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Abstract: Biological invasion is a major contributor to local and global biodiversity loss, in particular
in dune ecosystems. In this study we evaluated current and future cover expansion of the invasive
plant species, Heterotheca subaxillaris, and Acacia saligna, in the Mediterranean coastal plain of Israel.
This is the first effort to quantify current surface cover of the focal species in this area. We reconstructed
plant cover for 1990–2020 using Landsat time series and modeled future potential expansion using
cellular automata (CA) modeling. The overall accuracy of the results varied in the range 85–95% and
the simulated plant growth using CA varied between 74% and 84%, for A. saligna and H. subaxillaris,
respectively. The surface area covered by H. subaxillaris in 2020, 45 years since its introduction, was
approximately 81 km2. Acacia saligna covered an area of 74.6 km2, while the vacant area available for
potential spread of these two species was 630 km2. Heterotheca subaxillaris showed a mean expansion
rate of 107% per decade from 2000 to 2020, while the mean expansion rate of A. saligna was lower,
ranging between 48% and 54% within the same time period. Furthermore, based on the plant
expansion model simulation we estimated that A. saligna and H. subaxillaris will continue to spread
by 60% per decade, on average, from 2020 to 2070, with a maximum growth rate of 80% per decade
during 2040–2050. According to future expansion projections, the species will cover all open vacant
areas by 2070 (95% of the total vacant area) and most areas will be shared by both species.

Keywords: Acacia saligna; cellular automata modeling; coastal dunes; grid-based spatial analysis;
Heterotheca subaxillaris; invasive species; remote sensing classification

1. Introduction

A rapid colonization capability and fast adaptation to new environmental conditions
enable invasive plant species to expand throughout various geographic and climatic regions
with negative effects on local biodiversity and ecosystem function [1–4]. Invasive species
plant traits, together with their ability to withstand stress conditions facilitated by global
change, have a profound impact on the ecosystems in which these species establish [5–7].

Plant communities in coastal zones are highly dynamic and prone to changes due
to intensive human disturbance, combined with biotic and abiotic stress factors [8,9].
Exposure to salt sea sprays, as well as wind, sand movement, high temperature regimes,
trampling and other environmental drivers, prevent many plant species from establishing
in this harsh habitat, leaving open areas with bare soil [10]. Nevertheless, this area is
high in species richness with particular presence of rare plants and animals, jointly with
endemic plant species, some of them in danger of extinction [11]. A few invasive plant
species with particular plant traits are capable of establishing in these open areas and
compete with the natural vegetation adapted to this particular environment with mobile
sand dunes [12–14]. To prevent sand dune movement across roads, environmental planners
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introduced A. saligna (Labill.) H.L.Wendl. and H. subaxillaris (Lam.) Britton & Rusby in the
early and mid-1970s, respectively, to the coastal plain of Israel [5,15]. As a result of this
intervention, both introduced species became invasive and are currently strongly integrated
into the native flora of the coastal zone.

The expansion of invasive species, whether intentionally introduced [7,16] for specific
purposes (i.e., sand stabilization) or unintentionally introduced by human activities (travel,
transportation of goods etc.), requires proper monitoring and management during both cur-
rent and future time frames. A considerable number of studies have examined the impacts
of invasive species on the ecosystem [17,18] as well as their economic costs and negative
health effects (i.e., allergenic plant species) [19–23]. Furthermore, it is becoming an even
greater dilemma to resolve, considering intensifying human activities, urban development,
agriculture expansion and climate change that enhance invasion processes [24–27]. There-
fore, land managers and government agencies should prioritize early detection of invasion
processes and progression for successful monitoring and management of invasive species.

Technological and methodological advances allow scientific communities and land
managers to address the evaluation of invasion processes and model future potential scenar-
ios [19–23]. The various data sources and analytical methods in the scientific literature rely
strongly on remote sensing tools, available for spatial information and field observations,
followed by linear and nonlinear multivariate analyses, grid-based simulation models such
as cellular automata, machine learning methods for species distribution modeling, envi-
ronmental envelopes and niche modeling [28–31]. The use of a specific method is strongly
related to the available data, the spatial and temporal scales of the obtained information,
and the presence of future model projections, such as bio-climatic variables. In this study we
selected the cellular automata (CA) modeling approach developed by Stanislav Ulam [32],
to evaluate the potential expansion of two invasive plant species based on remote sensing
and ancillary data over coastal dunes areas in Israel. The CA is a spatially explicit modeling
approach based on reproducing observed patterns of spread in space and time [33–35]. It
has an advantage in the evaluation of the potential expansion of invasive species in terms
of limited data availability. Unlike other species distribution models that are based on
current and modeled future environmental predictions. More specifically, in ecological
applications CA is built using environmental suitability data, transition probabilities of the
spatial patterns between different time periods, and predictions of future changes based on
past trends [36–39].

In this study, we focused on evaluating for the first time the combined ongoing
expansion of two invasive species, A. saligna and H. subaxillaris, in the coastal dunes of
Israel, by means of modeling and remote sensing. We evaluated the resulting changes in
the landscape matrix in terms of the spatial configuration of the coastal dune ecosystem,
using satellite time-series analyses and cellular automata (CA) modeling. We asked the
following research questions: (a) what are the observed and expected expansion rates
of A. saligna and H. subaxillaris and corresponding changes during the active invasion of
the plants from 1990 to 2100 in the coastal zone of Israel? (b) What is the time frame for
A. saligna and H. subaxillaris to spread across the available vacant areas? (c) What are the
potential changes in landscape fragmentation as a result of the future expansion of these
invasive plants?

2. Materials and Methods
2.1. Research Area and Climate Trends

In this study we focused on the Mediterranean coastal plain of Israel that covers
2500 km2. The length of the coastal plain is ~170 km (south–north), and the width varies
from 5 to 20 km (west–east) (Figure 1). The research area is threatened by intense urban
and agricultural development. Urban areas cover approximately 540 km2, croplands cover
over 1000 km2, and the natural/open areas cover 960 km2. There are two dominant soil
types: coastal sand dunes that cover approximately 25%, while loamy sandy soils (Hamra)
cover approximately 50% of the research area.
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Figure 1. Map of the research area in the coastal plain of Israel. Live accessions of H. subaxillaris and
A. saligna were obtained from Israel National Park Authority (INPA), field campaign in 2019 and
Global Biodiversity Information Facility (GBIF).

The local climate is the typical Mediterranean, with mild, wet winters and hot, dry
summers. The long-term mean annual rainfall in the research area varies from 450 mm
in the south to 650 mm in the north. The temperature regime does not vary significantly
from south to north. During 1990–2020, the coldest months were January–February, with
an absolute minimum temperature of 1.4 ◦C, and the hottest months were July–August,
with an absolute maximum temperature of 42.3 ◦C. In general, average winter temperature
varied from 10.1 ± 2.6 ◦C to 18.6 ± 2.79 ◦C and average summer temperature varied from
24.02 ± 1.33 ◦C to 29.31 ± 1.16 ◦C (Daily temperature obtained from Israel Meteorological
Services (IMS—https://ims.gov.il/en (accessed on 23 June 2021)).

Israel’s Mediterranean coastal plain is continuously connected to the desert sand dunes
of the Negev and northern Sinai. This connection provides a corridor for Sahara-Arabian
(desert) species to expand through the coastal plain despite that the climatic conditions are
the typical Mediterranean. This creates conditions for the development of highly diverse
plant communities, with more than 170 plant species occurring on sand (8.2% of the total
flora of Israel). The dominant natural woody vegetation is composed of species such as
carob trees (Ceratonia siliqua), lentisc shrubs (Pistacia lentiscus), white broom shrubs (Retama
raetam), and wormwood shrubs (Artemisia monosperma). Many psammophilic herbaceous
species dominate the open areas between the woody vegetation [40]. Additionally, this
region is well known for the relative richness of endemic plants. A total of 26% of Israel’s
endemic species (31 species, most of them annuals) are concentrated in the coastal plain,
mainly in open areas between shrubs and trees [11]. Natural primary succession is wind-
driven from the Mediterranean shore to inland areas, as vegetation development leads to a
decrease in wind speed allowing plant establishment and development. The expansion of
the invasive A. saligna and H. subaxillaris species is threatening these open sandy areas, and
the biodiversity in the coastal plain as a whole by over-competing the natural vegetation
and affecting the ecosystem functioning. H. subaxillaris plant traits allow them to expand in

https://ims.gov.il/en
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the open gaps between the woody vegetation during the period that the natural vegetation
is dry. The complexity of several traits favors the expansion of this species [41].

2.2. The Focal Plant Species

Acacia saligna is a tree species from the Mimosaceae family, native to Australia [42].
The flowering period of A. saligna in the coastal plain is early spring (March to early April).
A. saligna was introduced to the region at the beginning of the 20th century by the British
Mandate for Palestine with the aim of stabilizing sand dunes and protecting roads and
agricultural lands (report of the British Department of Agriculture and Forests for the years
1927–1946). Heterotheca subaxillaris, is an herbaceous plant species from the Asteraceae
family, native to North America. This species was introduced to Israel in the early 1970’s
with the same purposes as A. saligna. Its flowering season begins in late September and can
last until April [43]. We note that H. subaxillaris is one of the very few herbaceous species
that flower in autumn in the coastal plain with the consequent ecological advantages that
further promote its expansion [43]. Both plants species are known to be considerably
resistant to various stress conditions that allow them to cope with physiological stress such
as drought, salinity, limited water, and organic matter availability in the soil [41,43–45].

2.3. Spatial Data from Local Archive and Field Campaign

Spatial data of A. saligna and H. subaxillaris occurrences were obtained from the
Israel Nature and Parks Authority (INPA—https://www.parks.org.il/en/ (accessed on
10 February 2021)), the Global Biodiversity Information Facility (GBIF: https://www.gbif.
org/ (accessed on 21 February 2021)) and a designated field campaign in September 2019.
In addition, we used the vector files of urban areas, agricultural fields, road networks,
and waterways obtained from a local mapping organization (https://www.mapi.gov.il/en
(accessed on 11 January 2022)) and free GIS online databases. Live accessions of A. saligna
and H. subaxillaris were filtered for duplicate records and split into datasets of 70%/30% for
classification and accuracy assessment of classification maps and validation of expansion
models according to a year of collection (See the numbers of live plant accessions per time
period in Table A1). All spatial data were transformed into the same geographic coordinate
system for further analyses.

2.4. Spatial Data from Remote Sensing

For classification of the focal species, we used Landsat TM 5 and Landsat 8 OLI images
obtained from the public domain of the U.S. Geological Survey (Landsat Collection 1, Level
2—Land Surface Reflectance, i.e., after atmospheric correction). We obtained images for
March–April and October–November from 1990 to 2020 (Appendix A Table A2) with the
cloud cover less than 5 %. Prior to classification, we applied image to image registration
using ESRI ArcGis 10.6 to ensure matching of corresponding pixels in the matrix. We
resampled the images at a 15-m spatial resolution using the bilinear transformation method.

2.5. Remote Sensing Classification

The classification and mapping algorithm included the following steps: We masked
out the images for the areas that cannot support the vegetation or are out of our research
area (cities, agricultural fields, roads, established forests). In the first step we masked out
the urban areas, roads and agricultural fields using the spatial data obtained from the
local mapping organization and free GIS online databases. In addition, we calculated the
Normalized Differential Vegetation Index (NDVI) (Equation (1)) per image to mask out
the non-vegetated areas. Based on general knowledge [46,47] about NDVI ranges and
related land cover classes, we extracted the following land cover classes: bare soil or sparse
vegetation (0–0.1), medium vegetation cover (0.1–0.3) (dense herbaceous vegetation and
shrubs) and high vegetation cover (>0.3) (shrubs and trees). NDVI images for March/April
(spring) and October/November (autumn) per time period were used to avoid inaccurate
masking of bare soil. More specifically, based on the phenology of the flora in the region, if

https://www.parks.org.il/en/
https://www.gbif.org/
https://www.gbif.org/
https://www.mapi.gov.il/en
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NDVI values for spring and autumn remained <0.1 [47] then the area was considered bare
soil and thus masked out of the image.

NDVI =
NIR − RED
NIR + RED

(1)

Classification of A. saligna and H. subaxillaris was done using 70% (random spatial
subset) of the data of live plant accessions obtained from INPA, GBIF, and the field data
collection campaign. The live plant accessions were spatially rarified that only one GPS
record per species fall per pixel. We used masked satellite images (Blue, Green Red,
NIR, SWIR1, and SWIR2 bands) from spring for the classification of A. saligna and satel-
lite images from autumn for H. subaxillaris based on their yellowish flowering period.
The classification was performed in ESRI ArcGIS using the Maximum Likelihood Clas-
sifier (https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-
maximum-likelihood-classification-works.htm (accessed on 11 January 2022)). Maximum
Likelihood Classifier appeared to be a better fit than the spectral unmixing approach due
to poor representation of the pure end-member pixels in our research area. In the first step,
we used live tree accessions with a 15-m buffer for the collection of a spectral reference for
A. saligna and H. subaxillaris. The classification was done separately for each species by
applying a rejection fraction of 95%. The rejection fraction defines the likelihood of each
pixel to be classified into the related class based on the corresponding reference spectra.
After individual classification of A. saligna and H. subaxillaris we have combined two layers
in one classification map.

2.6. Modeling Expansion and Future Projections of the Plant Distributions

The data analyses were based on the following assumptions: Due to the relatively
low diversity of flora in the sand dunes, the alien species have the advantage of rapid
expansion and will cover most of the vacant areas. Vacant areas are defined as bare ground
and areas with sparse annual vegetation which senesces by midsummer and will not reach
built-up areas. Therefore, after senescence, potential vacant areas increase in size, giving the
opportunity to the invasive species to take over. Additionally, we assume that expansion of
the herbaceous plant, H. subaxillaris, and the tree species, A. saligna, will go through the
following phases: domination of H. subaxillaris, increasing shared area of H. subaxillaris and
A. saligna and domination of A. saligna.

Based on previous studies on expansion rates of perennial vegetation, we assumed that
native trees and shrubs (other than our focal invasive species) will not change significantly
between 2020 and 2100 within the research area (with an average change of 20% per
100 years) [48,49]. Furthermore, 2020 is considered the baseline for urban development and
abiotic characteristics remain within the range of conditions of the period 1990–2020. In
order to comprehend the behavior of each invasive species individually, as well as together,
we developed three possible scenarios: Scenario I—expansion of H. subaxillaris while
A. saligna remains unchanged; Scenario II—expansion of A. saligna, while H. subaxillaris
remains unchanged; and Scenario III—A. saligna and H subaxillaris expand simultaneously
creating land covers of exclusively A. saligna or H. subaxillaris, as well as land covered by a
mix of both plant species.

Modeling of the potential expansion of the focal species was based on the CA modeling
approach of the Simulation of Land-use Change Using R (SIMLANDER) package [37]. This
approach simulates the expansion of the invasive species based on past changes in plant oc-
currences. Suitability and probability analyses of the landscape matrix define the potential
of the geographic grid to be occupied by the target species at time point x. The procedure of
CA modeling includes several steps: (1) producing the land cover (LC) maps for different
time periods: H. subaxillaris, A. saligna, vacant/bare/open areas; (2) constructing suitability
maps based on Euclidean distance from the source plant (i.e. H. subaxillaris and A. saligna),
distance from the seashore (as salt sprays limit the re-vegetation processes); (3) constructing
transition probability maps based on LC changes from time i to time i + x (where i is time

https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-maximum-likelihood-classification-works.htm
https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-maximum-likelihood-classification-works.htm
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zero and x are the coming years) and remaining vacant areas: areas that are vacant and
closer to the source plant have high probabilities and rate of plant spread (or how many
grids remain vacant) is adjusted after each simulation cycle (from 1990 to 2020, 5 years
segments); (4) accuracy assessment of the simulated expansion using the kappa statistic;
(5) training and validation of the models for future plant expansion; and (6) producing
future projections of focal plant expansion.

Simulation of the expansion was done using neighboring rule nsize = 9 (number of
pixels/grids for moving window) r = 1, rules = 100, 50, 0 [50,51]. Post simulation, the
results were assessed with the kappa statistic using the live plant accessions obtained from
INPA, GBIF, and the field campaign. Simulated maps for the time period 1990–2020 for
A. saligna and 2000–2020 for H. subaxillaris were used for training the future forecast of plant
expansion. Training the future forecast was based on: 1990–2015 simulation maps (from the
previous step) for A. saligna and 2000- 2015 for H. subaxillaris, respectively, and 2015–2020
for validation of the plant spread forecast. The following forecast models were tested using
the FORECAST R package for time series analysis: auto regressive integrated moving
average (ARIMA), linear exponential smoothing (HOLT) and exponential smoothing state-
space model with Box-Cox transformation (TBATS). Model evaluation and validation were
based on the Akaike Information Criterion (AIC), root mean square error (RMSE), and
mean absolute percentage error (MAPE). The best models with the lowest error were used
for the estimation of focal species expansion.

2.7. Accuracy Assessment of Remote Sensing Classification and the Plant Expansion Model

Accuracy assessment of the remote sensing classification of the focal species and
simulated plant expansion was done using the kappa statistic [52]. Prior to the classifi-
cation and the modeling, we divided the live plant accessions (collected from the local
archives—INPA, GBIF, and field campaign) into two: 70% and 30% training and testing
datasets, respectively. We calculated the accuracy measures (overall accuracy, producer’s
accuracy, user’s accuracy, and kappa coefficient) of the results based on 30% of the live
plant accessions.

2.8. Landscape Studies

Evaluation of the landscape dynamics was based on the following landscape parame-
ters: Proximity index (Equation (2)), Number of individual patches of the focal species, and
Shannon diversity index (Equation (3)) for landscape heterogeneity. Landscape metrics
were calculated using Fragstat software (https://www.fs.usda.gov/treesearch/pubs/3064
(accessed on 11 January 2022)).

Proximity =

n

∑
s=1

(
aijs

h2
ijs
). (2)

aijs = area (m2) of the patch ijs within the specified neighborhood (m) of patch ij.
h2

ijs = distance (m) between patch ijs, based on patch edge–to-edge distance, computed
from cell center to cell center.

ShannonDiversityIndex (H) = −
S

∑
j=1

pi ln pi (3)

p = number of individual land cover class grids divided by the total number of grids
in the area.

S = number of land cover classes in the area.

https://www.fs.usda.gov/treesearch/pubs/3064
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3. Results
3.1. Remote Sensing Classification of A. saligna and H. subaxillaris

The classification results for 1990, 1995, 2000, 2010 and 2020 are shown in Figure 2.
The overall accuracy of the classification maps for H. subaxillaris and A. saligna for the
selected years varied between 85–86% and 87–94 %; the kappa coefficient varied between
0.64–0.7 and 0.71–0.82, respectively (Table 1). It should be noted that due to the absence of
live accession data for H. subaxillaris for 1990 and 1995, we were not able to conduct the
classification. Consequently, maps of these years are missing for this plant species.

Figure 2. The remote sensing classification demonstrating expansion of invasive species (A. saligna
and H. subaxillaris) into open/vacant areas for 1990 and 1995 A. saligna alone, and 2000, 2010, 2020 for
A. saligna and H. subaxillaris.

Table 1. Accuracy assessment of remote sensing classification of A. saligna and H. subaxillaris.

A. saligna H. subaxillaris

Year OA (%) PA/UA
(%)

Kappa
Coefficient

Number of
Validation
Samples

OA (%) PA/UA
(%)

Kappa
Coefficient

Number of
Validation
Samples

1990 77 86/63 0.68 30
1995 89 97/74 0.69 30
2000 91 98/87 0.7 30 85 95/74 0.65 25
2005 94 100/78 0.71 158 84 88/81 0.69 25
2010 90 98/83 0.77 360 86 94/78 0.70 280
2014 94 100/84 0.82 306 85 90/81 0.64 216
2020 87 98/77 0.75 369 85 84/89 0.68 259

OA = Overall Accuracy. PA = Producer’s Accuracy. UA = User’s Accuracy.

The surface area (Table 2) covered by A. saligna, obtained from the remote sensing
classification results, decreased from 39 km2 in 1990 to 24 km2 in 1995, probably following
an eradication attempt, and then increased to 75 km2 in 2020—more than tripling its cover
in 25 years. The surface area covered by H. subaxillaris decreased from 17 km2 to 10 km2 in
2005 and then increased to 55 km2 in 2020, increasing its cover by more than five-fold in
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20 years. Additionally, the decrease in surface area coverage in both cases was found to be
negatively correlated to the number of dry months per year. More specifically, A. saligna
cover area was negatively correlated to the number of dry months per year with a 5-year lag
(Pearson’s r = −0.6, p < 0.05) while H. subaxillaris was negatively correlated to the number
of dry months per year without a lag effect (Pearson’s r = −0.5, p < 0.05). Furthermore,
based on layer overlay, the focal species shared about 1 km2 of surface area in 2000; this
shared area increased to 25.9 km2 in 2020. The total area covered by both species thus
increased from ~49 km2 in 2000 to ~127 km2 in 2020 and the vacant area (bare soil and
annual herbaceous vegetation land cover) decreased gradually from 720 km2 (92% of total
available open area) to 640 km2 (82% of total available open area).

Table 2. Surface area (km2) of A. saligna, and H. subaxillaris, Mixed Land Cover (cover shared by both
focal species) and vacant area are derived from the classification maps.

Year
Area Covered
Exclusively by

A. saligna (km2)

Area Covered
Exclusively by

H. subaxillaris (km2)

Mixed Land
Cover Class

(km2)

Vacant
Area (%)

Vacant Area
(km2)

1990 39.7 N/A N/A 94 730
1995 23.8 N/A N/A 96 746
2000 31.2 17.0 0.97 92 720
2006 33.2 10.4 0.24 93 726
2010 42.3 35.2 3.64 88 689
2014 47.3 43.5 11.9 86 667
2020 48.7 55.0 25.9 82 640

3.2. Simulation of Focal Species Expansion from 1990 to 2020 and Modeling Future Cover for the
Period 2020–2100

Remote sensing classification maps and related surface areas (Table 2 and Figure 2)
were used to simulate the expansion of A. saligna and H. subaxillaris and train the models for
the future forecast. The simulated expansion of A. saligna and H. subaxillaris for the period
1990–2020, based on remote sensing classification maps, resulted in the average overall ac-
curacy of 81.9 ± 1.9% and 81.8 ± 3.7% and kappa coefficients of 0.52 ± 0.06 and 0.53 ± 0.05,
respectively (Appendix A Table A3). The simulated surface area shared by A. saligna
and H. subaxillaris was slightly higher than the corresponding surface areas extracted
from the remote sensing-based classification maps (Figure 3). Overall, the differences be-
tween simulated vs classification-based results were 1.63 ± 0.79 km2, 1.01 ± 0.84 km2, and
0.62 ± 1.68 km2 for shared areas of both focal species, H. subaxillaris alone and A. saligna
alone, respectively.

We used the simulated expansion results (Figure 3) to train the model for potential
species expansion in the future. The best performed model accuracies were AIC = 68.8,
RMSE = 1.33 and MAPE = 1.85 for A. saligna and AIC = 58.1, RMSE = 2.32 and MAPE = 3.79
for H. subaxillaris. Validation accuracies of the forecast were RMSE—0.22 and 0.42—and
MAPE—0.22 and 0.47—for A. saligna and H. subaxillaris, respectively (Table A4).

The future potential expansion of the focal species was simulated in three different
scenarios: Scenario I—expansion of H. subaxillaris while A. saligna remains unchanged,
Scenario II—expansion of A. saligna while H. subaxillaris remains unchanged, and Scenario
III—both species develop and expand simultaneously (Figure 4).

Scenario I—hypothetical: Based on remote sensing classification maps, H. subaxillaris
currently covers 81 km2 and the total available vacant area (i.e., available for further
colonization and establishment) is currently estimated at 640 km2. Under conditions of no
competition with A. saligna, and assuming the other perennial native vegetation remains
constant, H. subaxillaris will fully cover the remaining vacant area by 2070 (Figure 4a). The
rate of increase in surface area covered by H. subaxillaris per decade rises from >0.8 to 1.1
from 2000 to 2040 until more than 50% of the open area is colonized by this species, and
then drops gradually down to 0.1 by 2060–2070 (Figure 4b).
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Figure 3. Simulation-based vs remote-sensing classification-based evaluation of cover area changes
of A. saligna, H. subaxillaris, and their shared cover area for the period 1990–2020.

Scenario II—hypothetical: Based on remote sensing classification maps, A. saligna
currently covers approximately 78 km2 and the total available vacant area is currently
estimated at 640 km2. Under conditions of no competition with H. subaxillaris, and assuming
the other perennial native vegetation remains constant, A. saligna will cover most of the
remaining open areas by 2100 (Figure 4a). The rate of increase of A. saligna surface area per
decade varies from 0.5 to 0.7 between 2000 and 2050 and then decreases gradually to 0.25
by 2070 (Figure 4b).
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Figure 4. A forecast of the future expansion and rate of increase of the focal species in three different
scenarios. (a) Scenario I—expansion of H. subaxillaris while A. saligna remains constant; Scenario
II—expansion of A. saligna while H. subaxillaris remains constant, Scenario III—expansion of both
species together; (b) Scenario I—the rate of area changes of H. subaxillaris while A. saligna remains
constant; Scenario II—the rate of area changes of A. saligna while H. subaxillaris remains constant,
Scenario III—the rate of area changes of both species together.

Scenario III—realistic: Based on remote sensing classification maps, currently, H.
subaxillaris and A. saligna together cover approximately 130 km2, of which 25.9 km2 is
shared by both species. The total remaining vacant area within the research area is 640 km2.
Under the assumption that the other perennial native vegetation remains constant and both
invasive focal species are expanding, the available vacant area will be fully covered by them
by 2060–2070 (Figure 4a). The growth rate of both invasive species, taken together, remains
generally high, >0.6 from 2000 to 2050, and then drops to 0.08 by 2070 (Figures 4b and 5).

Figure 5. The simulated spatial pattern of expansion of invasive species (Scenario III, A. saligna and
H. subaxillaris).
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3.3. Landscape Dynamics

For overall analysis of the landscape, we calculated the proximity (connectivity) index
and Shannon’s diversity index for past (2010, 2020) and future (2030, 200, 2050, 2060 and
2070) scenarios of plant expansion. The spatial statistical measures were based on the
following land cover (LC) classes: open areas, H. subaxillaris, A. saligna, and a mixture
of both species. Figure 5 summarizes the trend of spatial dynamics in the research area.
Connectivity within the landscape matrix is high from 2010 to 2030 (as more open areas
are available) and then gradually decreases from 2040 to 2070 (as vacant areas for plants
decrease due to the massive expansion). Diversity of the landscape has an opposite trend
to landscape connectivity in the area (Figure 6a).

Figure 6. The landscape expansion dynamics of A. saligna and H. subaxillaris: (a) connectivity and
diversity indices of the landscape at the landscape level; (b) Connectivity of A. saligna, H. subaxillaris
and mixed areas with both species; (c) Number of individual patches of A. saligna, H. subaxillaris and
both species.
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More detailed analyses of landscape dynamics per land cover class are presented in
Figure 6b,c. Connectivity of A. saligna and H. subaxillaris remains relatively stable from
2010 to 2070. It is accompanied by increasing numbers of standalone patches. In contrast,
the areas shared by both focal species become highly connected (Figure 6b) as the small
standalone patches merge (Figure 6c). This dynamic process creates a strongly patchy
landscape matrix dominated by mixed invasive plant clusters.

4. Discussion
4.1. Land Cover Changes of A. saligna and H. subaxillaris and Their Expansion Rate from 2000
to 2020

The importance of monitoring invasive plant species expansion has been broadly
highlighted in the scientific literature mostly due to their negative effects on the ecosystems
to which they are introduced. However, studies with some background knowledge about
their past dynamics and progression, including future projections, are still limited. The
results of this study demonstrated a potential solution to studying the dynamics of plant
expansion: Landsat time series integrated with a grid-based spatial analysis approach.
Additionally, our analyses provide a comprehensive view of the expansion of A. saligna and
H. subaxillaris from 1990 to 2020, and future projections using the CA modeling approach.
Integration of the Landsat time series with live plant accessions from the field using
the maximum likelihood classifier (MLC) enabled us to classify and map A. saligna and
H. subaxillaris with considerable overall accuracy (85–94%; Tables 1 and 2). Other, more
complex remote sensing classifiers such as support vector machines or random forests have
higher accuracy performances [53–55]. However, Li et al., showed non-significant variation
in accuracy measures of various classifiers using Landsat thematic mapper for classification
of urban, agriculture, water, and several distinctive vegetation classes [56]. Nevertheless,
we must acknowledge the limitation of using coarse spatial resolution Landsat images,
which may cause misidentification of specific plant species due to high plant species
richness within the available grid size [57,58]. However, this satellite product represents the
one and only, freely available global data source covering the period since 1980 and allows
us to study the long-term expansion of our focal species. Moreover, the global coverage of
the Landsat time series makes our work easily reproducible for other invasive plant species
in different geographic regions.

Based on our remote sensing analysis, the herbaceous H. subaxillaris showed a higher
expansion rate (approximately 107% per decade from 2000 to 2020) and reached ~81 km2

(55.0 km2 H. subaxillaris patches and 25 km2 shared with A. saligna) from 2000 to 2020,
compared to the tree species, A. saligna (approximately 50% per decade from 2000 to
2020). The higher expansion rate of the herbaceous species can be explained by several
factors, such as rapid development, easily adaptable nature to the environment with limited
resources, and most of all, phenology. Flowering by H. subaxillaris begins in late October
and may last until April of the following year [43]. During the flowering period and seed
development of H. subaxillaris, other annual vegetation has already senesced, giving the
invasive species the opportunity to establish not only in open bare soil areas but also to
take over the places covered by the dry herbaceous vegetation. In contrast, the flowering
period of A. saligna overlaps with the vegetative period of other plant species in the region
(late February to mid-April). Despite the natural competition for resources and pollinators
with local flora, A. saligna easily manages rapid expansion due to its fast developmental
cycle, as it can reach up to 8 m in height in just a 4–5-year period [59]. Although the life
cycle of A. saligna is approximately 20 years, there is constant repopulation through the
new seedling establishment and vegetative growth that gives very low chances to other
plant species to take over [60].

4.2. Future Projections of A. saligna and H. subaxillaris Expansion

The dynamics of the invasive species derived from our analysis generate a concern
about their ability to expand quickly and raise the question: can we estimate the pattern
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and time when both plant species saturate the whole coastal dune area leaving no extra
space for the development of native flora?

As a reminder, the future potential expansion of A. saligna and H. subaxillaris was
estimated under certain assumptions: that expansion of native tree and shrub species does
not exceed 20% of their current coverage [48,49,61] from 2020 to 2100; and that the built-up
area remains as of today. In the single species expansion scenarios (Figure 4), which assume
that the competing invasive species is kept constant as of 2020, H. subaxillaris remains
the most aggressive invader, and depletes the available area by 2070, in comparison to
A. saligna, which will potentially cover the entire research area by 2100 (Figure 4). Besides
the advantages of its reproductive phase, which overlaps with the beginning of the rainy
season and senesced herbaceous vegetation, H. subaxillaris has seeds both with and without
a pappus [43]. This may explain the high rate of expansion in general and justify the future
simulated trends shown by our analyses, as the duality in seed morphology expedites the
dispersal of seeds not only close to the source plant but also at a considerable distance when
carried by the wind (seeds with a pappus) [62,63]. Although H. subaxillaris is the faster
colonizer, we assume that the tree species, A. saligna, has the potential to gradually take over
the places colonized by the herbaceous invader. Acacia saligna is known for its high biomass
production (annual yield 1.5–10 m3 ha−1; [59] and considerably long-lived seed bank [64],
which may suppress the germination of seeds of co-occurring plant species, therefore
hindering the restoration of the flora. Moreover, intensified urban development and the
resulting increased disturbance of the area rather favors the focal species by exposing
new areas for spread, creating new corridors for seed dispersal, and facilitating expansion.
Therefore, based on our analysis we assume that H. subaxillaris will take over the most
available areas in the near future until A. saligna claims the areas already colonized by
H. subaxillaris. Hence, the areas categorized as shared by both species in the future will
become exclusively A. saligna patches (Figure 5).

4.3. Potential Effects of A. saligna and H. subaxillaris on the Landscape Matrix

The increased surface area covered by the invasive plants will affect propagule pres-
sure [65]. One of the model examples of this phenomenon is our research target species,
H. subaxillaris, with its current massive coverage of up to approximately 81 km2 (Table 2),
which developed from a single population introduced in the north of Israel in the early
1970s [15]. Additionally, future expansion of the focal species will affect landscape hetero-
geneity as the diversity of the land cover diminishes with time (Figure 6). Although we
have not directly tested in this study the heterogeneity–diversity relationships [66,67], nor
the projected climate change projections, particularly on rainfall distribution changes [68],
we can plausibly assume that the expansion of H. subaxillaris and A. saligna may alter the
quality of the landscape matrix and reduce the potential of the area to support the current
biodiversity of flora and fauna.

5. Conclusions

Despite the limited availability of historical data, we were able to reconstruct the past
cover area of the two focal invasive species using coarse Landsat 5 and OLI time series
data with considerable overall accuracy. Reconstruction of the past dynamics of plant
expansion enabled us to create future simulation scenarios using a grid-based, spatial
modeling approach (Cellular Automata). These findings can be used by environmental
decision-makers and land managers to develop an action plan under various scenarios of
invasive plant expansion that may affect ecological issues within the coastal plain of Israel.
This study represents the first effort to quantify the actual area covered by A. saligna and
H. subaxillaris in the region and their potential future expansion trajectories. Yet, questions
remain regarding future climate change effects on species abundance and distribution, as
well as the ecological costs and consequences of this invasion, which should be addressed
in future studies.
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Appendix A

Table A1. Live accessions obtained from INPA.

Year A. saligna H. subaxillaris

1990–2000 47 N/A
2000–2005 56 67
2005–2010 110 156
2010–2015 159 256
2018–2020 357 393

Table A2. List of images of Landsat 5 TM and Landsat 8 OLI used in this research.

Image ID Sensor Date Level

LT05_L2SP_175037_19901101_20200915_02_T1 TM 5 1 November 1990 L2
LT05_L2SP_175038_19901101_20200915_02_T1 TM 5 1 November 1990 L2
LT05_L2SP_174037_19900315_20200916_02_T1 TM 5 15 March 1990 L2
LT05_L2SP_174038_19900315_20200916_02_T1 TM 5 15 March 1990 L2
LT05_L2SP_175038_19951115_20200912_02_T1 TM 5 15 November 1995 L2
LT05_L2SP_175037_19951115_20200912_02_T1 TM 5 15 November 1995 L2
LT05_L2SP_175038_19950405_20200912_02_T1 TM 5 5 April 1995 L2
LT05_L2SP_175037_19950405_20200912_02_T1 TM 5 5 April 1995 L2
LT05_L2SP_175037_20001112_20200906_02_T1 TM 5 12 November 2000 L2
LT05_L2SP_175038_20001112_20200906_02_T1 TM 5 12 November 2000 L2
LT05_L2SP_174037_20000326_20200907_02_T1 TM 5 26 March 2000 L2
LT05_L2SP_174038_20000326_20200907_02_T1 TM 5 26 March 2000 L2
LT05_L2SP_175038_20050331_20200902_02_T1 TM 5 31 March 2005 L2
LT05_L2SP_175037_20050331_20200902_02_T1 TM 5 31 March 2005 L2
LT05_L2SP_174038_20061005_20200831_02_T1 TM 5 5 October 2006 L2
LT05_L2SP_174037_20061005_20200831_02_T1 TM 5 5 October 2006 L2
LT05_L2SP_175038_20090411_20200828_02_T1 TM 5 11 April 2009 L2
LT05_L2SP_175037_20090411_20200828_02_T1 TM 5 11 April 2009 L2
LT05_L2SP_175038_20101108_20200823_02_T1 TM 5 18 November 2010 L2
LT05_L2SP_175037_20101108_20200823_02_T1 TM 5 18 November 2010 L2
LC08_L2SP_174037_20140418_20200911_02_T1 OLI 8 18 April 2014 L2
LC08_L2SP_174037_20141027_20200910_02_T1 OLI 8 27 October 2014 L2
LC08_L2SP_174038_20140418_20200911_02_T1 OLI 8 18 April 2014 L2
LC08_L2SP_174038_20141027_20200910_02_T1 OLI 8 27 October 2014 L2
LC08_L2SP_175038_20200308_20200822_02_T1 OLI 8 8 March 2020 L2
LC08_L2SP_175037_20200308_20200822_02_T1 OLI 8 8 March 2020 L2
LC08_L2SP_175037_20201018_20201105_02_T1 OLI 8 18 October 2020 L2
LC08_L2SP_175038_20201018_20201105_02_T1 OLI 8 18 October 2020 L2
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Table A3. Accuracy assessment of simulated surface area expansion of A. saligna and H. subaxillaris.

H. subaxillaris A. saligna

Year Overall
Accuracy

Kappa
Coefficient

Number of
Samples

Overall
Accuracy

Kappa
Coefficient

Number of
Samples

2010 79% 0.54 280 83% 0.62 360
2011 80% 0.57 280 79% 0.5 354
2012 81% 0.45 240 79% 0.49 326
2013 84% 0.53 216 84% 0.43 302
2014 88% 0.45 201 82% 0.47 306
2015 84% 0.58 150 82% 0.51 293
2016 85% 0.59 148 82% 0.47 305
2017 74% 0.48 211 82% 0.54 316
2018 81% 0.54 176 85% 0.6 326
2019 80% 0.55 184 80% 0.55 341
2020 84% 0.61 259 83% 0.63 369

Table A4. Training and validation results of forecast models of A. saligna and H. subaxillaris spread.

Model Training

A. saligna 1990–2015 Arima HOLT TBATS

RMSE 1.33 1.55 2.67
MAPE 1.85 2.69 5.98

AIC 68.8 92.4 109.2

H. subaxillaris (2000–2015) Arima HOLT TBATS
RMSE 2.32 2.32 3.5
MAPE 3.79 4.01 12.86

AIC 58.1 70.55 76

Model Validation (2015–2020)

A. saligna ARIMA HOLT TBATS
RMSE 0.22 0.47 15.8
MAPE 0.22 0.59 20.99

H. subaxillaris ARIMA HOLT TBATS
RMSE 0.42 0.46 17.7
MAPE 0.47 0.49 21.52
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