by subsequent calculations in a spreadsheet (in the case of
fAPAR and fCover) (Table 2).

Leaf chlorophyll content (LCC) was measured with the instrument CCM-300 (OPTI-
SCIENCES). In the middle of the plot, four representative plants for the plot were chosen.
From each plant, a measurement was made in the middle of the flag leaf blade. The four
measurements per plot were averaged (Table 2). Canopy chlorophyll content (CCC) was
calculated by Formula (1).

CCC = LCC × LAI (1)
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Table 2. Descriptive statistics for the ground-measured biophysical variables of winter durum wheat
during the two field campaigns.

Biophysical
Variables

Field
Campaign

Number of
Measurements Min. Value Max. Value Mean Std. Dev

LAI [m2 m−2]
27–28 May 2021 103 3.71 8.57 5.32 0.72
16–17 June 2021 102 2.89 6.54 4.38 0.95

fAPAR
27–28 May 2021 103 0.79 0.96 0.93 0.03
16–17 June 2021 102 0.81 0.94 0.90 0.02

fCover
27–28 May 2021 103 0.90 0.99 0.96 0.03
16–17 June 2021 102 0.83 0.97 0.93 0.03

LCC [mg m−2]
27–28 May 2021 103 401.50 521.50 462.61 24.76
16–17 June 2021 102 412.50 623.50 516.60 52.60

CCC [g m−2]
27–28 May 2021 103 1.71 3.67 2.46 0.34
16–17 June 2021 102 1.29 3.71 2.29 0.63

2.2.4. UAV Data Collection

To obtain multispectral images, during both field campaigns, flight missions have been
carried out (Table 3) by the specialized unmanned aerial vehicle senseFly eBee Ag. The
system, intended for mapping agricultural areas, includes: (1) a UAV with a fixed wing and
assembled Parrot Sequoia camera with two types of sensors (Table 4), plus a sunshine (light)
sensor (Parrot SA, Paris, France). In this study, the images obtained from the multispectral
sensor (Table 4) were used since the sunshine sensor operated at the same (green, red,
red edge, and NIR) spectral bands, and calibrated values for the object’s brightness were
retrieved; (2) the eMotion 2 software which is used for planning, simulating, and controlling
the flight of eBee Ag, and (3) an automated 3D processing desktop software Pix4D mapper.

Table 3. UAV flight missions’ dates, corresponding phenological development stage of the studied
genotypes of winter durum wheat, and weather condition during the flight.

Flight Mission/ID Flight Date/Time Phenological Development Stage Weather Conditions

Mission 1/M1 27 May 2021/11:32 BBCH 69, BBCH 71 Clear sky
Mission 2/M2 16 June 2021/12:21 BBCH 75, BBCH 77 Cloudy

Table 4. Spectral bands for the Parrot Sequoia UAV camera.

Spectral Band RGB Sensor Multispectral Sensor

Central Wavelength (nm) Bandwidth (nm) Central Wavelength (nm) Bandwidth (nm)

Blue 455 90
Green 525 110 550 40
Red 635 90 660 40

Red-edge 735 10
Near IR 790 40

The two flight missions were carried out while observing identical parameters: average
flight height: 56 m; image-taking area: 3.7 ha; flight duration: 13 min; spatial resolution:
5 cm/pixel; image overlap forward and sideward: 80%; the number of images: 940. The
sunshine sensor is used for automatic adjustment of readings to ambient light, which
enables multitemporal acquisitions to be comparable.

The UAV eBee Ag has an inbuilt GPS, which provides horizontal accuracy of ~5 m. To
achieve higher accuracy during the georeferencing of the UAV images, portable ground
control points (GCPs) were used. The GCPs, white plastic squares sized 0.25 × 0.25 m,
were laid on the four edges of CVT 1 and CVT 2 prior to the first flight mission. These were
left on the ground, to be visible during the second field campaign. Using GNSS equipment
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Leica GS08 plus in RTK mode, the geographic coordinates were measured, achieving an
accuracy of 1–3 cm.

2.2.5. Additional Data from the Zlatia Site

To cover a wider range of variations of the biophysical variables LAI, fAPAR, fCover,
LCC, and CCC [46], additional data have been used (Table 5). They were obtained during
three field campaigns carried out in the 2016/2017 agricultural year on six farmer fields
sown with two varieties, Enola and Anapurna, of winter wheat (Triticum aestivum L.) on
the territory of the Zlatia test site, Municipality of Knezha, Pleven region, Bulgaria [36,47].
These field campaigns were carried out in relation to implementing the TSAgroBG project.
Several elementary sampling units (ESUs) were determined within each field, in which
LAI, fAPAR, fCover, LCC, and CCC measurements were made. The fields were imaged
using a UAV. The research equipment used for measuring biophysical parameters and for
image acquisition was the same as the one used in this study.

Table 5. Descriptive statistics for the biophysical variables of winter wheat crops (BBCH 22 to 26,
BBCH 31 to 33, and BBCH 65 to 69) measured in the Zlatia site during three field campaigns in the
agricultural year 2016/2017, n = 80.

Biophysical Variables Min. Value Max. Value Mean Std. Dev

LAI [m2 m−2] 0.14 7.88 3.52 1.96
fAPAR 0.16 0.95 0.76 0.19
fCover 0.06 0.97 0.72 0.25

LCC [mg m−2] 380.27 543.27 462.34 39.85
CCC [g m−2] 0.06 3.22 1.63 0.88

2.3. Image Processing and Data Extraction

Initially, the multispectral images acquired during both flight missions were georef-
erenced by data from the onboard GPS in the coordinate system UTM zone 35 datum
WGS 1984. Based on these, an orthophoto mosaic was generated for both CVTs. This
study requires very high precision during the georeferencing of the orthophoto mosaic. For
this purpose, additional adjustment of the georeferencing was performed by a first-order
polynomial, using the GCP coordinates.

The subsequent processing of the images was carried out in GIS. This processing
involves: (1) outlining elementary units (EUs): in the middle of each plot, on the orthophoto
mosaic, a vector polygon sized 50 × 50 cm (100 pixels) was outlined. A vector layer was
created whereas, in the attributive table, information about the geographical coordinates
and code of the EUs was registered; (2) deriving data from the spectral band: the created
vector layer was used to derive values for the spectral brightness of each pixel of the image
falling within the boundaries of each EU. The obtained values were averaged for each EU
for each of the four spectral bands. Moreover, it is consistent with ground-truth biophysical
measurements that were performed. These data were used as input to parametric and
nonparametric models.

2.4. Modelling and Statistical Analysis

The modelling process is summarised in Figure 2. The field and remote sensing data
are the input for constructing the parametric and nonparametric models. The best model
for GY retrieval is applied to present a map of GY with very high spatial resolution. The
best models for biophysical variable retrieval serve as high-throughput remotely sensed
phenotypic traits. The selected remotely sensed and traditional traits are analysed for
detection of genetic diversity, proximity, and similarity in the studied genotypes.
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Figure 2. Workflow diagram of phenotypic traits estimation and preliminary yield assessment in
different phenophases of a wheat breeding experiment.

2.4.1. Parametric and Nonparametric Regression Models for GY and Biophysical
Variables Retrieval

We used parametric and nonparametric regression algorithms to retrieve the biophysi-
cal variables and GY from UAV multispectral data. The modelling was carried out with the
ARTMO toolbox [41] (https://artmotoolbox.com/, last accessed 15 February 2022) and is
summarised in Figure 3.

Figure 3. Workflow diagram of the parametric and nonparametric regression modelling.

https://artmotoolbox.com/
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Five widely used machine-learning regression methods (partial least square regression
(PLSR), random forest regression (RFR), support vector regression (SVR), kernel ridge
regression (KRR), and Gaussian processes regression (GPR)) and several generic types of
vegetation indices (Table 6) and parametric functions (Table 7) were tested in this study.

Combination of spectral bands (vegetation indices) is fitted to the studied variables
with parametric functions. A selection of formulas, based on published VI, is provided in
Table 6. The aim is to have a wide selection of formulas, including one, two, three, and
four bands.

The PLSR technique [48] generalises and combines features of principal component
regression (PCR) and multiple linear regression. Here, the aim of PLSR is to build a linear
model. The optimal number of components in PLSR analysis is determined by minimising
the prediction residual error sum of squares (PRESS) statistic. The PRESS statistic is
calculated via cross-validation for each model. RFR [49] is an ensemble method based on
building multiple decision trees by bootstrap sampling. It constructs a collection of decision
trees with controlled variance. SVR [50], KRR [51], and GPR [52] are kernel-based methods.
The kernel function used in our study is the radial basis function (RBF). SVR is based on the
support vector machine (SVM) with insensitive loss as a loss function and ridge regression
regularisation. KRR has an identical model form to SVR, but it uses square error loss as a
loss function. GPR is based on Gaussian processes and because it is a probabilistic model,
it computes uncertainty as prediction intervals of the trained model.

Previous studies have found that including bare soil samples increases the determina-
tion power of the models [12,53]. Therefore, the whole dataset for biophysical variables
retrieval consisted of 307 samples (80 samples from Zlatia test site, 205 samples from
Chirpan, 22 samples of bare soil from Chirpan). The dataset for GY retrieval comprised
219 samples (208 samples from Chirpan, 11 samples of bare soil from Chirpan). Before
applying each method, we first randomly divided the whole dataset into two parts: three-
quarters of the dataset was used for training and one-quarter for tests. The bare soil
samples and those from the Zlatia test site were part of the training dataset. The test
dataset contained only vegetation samples from Chirpan. Next, we determined the best
hyperparameters for each model from empirical candidates based on the cross-validated
coefficient of determination (R2) and root mean square error (RMSE) calculated by applying
the tenfold cross-validation using only the training dataset. We applied the test dataset to
the optimised models and compared the estimated and measured variables, using five met-
rics: R2, RMSE, normalised RMSE (nRMSE), relative RMSE (rRMSE), and Nash–Sutcliffe
efficiency (NSE). The equations for these metrics are described in [54] and are the same
used in the ARTMO toolbox. The goodness-of-fit metrics for the cross-validation were
calculated by ARTMO toolbox and for the test dataset by scipy.stats function in Python.

Table 6. List of the generic types of vegetation indices selected for testing in the study.

Name Formula 1 Scale Related to Reference

R Ra
Canopy LAI [39]
Canopy Chl [55]

SR Ra/Rb
Leaf & Canopy Chl [55]

Canopy CCC, LAI [36]
Canopy GY prediction [30,32]

DVI Ra − Rb Leaf & Canopy Chl [55]

ND (Ra − Rb)/(Ra + Rb)
Canopy GY prediction [30,32]
Canopy fAPAR, fCover [36]

mSR (Ra − Rc)/(Rb − Rc) Leaf Chl [55]

mSR2 (Ra/Rb) − 1
Canopy GY prediction [30]
Canopy Chl [56]

mND (Ra − Rb)/(Ra + Rb − 2Rc)
Leaf Chl [55]

Canopy LAI [39]
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Table 6. Cont.

Name Formula 1 Scale Related to Reference

3SBI-Verrelst (Ra − Rc)/(Rb + Rc) Canopy LAI [41]
3SBI-Tian (Ra − Rb − Rc)/(Ra + Rb + Rc) Canopy LAI [39,57]

3SBI-Wang (Ra − Rb + 2Rc)/(Ra + Rb − 2Rc)
Leaf Chl [58]

Canopy LAI [39]
3BSI-Dash (Ra − Rb)/(Rb − Rc) Canopy Chl [59]

4BSI ((Ra − Rb)/(Ra + Rb))/((Rc − Rd)/(Rc + Rd)) Canopy Above ground dry biomass [36]
1 Ra, Rb, Rc, and Rd represent reflectance at different wavelengths.

Table 7. List of tested parametric functions.

Name Function

linear F(x) = a × x + b
exponential F(x) = a × exp(b × x)
logarithmic F(x) = a + b × log(x)

power F(x) = a × xb

polynomial F(x) = a2 × x2 + a1 × x + a0

Finally, we applied the best-optimised models to retrieve a raster LAI, fAPAR, fCover,
LCC, and CCC for each plot. The biophysical variables were extracted from the raster by
averaging their value per plot and development stage. For this purpose, a vector layer
with the plot boundaries was used. However, to better distinguish each plot from the
adjacent ones and remove boundary effects, an inward buffer of 0.3 m was applied. The
data extracted served as an input for the statistical analysis. LAI05 was the averaged
value thus extracted for LAI at the flowering development stage; LAI06 was similarly
extracted at the grain filling development stage, and so on for the rest of the modelled
traits. Uncertainty estimation of the GPR retrieval algorithm was investigated [38]. The
relative uncertainties generated by GPR models were expressed as a coefficient of variation:
CV = σ/µ × 100% [60].

2.4.2. Statistical Analysis of Phenotypic Variation and Relationship with Yield

The statistical analysis was performed with the software package “Statistica 10” and is
summarised in Figure 4.

From a plant breeding point of view, there are a variety of methods for studying
genetic diversity, genetic proximity, and similarity [61,62]. Recently, multivariate methods
have become increasingly popular [63,64]. To capture the phenotypic variation of the yield
because of genetic diversity, we performed an analysis of variance (one-way ANOVA)
on the retrieved biophysical variables and the agronomical traits according to [65]. After
establishing the significant influence of the genotype factor on the variation of the studied
traits, we proceeded to conduct Duncan’s multiple range test (DMRT) to measure specific
differences between pairs of means.

Correlation analysis determines the strength and direction of the linear relationships
between the studied traits. Principal component analysis (PCA) provides additional graph-
ical information on the presence of correlations between the studied traits. PCA also
provides information on the location of genotypes according to their values on individual
traits for the main components.

The last step of our methodology is the analysis of the descriptive statistics of the
phenotypic traits and particularly the coefficient of variation, which provides information
on the genetic diversity. Lower values of the coefficient of variation are an indicator of low
genetic diversity, and higher values are an indicator of significant genetic diversity.
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Figure 4. Workflow diagram of the statistical analysis for phenotypic variation and relationship
with yield.

3. Results
3.1. Biophysical Variables Retrieval

The best performing nonparametric method for all biophysical variables retrieval was
GPR. The goodness-of-fit metrics for the optimised models and test dataset ranged for R2

from 0.20 to 0.62 and nRMSE from 18.43 to 24.02 (Table 8 and Figure 5). However, among
the retrieved biophysical variables with GPR models, only LAI and LCC demonstrate
average to high agreement with observations when validated to test dataset—R2 = 0.48,
rRMSE = 13.51% and R2 = 0.62, rRMSE = 6.42%, respectively. Therefore, the subsequent
analysis will be performed only with the modelled LAI and LCC with the GPR model.
We will consider them as remotely sensed phenotypic traits, even if LAI and LCC tend to
saturate for high values (Figure 5).

Table 8. Results of biophysical variables retrieval with a nonparametric model, n_training = 260,
n_test = 47. Levels of significance: ns. not significant; * p < 0.05; **p < 0.01. The best performing
models for each variable are in bold.

Variable Model
Cross-Validation Test

R2 RMSE nRMSE
(%)

rRMSE
(%) NSE R2 RMSE nRMSE

(%)
rRMSE

(%) NSE

LAI [m2 m−2]

GPR 0.81 0.84 9.79 20.70 0.81 0.48 ** 0.64 20.19 13.51 0.47

KRR 0.80 0.86 10.05 21.27 0.80 0.35 ** 0.74 23.22 15.54 0.30
RF 0.75 0.95 11.08 23.44 0.75 0.19 ** 0.94 29.61 19.81 −0.15

SVR 0.60 1.21 14.13 29.89 0.60 0.53 ** 0.76 23.88 15.98 0.25
PLSR 0.59 1.22 14.23 30.10 0.59 0.53 ** 0.80 25.17 16.85 0.17

fAPAR

GPR 0.96 0.05 5.70 6.84 0.96 0.24 ** 0.03 24.02 3.10 0.10

KRR 0.96 0.06 6.02 7.21 0.96 0.13 ns 0.04 31.75 4.10 −0.56
RF 0.89 0.09 9.70 11.64 0.89 0.02 ns 0.06 53.40 6.90 −3.43

PLSR 0.77 0.13 13.89 16.65 0.77 0.11 * 0.10 87.34 11.29 −10.84
SVR 0.60 0.18 19.27 23.11 0.55 0.28 ** 0.06 49.49 6.40 −2.80



Remote Sens. 2022, 14, 1019 13 of 30

Table 8. Cont.

Variable Model
Cross-Validation Test

R2 RMSE nRMSE
(%)

rRMSE
(%) NSE R2 RMSE nRMSE

(%)
rRMSE

(%) NSE

fCover

GPR 0.95 0.07 6.60 8.21 0.95 0.20 * 0.03 20.31 3.43 0.12

KRR 0.95 0.07 7.08 8.80 0.94 0.01 ns 0.05 31.93 5.39 −1.18
RF 0.88 0.10 10.54 13.10 0.88 0.00 ns 0.10 60.10 10.15 −6.72

SVR 0.57 0.21 21.36 26.55 0.50 0.20 ns 0.07 45.50 7.69 −3.42
PLSR - - - - - - - - - -

LCC [mg m−2]

KRR 0.86 53.22 8.54 12.11 0.86 0.59 ** 32.90 19.91 6.69 0.54

GPR 0.83 59.29 9.51 13.49 0.82 0.62 ** 31.57 19.11 6.42 0.57

RF 0.76 69.56 11.16 15.82 0.76 0.54 ** 34.02 20.59 6.92 0.50
PLSR 0.62 88.59 14.21 20.15 0.61 0.27 ** 52.98 32.06 10.77 −0.20
SVR 0.59 103.21 16.55 23.48 0.47 0.45 ** 47.80 0.29 9.72 0.02

CCC [g m−2]

GPR 0.77 0.45 12.10 23.03 0.77 0.36 ** 0.35 18.43 15.19 0.34

KRR 0.76 0.46 12.29 23.39 0.76 0.29 ** 0.39 20.44 16.85 0.19
RF 0.73 0.49 13.09 24.92 0.73 0.21 ** 0.42 22.00 18.14 0.06

SVR 0.50 0.66 17.78 33.85 0.50 0.30 ** 0.47 24.49 20.19 −0.16
PLSR 0.47 0.68 18.40 35.01 0.47 0.34 ** 0.46 23.88 19.69 −0.10

Figure 5. Relationship between observed and predicted biophysical variables. The predicted biophys-
ical variables are from the best performing nonparametric model (GPR). The black line is 1:1 line.

According to the cross-validation results, good models with parametric methods were
found only for fAPAR and fCover with the goodness-of-fit metrics for the optimised models
and test dataset, R2 from 0.35 to 0.49 and nRMSE from 0.65 to 0.69 (Table 9 and Figure 6).
Both variables were best retrieved with 3BSI-Wang VI and polynomial function.
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Table 9. Results of biophysical variables retrieval with parametric models, n_training = 260, n_test = 47. Levels of significance: ns. not significant; * p < 0.05;
** p < 0.01. The best performing models for each variable are in bold.

Variable VI Bands Function; Parameters
Cross-Validation Test

R2 RMSE nRMSE (%) rRMSE (%) NSE R2 RMSE nRMSE (%) rRMSE (%) NSE

fAPAR 3BSI-Wang; Ra = 660;
Rb = 550; Rc = 790

Polynomial; a0 = 4.2688;
a1 = 4.3541; a2 = 1.0954 0.81 0.12 12.40 14.87 0.81 0.49 ** 0.08 68.59 8.86 −6.30

3BSI-Tian; Ra = 660;
Rb = 790; Rc = 735

Polynomial; a0 = 0.8233;
a1 = 3.8009; a2 = 4.1529 0.81 0.12 12.56 15.07 0.81 0.46 ** 0.09 76.81 9.93 −8.16

NDVI; Ra = 790; Rb = 660 Linear; a = −1.5725; b = −0.5247 0.80 0.12 12.85 15.41 0.80 0.50 ** 0.09 74.76 9.66 −7.67

fCover 3BSI-Wang; Ra = 660;
Rb = 550; Rc = 790

Polynomial; a0 = 4.4234;
a1 = 4.5613; a2 = 1.1581 0.71 0.16 16.04 19.95 0.72 0.35 ** 0.10 64.52 10.90 −7.90

3BSI-Tian; Ra = 660;
Rb = 790; Rc = 735

Polynomial; a0 = 0.9765;
a1 = 4.3072; a2 = 4.5267 0.71 0.16 16.08 19.99 0.71 0.30 ** 0.11 71.08 12.01 −9.80

NDVI; Ra = 790; Rb = 660 Linear; a = −1.6057; b = −0.5492 0.70 0.16 16.38 20.36 0.70 0.35 ** 0.11 68.24 11.53 −8.95
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Figure 6. Relationship between observed and predicted biophysical variables. The predicted biophys-
ical variables are from the best performing parametric model (3BSI-Wang and polynomial function).
The black line is 1:1 line.

3.2. GY Retrieval

We trained models with the two UAV campaigns data independently to compare
which wheat phenological phase is better suited for GY retrieval. The best performing
nonparametric method (Table 10) was again GPR and the parametric method (Table 11) was
with 3-spectral-band index. Independently of the method used, the grain filling phenophase,
or June campaign, was better suited for GY retrieval (Figure 7). The parametric model with
3BSI-Tian vegetation index and linear function had the better goodness-of-fit metrics for
the optimised models and test dataset (Table 11 and Figure 7).

Figure 7. Relationship between observed and predicted GY. The predicted GY is from the best per-
forming nonparametric (GPR) and parametric (3BSI-Tian, linear) models in grain filling phenophase.
The black line is 1:1 line.
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Table 10. Results of GY retrieval with nonparametric models, n_training = 164, n_test = 55. Levels of significance: ns. not significant; * p < 0.05; ** p < 0.01. The best
performing models for each variable are in bold.

Phenological
Development Stage Model

Cross-Validation Test

R2 RMSE
(kg/13.2 m2) nRMSE (%) rRMSE (%) NSE R2 RMSE

(kg/13.2 m2) nRMSE (%) rRMSE (%) NSE

Flowering

GPR 0.92 0.71 6.55 8.05 0.92 0.19 ** 0.71 23.82 7.61 0.10

RFR 0.91 0.74 6.80 8.36 0.91 0.26 ** 0.68 22.85 7.31 0.18

SVR 0.91 0.77 7.08 8.70 0.90 0.22 ** 0.73 24.38 7.80 0.06
KRR 0.90 0.78 7.18 8.82 0.90 0.19 ** 0.70 23.53 7.52 0.13
PLSR 0.90 0.80 7.30 8.97 0.90 0.22 ** 0.71 23.90 7.64 0.10

Grain filling

PLSR 0.97 0.66 6.06 8.35 0.97 0.41 ** 0.64 16.53 6.72 0.36
KRR 0.92 0.70 6.39 7.91 0.92 0.35 ** 1.03 26.75 10.87 −0.66

GPR 0.92 0.71 6.49 9.03 0.92 0.47 ** 0.62 16.12 9.70 0.40

RFR 0.92 0.71 6.53 8.08 0.92 0.38 ** 0.65 16.97 6.90 0.33
SVR 0.91 0.75 6.83 8.45 0.91 0.35 ** 0.66 17.00 6.91 0.33

Table 11. Results of GY retrieval with parametric models, n_training = 164, n_test = 55. Levels of significance: ns. not significant; * p < 0.05; ** p < 0.01. The best
performing models for each variable are in bold.

Phenological
Development

Stage
VI Bands

Function; Parameters Cross-Validation Test

R2 RMSE
(kg/13.2 m2)

nRMSE
(%)

rRMSE
(%) NSE R2 RMSE

(kg/13.2 m2)
nRMSE

(%)
rRMSE

(%) NSE

Flowering

3SBI-Verrelst; Ra = 660;
Rb = 550; Rc = 790

Polynomial; a0 = 6.4017;
a1 = 32.3953; a2 = 39.5796 0.92 0.70 6.44 7.91 0.92 0.20 ** 0.70 23.58 7.54 0.12

SR; Ra = 550, Rb = 790
Polynomial; a0 = 15.1245;

a1 = −112.9459;
a2 = 203.1625

0.92 0.71 6.47 7.95 0.92 0.16 ** 0.74 24.81 7.93 0.03

NDVI; Ra = 790, Rb = 660 Polynomial; a0 = 3.3069,
a1 = 20.1921, a2 = 29.4983 0.92 0.72 6.55 8.05 0.91 0.22 ** 0.69 23.17 7.41 0.15

3BSI-Tian; Ra = 735,
Rb = 660; Rc = 550

Linear; a = 13.8317,
b = 2.3347 0.91 0.74 6.80 8.36 0.91 0.16 ** 0.72 24.06 7.69 0.09

Grain filling

3BSI-Tian;
Ra = 660; Rb = 790;

Rc = 550
Linear

a = −12.0784, b = −0.6811 0.93 0.66 6.07 7.52 0.93 0.49 ** 0.58 14.94 6.07 0.48

3BSI-Tian;
Ra = 660; Rb = 790;

Rc = 735
Polynomial; a0 = 0.1526,
a1 = −2.6965, a2 = 8.6007 0.93 0.67 6.12 7.58 0.93 0.49 ** 0.58 15.04 6.11 0.47

3BSI-Verrelst;
Ra = 660; Rb = 735;

Rc = 790
Polynomial; a0 = 4.0038,
a1 = −9.0601, a2 = 4.83 0.93 0.67 6.14 7.60 0.93 0.48 ** 0.60 15.49 6.30 0.44

NDVI; Ra = 660, Rb = 790 Linear; a = 3.5866,
b = 7.2366 0.92 0.67 6.14 7.60 0.93 0.49 ** 0.60 15.61 6.34 0.43
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3.3. Visual Inspection of the GY and Remotely Sensed Phenotypic Traits and Their
Uncertainty Characterisation

The visual inspection of the retrieved LAI and LCC maps (Figure 8) shows that the
LAI decreased from the flowering (LAI05) to the grain filling (LAI06) stage; however, LCC
increased from flowering (LCC05) to grain filling (LCC06). Those results are in accordance
with the in situ measurements (Table 2).

Figure 8. UAV-obtained map of estimated LAI and LCC for both CVTs for flowering (May) and grain
filling (June) phenological development stage. The LAI and LCC are estimated with the GPR model.

The uncertainty is characterised by the mean coefficient of variation (CV) generated by
each GPR model. The mean and standard deviation of CV for LAI05 are much lower than
those for LAI06: 16%, 1% and 28%, 12%, respectively. The mean and standard deviation of
CV for LCC05 and LCC06 are almost constant: 8%, 0.5% and 10%, 2.6%, respectively.

Figure 9 shows the improved spatial resolution of the estimated pixel-level GY map
compared with the map generated with the ground measurements. While traditionally only
one value per plot for GY is measured, we have a high spatial resolution in the estimated
GY that gives the breeder additional information for their analysis. It is visible in both
maps (Figure 9A,B) that genotypes 1 to 6 from CVT1 are with a lower yield than the rest of
the genotypes. The same could also be said for the III and IV replicates.



Remote Sens. 2022, 14, 1019 18 of 30

Figure 9. (A) UAV-obtained map of the estimated GY. The GY was estimated with the parametric
model 3BSI-Tian/linear from grain filling phenological development stage. (B) Vector map of GY
measured by mechanical harvesting at full maturity of the plants.

3.4. Phenotypic Variation and Relationship with Yield

The analysis of variance (ANOVA) for both CVTs (Table A3) shows a significant differ-
ence between genotypes and significant differences in replicates. Significant differences
between genotypes were found for the plant height (H) trait and no differences between
replicates were observed. Therefore, genotypes have a major influence on the established
variation of plant height. In CVT2, the differences between the genotypes were proven
at a lower level for the traits: LAI06, LCC05, and LCC06. Genotypic differences are a
prerequisite for an increased opportunity for effective selection.

With the highest yield is characterised genotype 23 in CVT1 (10.22 kg/plot) and
genotype 14 in CVT2 (10.38 kg/plot), Table A4. For those two genotypes, the yield differs
from the yield of all other genotypes because it falls into separate groups (h) and (j)
according to the DMRT. The lowest statistically distinguishable yield of all other genotypes
is genotype 3 in CVT1 (6.63 kg/plot) and 11 in CVT2 (8.32 kg/plot) which also fall into a
separate group (a).

The correlation analysis (Figure 10) shows high positive correlations between yield
(GY) and the following traits: LAI06, LCC05, and LCC06. GY has a negative correlation
with H.
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Figure 10. Correlation analysis of studied traits: LAI05, LAI06, LCC05, LCC06, grain yield (GY),
tillering (T), and plant height (H). Data from both CVTs are used. Only significant correlations
(p < 0.05) are shown.

The performed PCA shows two main components, Factor 1 and Factor 2, which
explains over 63% of the total variation in all genotype traits, which is high enough to
correctly interpret the results (Figure 11). According to the angles between the vectors
of the traits, the correlations between them can be judged. The more acute the angle, the
stronger and more positive the correlation is. At right angles, the correlation is zero, and the
obtuse angle indicates a negative correlation. The results from the PCA are in accordance
with the correlation analysis and show that the yield has a strong positive correlation with
LAI06, LCC05, LCC06 (Figure 11A).

Figure 11. PCA results with 7 traits, LAI05, LAI06, LCC05, LCC06, yield, tillering, and plant height,
and both CVTs. The distribution between the traits (A) and the genotypes (B) within the two main
components (Factor 1 and Factor 2) is visualised. The numbers in (B) are the genotypes’ codes, the
ones without a suffix are from CVT1, and suffix-2 are from CVT2.

The distribution of genotype points in the Factor 1 to Factor 2 coordinate system is
presented in Figure 11B. According to the quadrant in which the genotypes are located,
we can judge the corresponding strongest influence of the specific trait. The genotypes
positioned in the middle are balanced in terms of traits, while those placed in the periphery
are influenced by a specific trait. Most of the genotypes are in the two right quadrants
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(Figure 11B), the same quadrants with the vectors of yield, LCC05, LCC06, and LAI06
(Figure 11A).

The results of the last step of our methodology for statistical analysis for phenotypic
variation and relationship with yield, Figure 4, namely the coefficient of variation from the
descriptive statistics of the phenotypic traits, are presented in Table 12.

Table 12. Descriptive statistics of the studied phenotypic traits. LAI05, LAI06, LCC05, and LCC06 are
modelled traits with GPR. GY, T, and H are ground-measured traits.

Trait Mean Standard Error of Mean Min. Value Max. Value Coefficient of Variation %

LAI05 5.2180 0.0160 4.4040 5.5800 4.4091

LAI06 3.7855 0.0335 2.2470 4.6650 12.7590

LCC05 450.3791 1.0138 395.6820 486.7650 3.2464

LCC06 480.4544 2.6721 360.6070 538.3540 8.0211

GY 9.4659 0.0553 5.8300 10.9200 8.4203

T 3.6077 0.0389 2.8000 4.9000 15.5669

H 102.4471 0.4486 89.0000 121.0000 6.3148

4. Discussion
4.1. Biophysical Variables and Yield Retrieval from UAV Data

When evaluating the performance of the retrieval models, some studies use cross-
validation techniques [28,41,66], but fewer use test datasets [36,67]. Moreover, to train and
evaluate a model with a certain confidence, a good amount of training/test samples is
required. However, obtaining in situ field data is time consuming and expensive. Therefore,
regression models are constructed with very different training/test sample numbers, from
dozens [19,36,68] or hundreds [41,66]. In the present review, we use cross-validation to
optimise the model and test dataset to evaluate its performance. The relatively large sample
size (307 and 219 for biophysical variables and yield retrieval, respectively) in our study
theoretically allows us to construct more robust models. In addition, note that for the
biophysical variables modelling, the cross-validation results provide information about
model performance across the almost full range of development stages. In contrast, the test
results provide information about the model performance from the relatively late stages,
flowering and grain filling.

All retrieval methods have their advantages and disadvantages [34]. We tested para-
metric and nonparametric regression models and our results show that the nonparametric
models for biophysical variables retrieval are more robust (Tables 8 and 9) than the para-
metric models. The greater flexibility of the nonparametric models is demonstrated in the
retrieval of fAPAR and fCover (Figures 5 and 6). In this case, it is also visible how the
different goodness-of-fit metrics are complementary and that it is almost impossible to use
only one or two of them. For example, the Pearson correlation coefficient is a measure of
how closely the observations follow a straight line, but not necessarily the 1:1 line. The NSE
coefficient is a measure of how well the observations follow the 1:1 line. Strong correlation
expresses high precision, but not necessarily high accuracy [69]. The GPR method was
clearly superior to the other four nonparametric regression methods tested in this study.
According to the test results, it performed best for all estimated variables except GY in the
flowering stage when better results show RFR.

The nonparametric GPR method was able to predict LAI with reasonable accuracy as
shown by the cross-validation results (R2 = 0.81, RMSE = 0.84). The successful retrieval
of LAI from Sequoia camera data was illustrated also by [70]. They used simple linear
regression and MTVI2 index calculated from the Sequoia image bands to predict LAI (R2 =
0.61, RMSE = 1.17). Nevertheless, in our study the independent validation showed that the
model did not perform particularly well for LAI values between 3 and 6. The less robust
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than expected performance of the LAI model in this range is probably due to the saturation
of the spectral response for high LAI [41] (Figure 5). LCC retrieval is more robust than the
LAI retrieval, even if LCC also presents saturation [71]. The LCC nonparametric modelling
is an interesting case (Table 8) because even if the KRR is the best performing model with
cross-validation, it is still the GPR that performed better with the test dataset.

The accuracy of LCC modelling in this study is comparable with previous studies. For
example, a study from [72] estimated the LCC of wheat using hyperspectral UAV data.
For the flowering stage, when the modelling was the most accurate, the best performing
model (SVM) achieved an R2 value of 0.79 with a dataset of n = 32. In our study, the best
performing model was GPR which achieved cross-validation results of R2 = 0.83 and test
results of R2 = 0.62. Moreover, in our study, only four broad bands were used as predictors,
whereas the study of [72] tested numerous narrow band spectral features.

In our study, we also tried to predict fAPAR, which is not so commonly used as a
parameter in phenotyping experiments. A good result for fAPAR prediction with UAV
RGB images and SVR (R2 of 0.86) was reported by [73]. This result is similar to our study,
where the parametric model (3BSI-Wang/polynomial) achieved an R2 of 0.81 during the
cross-validation. However, during the test, the parametric model achieved only R2 of 0.49.
The problem of saturation is also present for fAPAR.

Previous studies indicated that the saturation issue of optical remote sensing can
affect the performances of statistical regression models in estimating crop biophysical
parameters [73,74]. To overcome the saturation problems inherent in the remotely sensed
optical measurements, a multisource remote sensing fusion is proposed [30,73].

Another indicator of model robustness is the uncertainty estimation per pixel provided
by the GPR models. The GPR model for LCC retrieval provided a slight increase in
uncertainty from flowering (BBCH69-BBCH71) to grain filling (BBCH75-BBCH77) with a
mean CV of 8% and 10%, respectively. For comparison, the mean CV of LAI is twice as high,
with 16% and 28% for the two phenological stages, respectively. The standard deviation of
CV between the two phases also increases for both biophysical variables, but while it is
5 times higher (from 0.5 to 2.6) for LCC, it is 12 times higher for LAI (from 1 to 12).

It is interesting to notice that when using parametric regression models, the biophysical
variables are modelled by an exponential function [60,75]. However, in our case, it is a
polynomial function that is better fitted to the training data. This difference comes from
incorporating samples from bare soil in the training data.

We tested yield retrieval with parametric and nonparametric regression models with
data from two phenological development stages, flowering (BBCH69-BBCH71) and grain
filling (BBCH75-BBCH77), separately. In the general case, the models with grain filling
data had better accuracy than those with flowering data. This pattern is observed for
both the parametric and nonparametric models. Those results are in accordance with
other studies [14]. They reported higher correlations with yield in rainfed trial with
multispectral indices during the grain filling phase. Similar results were reported by [76]
for a limited irrigation trail where yield was predicted most accurately using mid grain
filling UAV-derived data. Other studies [19] report that yield prediction also improves with
the advancement of the phase in the growing cycle, from the jointing stage to the flowering
stage. They tested PLSR, artificial neural network (ANN), and RFR methods. Their best
performing model was PLSR. In our study, PLSR also performed better than RFR but was
outperformed by GPR.

Regarding the performance of different methods for GY retrieval, our results show
that at the grain filling stage, the best parametric model (3BSI-Tian/linear) slightly out-
performs the nonparametric (GPR), Tables 10 and 11. At the flowering stage, the pattern
is reversed, and a nonparametric method (in this case RFR) performed better than any
parametric method. A previous comparison [67] of parametric and nonparametric models
for GY retrieval has shown that the two types of methods, parametric and nonparametric,
give similar results with minor superiority of parametric models. Even though the best
performing method for yield differed between the two development stages, it cannot be



Remote Sens. 2022, 14, 1019 22 of 30

argued that any method is more useful in one stage or the other. Moreover, in contrast with
our study, [76] found that GPR performed best for flowering and RFR performed best for
early grain filling when predicting wheat yield. As already discussed, GPR presents an
advantage by providing uncertainty estimation for each retrieved pixel; therefore, giving
invaluable spatial information on the uncertainty of the retrieved value. On the other hand,
the parametric model is easily applicable and understandable with its linear function and
three bands VI.

The accuracy of GY prediction in this study was lower (R2 = 0.49, rRMSE = 6.07%
in grain filling) in comparison with some previous studies. For example, [77] achieved
R2 = 0.93 using linear regression and a VI calculated from RGB-camera data. Using linear
regression and data from the same camera as in this study, i.e., Sequoia, [17] modelled yield
with maximal R2 of 0.89. Five-band UAV imagery was used by [78] in combination with
least absolute shrinkage and selection operator (LASSO) and SVR to predict spring wheat
yield. Both methods resulted in an R2 of 0.90. However, other studies reported moderate
results, even though hyperspectral UAV data were used [19].

4.2. Remotely Sensed and Traditional Phenotypic Traits for Plant Breeding

We studied the possibilities of considering the biophysical variables retrieved from
UAV multispectral data as phenotypic traits for plant breeders. To do so, first, we retrieved
the biophysical variables, evaluated the models and, due to the performance of the models,
chose LCC05, LCC06, LAI05, and LAI06. Then we applied a commonly used tool in
breeding research, analysis of variance (ANOVA), to detect the statistically significant
factors on which the variation of the studied traits depends and the differences between
the tested genotypes. The ANOVA for both CVTs (Table A3) shows a significant difference
between genotypes, both for the remotely sensed phenotypic traits LAI06, LCC05, LCC06
and for the traditional agronomic traits GY, H, T. Previous studies found similar results
when considering yield and plant height [79,80] or other agronomic traits [81–83]. Remotely
sensed spectral crop characteristics such as VIs have been previously shown to differ
significantly between wheat genotypes [18,76]. We further show that the same is true for
biophysical variables retrieved from such spectral characteristics. Because of the established
significant difference between genotypes, we performed DMRT that gives us additional
information on the differences in genotypes according to a certain phenotypic trait.

The PCA results and the correlation matrix can be used to illustrate the relationship
between different traits. Our results show positive correlations between yield (GY) and the
following traits: LCC05 (R2 = 0.43 at flowering stage), LAI06 and LCC06 (R2 = 0.46, 0.44 at
grain filling stage). Similarly, [17] performed regression analysis between UAV-NDVI and
GY for wheat in limited irrigated conditions but found that the coefficient of determination
(R2 = 0.08) at early grain filling stages was much lower.

According to the results of the descriptive statistics presented in Table 12, high genetic
diversity, in studied genotypes and among the considered remotely sensed phenotypic
traits (LAI06, LCC05, LCC06), is found for LCC06 and LAI06. Therefore, they could be
used in addition to the traditional phenotypic traits for plant breeding studies.

4.3. Limitations, Challenges, and Future Opportunities

While this study showed the application of parametric and nonparametric regression
models for yield and phenotypic traits retrieval for plant breeding experiments, the ap-
proach poses some limitations and challenges. They are briefly listed below, followed by
proposed solutions.

(1) The developed biophysical variable retrieval models are overfitted and less robust
than expected, except for LCC and LAI. The dataset was from two sites, one sown
with winter durum wheat (Triticum turgidum L. var. durum), Chirpan, and the other
winter wheat (Triticum aestivum L.), Zlatia. However, studies [36] suggest that the
relationship between spectral data and biophysical variables is variety-specific. Hence,
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the robustness of the models throughout the season with data from the same site as
well as from several consecutive harvest years remains to be evaluated.

(2) Vegetation growth is a dynamic and accumulative process and representing it by just
a few data acquisitions can be limiting. Differences found in certain phenophases
can be compensated in others [84]. Including more dates and using multitemporal
data would help to better describe crop growth [84,85]. Moreover, the selection of the
phenological stage, and therefore UAV imagery dates, has an important impact on the
capability to determine differences in the genotypes [84].

(3) In the current study only four spectral broadbands are analysed, whereas spectro-
radiometers, or hyperspectral UAV imagery, provide many spectral narrow bands
allowing for more accurate analysis and assessment of their correlation with a wider
range of biophysical traits such as pigments other than chlorophyll, plant macronutri-
ents, lignin and cellulose, polyphenols [86], or water content [87,88].

(4) Uncertainty analysis was carried out only for uncertainties that arise from the param-
eterizations and assumptions specific to retrieval algorithms. This, however, is only
one main category of uncertainty [89]. The uncertainty in the acquisition of in situ
data by non-invasive methods can lead to important bias. Its correction can reduce
the nRMSE between the non-invasive and destructive methods from 50% to 17% [90].
The last category is the errors referred to the sensor, including sensor calibrations and
radiometric, geometric, and atmospheric corrections [34]. In addition, uncertainty
propagation study is necessary to give the plant breeders a better understanding of
the precision and accuracy of the proposed remote sensing phenotypic traits.

5. Conclusions

In our study we (1) retrieved biophysical variables from multispectral UAV data
to complement the phenotypic traits that breeders traditionally collect; (2) proposed
a retrieval method for rapid estimation of wheat grain yield through UAV platforms;
(3) found significant differences between the genotypes in the two studied experiments
(CVTs), and genotypes have a significant influence on the expression of traits. The applica-
tion of PCA proves that most of the studied traits are related to yield and can be successfully
used for preliminary yield assessment in wheat breeding.

Each breeding context is different, by the studied crop and breeders’ experience and
aim. Nevertheless, UAV data reveal the variability present within each plot and between
the different replicates and allow a much higher number of measurements compared to
traditional breeders’ data collection. However, it is still under investigation as to which
of the studied biophysical variables will play a role in plant breeding and variety test-
ing. Monitoring the proposed phenotypic traits can be used for preliminary assessment
of productivity.

We believe that those preliminary results could speed up crop improvement programs;
however, stronger interdisciplinary research is still needed.
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Appendix A

Table A1. Location of the varieties and breeding lines in CVTs and descriptive statistics for the
ground-measured data for the GY (kg/plot) from each genotype. A plot is 13.2 m2 (12 × 1.10 m).

Competitive Variety Trial CVT 1 Competitive Variety Trial CVT 2

Genotype Min.
Value

Max.
Value Mean Std. Dev Genotype Min.

Value
Max.

Value Mean Std. Dev
Code Name Code Name

1 Beloslava 8.8 10.3 9.4 0.7 1 D-8156 8.8 9.5 9.2 0.3

2 Vazhod 8.0 9.9 9.0 0.8 2 D-8405 8.0 9.9 9.1 0.8

3 Progres 5.8 7.3 6.6 0.6 3 D-8401 9.0 10.3 9.8 0.6

4 Viktoriya 8.0 10.3 9.2 0.9 4 D-8298 8.0 9.4 9.0 0.7

5 Zvezditsa 7.9 9.3 8.5 0.6 5 D-8379 9.8 10.0 10.0 0.1

6 Deyana 7.5 9.6 8.5 0.8 6 D-8000 9.1 10.7 9.8 0.7

7 Elbrus 9.0 9.7 9.4 0.3 7 D-8313 8.0 9.0 8.5 0.5

8 Deni 8.8 9.5 9.3 0.3 8 DV-8417 9.0 9.9 9.3 0.4

9 Trakiets 9.0 10.5 9.6 0.7 9 D-8404 8.4 10.0 9.3 0.7

10 Kehlibar 9.4 10.4 9.9 0.4 10 D-8031 9.7 10.7 10.1 0.4

11 Reyadur 9.4 10.6 10.1 0.5 11 D-8484 8.0 8.9 8.3 0.4

12 Tserera 8.8 9.7 9.2 0.4 12 D-8456 9.0 9.5 9.2 0.2

13 Mirela St 7.8 9.1 8.4 0.7 13 Mirela St 8.9 9.0 8.9 0.1

14 Predel St 9.1 10.3 9.8 0.5 14 Predel St 10.2 10.7 10.4 0.2

15 Raylidur 8.9 10.0 9.7 0.5 15 D-8471 9.8 10.1 10.0 0.1

16 Saya 9.1 10.6 10.1 0.7 16 D-8472 9.7 10.2 9.8 0.2

17 Heliks 9.4 10.2 9.9 0.4 17 D-8516 9.1 10.7 9.9 0.8

18 Viomi 9.3 9.9 9.6 0.3 18 D-8346 8.6 10.6 9.8 0.9

19 D-8159 9.8 10.1 9.9 0.1 19 D-8469 9.2 10.8 10.0 0.6

20 D-8243 9.8 10.2 10.0 0.2 20 D-8495 10.1 10.4 10.3 0.2

21 D-8327 9.8 10.9 10.2 0.5 21 D-8483 9.9 10.6 10.1 0.3

22 D-8091 9.1 9.5 9.3 0.2 22 D-8299 9.1 9.3 9.2 0.1

23 D-8148 9.9 10.6 10.2 0.3 23 D-8551 9.1 10.3 9.8 0.5

24 D-8326 8.4 9.8 9.3 0.6 24 D-8271 9.1 10.1 9.6 0.4

25 D-7553 9.3 10.2 9.8 0.4 25 D-8527 9.7 10.3 10.0 0.2

26 D-8036 8.0 10.0 9.1 0.9 26 D-8526 8.7 9.1 9.0 0.18

www.cost.eu
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Table A2. Details of the ground-measured phenophases and plant height during the two
field campaigns.

Field Campaign Competitive
Variety Trial

Genotype Code in (Phenological
Development Stage)

Genotype Code with (Plant Height
in cm)

27–28 May 2021
CVT 1

• 1, 2, 4, 5, 7, 9, 10. 11, 14, 15, 16, 19,
21–25 (BBCH69)

• 3, 6, 8, 12, 13, 17, 18, 20, 26 (BBCH71)

• 11, 13, 14, 16, 19, 20, 21, 24 (89–99)
• 1, 2, 8, 9, 10 12, 15, 17, 18, 22, 23, 25,

26 (100–109)
• 3–7 (110–121)

27–28 May 2021
CVT 2

• 1–5, 9. 11, 12, 14, 15, 16, 19, 20, 21,
23–26 (BBCH69)

• 6, 7, 8, 10, 13, 17, 18, 22 (BBCH71)

• 3, 4, 5, 11, 13, 14, 16, 23, 24, 26
(89–99)

• 1, 2, 6, 7, 9, 10, 12, 15, 17–22, 25
(100–109)

• 8 (115)

16–17 June 2021
CVT 1

• 1, 2, 4, 5, 7, 9, 10, 11, 14, 15, 16, 19,
21–25 (BBCH75) 3, 6, 8, 12, 13, 17, 18,
20, 26 (BBCH77)

• 13, 14, 16, 19, 20, 21, 24 (89–99)
• 1, 2, 8–12, 15, 17, 18, 22, 23, 25, 26

(100–109)
• 3, 4, 5, 6, 7 (110–121)

16–17 June 2021
CVT 2

• 1–5, 9, 11, 12, 14, 15, 16, 19, 20, 21,
23–26 (BBCH75)

• 6, 7, 8, 10, 13, 17, 18, 22 (BBCH77)

• 11, 13, 23, 26 (90–99)
• 1, 2, 3, 5, 7, 9, 10, 12, 14–22, 24, 25

(100–109)
• 6,8 (110–115)

Table A3. ANOVA for CVT1 and CVT2. Tillering: T; plant height: H; sum of squares: SS; de-
gree of freedom: DoF; mean squares: MS; F critical: F; significant: Sig; *—p ≤ 0.05; **—p ≤ 0.01;
***—p ≤ 0.001; n.s.—not significant.

Trait Source SS
CVT1

DoF
CVT1

MS
CVT1 F CVT1 Sig

CVT1
SS

CVT2
DoF

CVT2
MS

CVT2 F CVT2 Sig
CVT2

LAI05 Genotype 5.053 25 0.202 26.6 *** 2.000 25 0.080 7.0 ***
Replication 0.294 3 0.098 12.9 *** 0.216 3 0.072 6.3 ***

Error 0.570 75 0.008 0.853 75 0.011

LAI06 Genotype 19.433 25 0.777 19.82 *** 4.127 25 0.165 4.40 **
Replication 3.041 3 1.014 25.84 *** 10.568 3 3.523 93.96 ***

Error 2.942 75 0.039 2.812 75 0.037

LCC05 Genotype 10281 25 411 8.5 *** 3366 25 135 2.2 *
Replication 4067 3 1356 27.9 *** 12667 3 4222 69.2 ***

Error 3647 75 49 4575 75 61

LCC06 Genotype 111898 25 4476 16.52 *** 33823 25 1353 4.77 **
Replication 28780 3 9593 35.40 *** 46203 3 15401 54.33 ***

Error 20325 75 271 21260 75 283

GY Genotype 57.319 25 2.293 8.36 *** 30.467 25 1.219 6.73 ***
Replication 4.038 3 1.346 4.91 *** 3.868 3 1.289 7.13 ***

Error 20.573 75 0.274 13.572 75 0.181

T Genotype 25.826 25 1.033 13.45 *** 25.230 25 1.009 17.93 ***
Replication 1.936 3 0.645 8.40 *** 0.468 3 0.156 2.77 *

Error 5.759 75 0.077 4.222 75 0.056

H Genotype 6010 25 240 836 *** 2522 25 101 294 ***
Replication 1 3 0 1 n.s. 2 3 1 2 n.s.

Error 22 75 0 26 75 0

We applied DMRT for the measured agronomical variables and only LAI and LCC of
the retrieved variables ().
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Table A4. Mean values and DMRT for LAI05, LAI06, LCC05, LCC06, grain yield (GY), tillering (T),
and plant height (H) for CVT1 and CVT2. Mean values (in each column) followed by the same letters
have no proven differences at p < 0.05 according to DMRT. GC: genotype code.

GC LAI05 LAI06 LCC05 LCC06 Yield Tillering H

CVT1

1 5.1 fgh 3.9 gh 433.6 abcd 474.5 defghi 9.37 defgh 4.5 g 102.5 i
2 4.9 bc 3.3 c 428.4 ab 455.1 d 9.03 bcde 3.7 bcde 104.7 j
3 5.1 fg 2.4 a 436.5 abcd 385.0 a 6.63 a 3.0 a 119.5 n
4 4.9 bc 3.8 efgh 459.5 jkl 465.2 defg 9.16 bcdef 3.7 cde 112.7 m
5 5.1 defg 2.9 b 431.5 abc 409.6 bc 8.51 bcd 3.1 a 112.2 lm
6 5.2 ghij 2.5 a 437.8 abcde 386.5 ab 8.47 bc 4.0 ef 120.5 o
7 5.1 cdef 3.7 defg 449.8 fghijk 471.1 defghi 9.42 efgh 4.5 g 111.5 l
8 5.3 j 2.9 b 436.0 abcd 419.2 c 9.27 cdefg 3.3 abc 104.5 j
9 5.2 ghij 3.8 fgh 448.0 efghij 497.5 ijk 9.57 efgh 3.2 ab 101.5 h
10 5.2 fghi 3.8 efgh 449.3 fghijk 494.4 hijk 9.87 efgh 3.2 a 101.5 h
11 5.1 fgh 3.9 gh 451.2 fghijk 489.3 fghijk 10.07 gh 3.7 cde 99.5 e
12 5.2 fghi 3.5 cdef 431.3 abc 453.5 d 9.16 bcdef 3.1 a 104.2 j
13 5.3 ij 3.5 cde 426.9 a 454.8 d 8.38 b 3.1 a 89.5 a
14 5.3 ij 3.7 defg 439.6 bcdef 469.1 defgh 9.78 efgh 3.2 a 96.5 c
15 5.0 bcde 3.4 cd 441.7 cdefg 457.8 de 9.67 efgh 2.9 a 100.5 fg
16 5.1 efg 3.9 gh 455.2 ijkl 492.3 ghijk 10.07 gh 4.2 fg 97.2 cd
17 5.0 cdef 3.7 defg 444.1 defghi 464.6 defg 9.93 efgh 3.7 de 104.5 j
18 5.1 fgh 3.7 defg 450.8 fghijk 467.7 defgh 9.54 efgh 3.2 a 109.2 k
19 5.0 bcd 3.9 gh 451.9 ghijk 498.0 ijk 9.89 efgh 3.3 abc 97.7 d
20 5.3 j 3.8 efgh 441.9 cdefgh 477.7 defghi 9.95 fgh 4.1 efg 95.5 b
21 4.4 a 4.1 h 460.5 kl 513.0 k 10.16 gh 3.1 a 95.5 b
22 5.0 bcd 3.9 fgh 450.2 fghijk 483.7 efghij 9.33 cdefgh 3.0 a 100.7 gh
23 5.4 j 3.7 defg 451.7 ghijk 466.4 defg 10.22 h 3.0 a 102.5 i
24 4.5 a 3.9 gh 453.5 hijkl 509.3 jk 9.29 cdefg 3.3 abcd 89.5 a
25 4.8 b 3.9 gh 463.2 l 489.5 fghijk 9.80 efgh 4.5 g 99.7 ef
26 5.3 hij 3.5 cde 449.0 efghijk 462.4 def 9.14 bcdef 3.0 a 105.0 j

CVT2

1 5.3 fghiklm 3.5 a 448.6 abc 461.9 ab 9.17 cde 3.6 bcd 108.5 n
2 5.2 efghi 3.9 bcdefghi 449.6 abcd 500.5 defghij 9.12 bcd 4.6 f 101.5 gh
3 5.4 ml 4.2 hi 456.9 bcdef 507.2 efghij 9.83 defghij 4.0 de 99.5 e
4 5.0 ab 3.9 bcdefghi 455.0 bcdef 492.5 cdefghi 8.96 abc 4.2 ef 99 de
5 5.2 efghik 4.1 efghi 459.4 bcdef 500.7 defghij 9.95 ghij 3.0 a 99.5 e
6 5.1 abcde 3.9 bcdefghi 465.3 f 476.5 abcd 9.80 defghij 3.1 a 109.5 o
7 5.3 efghikl 3.7 abcd 454.5 bcdef 492.1 cdefghi 8.47 ab 3.4 abc 105.5 l
8 5.0 abc 3.7 abcd 465.1 ef 466.0 abc 9.33 cdefgh 3.3 ab 114.5 p
9 5.2 bcdefg 3.7 abc 454.6 bcdef 503.7 defghij 9.28 cdefg 4.5 f 104.5 k
10 5.2 bcdef 3.9 bcdefg 457.9 bcdef 488.0 bcdefgh 10.13 ij 4.4 f 107.5 m
11 5.4 kml 4.0 cdefghi 453.2 abcdef 513.9 hij 8.32 a 3.1 a 98.5 d
12 5.4 l 3.7 abc 454.0 bcdef 482.4 abcdefg 9.19 cdef 3.2 a 101.7 hi
13 5.3 fghiklm 3.7 abcde 447.2 ab 479.6 abcdef 8.93 abc 3.2 a 89.5 a
14 5.4 ml 3.9 bcdefgh 451.7 abcde 482.9 abcdefg 10.38 j 3.2 a 100.7 fg
15 5.4 ikml 4.1 fghi 455.6 bcdef 517.0 ij 9.95 ghij 3.3 ab 100.5 f
16 5.4 ghiklm 4.2 ghi 460.0 bcdef 518.6 ij 9.84 efghij 4.2 ef 99.5 e
17 5.2 cdefg 4.0 defghi 448.3 ab 501.2 defghij 9.89 fghij 3.7 cd 102.2 hi
18 5.1 abcd 3.5 a 440.8 a 459.9 a 9.79 defghij 4.5 f 103.2 j
19 5.4 hikml 4.2 hi 455.7 bcdef 518.3 ij 10.01 hij 3.8 cd 101.5 gh
20 5.4 kml 3.7 abcde 453.0 abcdef 479.2 abcde 10.29 ij 3.4 abc 102.5 ij
21 5.3 fghiklm 4.2 i 462.2 def 522.9 j 10.14 ij 3.2 a 102.5 ij
22 5.0 a 3.7 ab 462.1 cdef 476.3 abcd 9.15 bcde 3.8 cd 104.5 k
23 5.3 fghiklm 3.8 abcdef 459.0 bcdef 508.1 fghij 9.77 defghij 3.6 bcd 97.5 c
24 5.2 bcdefg 4.0 bcdefghi 462.3 def 510.6 ghij 9.63 cdefghi 3.6 bcd 99.5 e
25 5.2 defgh 4.0 bcdefghi 458.4 bcdef 505.9 efghij 10.03 hij 4.2 ef 103.2 j
26 5.4 ml 4.0 cdefghi 453.8 bcdef 507.9 fghij 8.97 abc 3.2 a 92.5 b
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