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Abstract: Anisotropic canopy reflectance plays a crucial role in estimating vegetation biophysical
parameters, whereas soil reflectance anisotropy affects canopy reflectance. However, woodland
canopy bidirectional reflectance distribution function (BRDF) models considering soil anisotropy
are far from universal, especially for the BRDF models of mountain forest. In this study, a mountain
forest canopy model, named geometric-optical and mutual shadowing and scattering from arbitrar-
ily inclined-leaves model coupled with topography (GOSAILT), was extended to consider the soil
anisotropic reflectance characteristics by introducing the simple soil directional (SSD) reflectance
model. The modified GOSAILT model (named GOSAILT-SSD) was evaluated using unmanned aerial
vehicle (UAV) field observations and discrete anisotropic radiative transfer (DART) simulations.
Then, the effects of Lambertian soil assumption on simulating the vi-directional reflectance factor
(BRF) were evaluated across different fractions of vegetation cover (Cv), view zenith angles (VZA),
solar zenith angles (SZA), and spectral bands with the GOSAILT-SSD model. The evaluation results,
with the DART simulations, show that the performance of the GOSAILT-SSD model in simulating
canopy BRF is significantly improved, with decreasing RMSE, from 0.027 to 0.017 for the red band
and 0.051 to 0.037 for the near-infrared (NIR) band. Meanwhile, the GOSAILT-SSD simulations show
high consistency with UAV multi-angular observations (R2 = 0.97). Besides, it is also found that the
BRF simulation errors caused by Lambertian soil assumption are too large to be neglected, with a
maximum relative bias of about 45% for the red band. This inappropriate assumption results in a
remarkable BRF underestimation near the hot spot direction and an obvious BRF overestimation
for large VZA in the solar principal plane (PP). Meanwhile, this simulation bias decreases with the
increase of fraction of vegetation cover. This study provides an effective technique to improve the ca-
pability of the mountain forest canopy BRDF model by considering the soil anisotropic characteristics
for advancing the modeling of radiative transfer (RT) processes over rugged terrain.

Keywords: canopy BRF; soil reflectance; sloping terrain; forest; Lambertian assumption

1. Introduction

Anisotropic reflectance is a result of land surface intrinsic scattering properties, which,
in turn, can be linked to its structural and biophysical characteristics, as described by the
bidirectional reflectance distribution function (BRDF) [1,2]. BRDF is meaningful for scien-
tific research and remote sensing applications, such as land cover classification, radiation
budget, and vegetation dynamic monitoring [3,4]. Complex terrain, covering about 24% of
the land surface of the Earth, significantly affects anisotropic reflectance by the modulation
of local sun-terrain-sensor (STS) geometries and redistribution of the direct and diffuse
radiations received by a target, which results in great challenges and complexities in BRDF
modeling [5,6]. There have been increased interests in surface BRDF modeling over rugged
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terrain with the advent of freely available, high-resolution digital elevation models (DEM),
and surface BRDF models for rugged terrain have been developed over recent years [5].
For example, the GOSAILT (geometric optical and mutual shadowing and scattering from
arbitrarily inclined leaves model coupled with topography) model, which is a hybrid
of geometric and radiative transfer models coupled with topography, was developed to
quantitatively retrieve forest canopy biophysical parameters over mountainous regions
from remote sensing observations [7].

Background or underlying soil is essential for vegetation canopy BRDF models, since
it serves as the lower boundary and contributes the radiation in the vegetation–soil system
of canopy BRDF models [8,9], especially for sparse woodland (e.g., forest, orchard, tea
plantation) canopy, where the contribution of soil may even reach up to 80% near the
nadir view directions, whether over flat or rugged surface [7]. Thus, soil reflectance has
always been an important input parameter of canopy BRDF models [9–11]. However, the
current canopy BRDF modeling focuses on vegetation architectural or spectral properties,
but the soil reflectance is only treated to be isotropic and as a constant when the model
simplification is considered [6,7,12].

However, investigations show that the soil reflectance on the earth is anisotropic,
and the backscattering and hot spot effects are significant [13–17]. The effects of soil
anisotropy on the canopy bidirectional reflectance factor (BRF) were first investigated by
field observations [13], and the results suggest that anisotropic reflectance of soil plays a
dominated role in sparse vegetation canopy (refers to leaf area index (LAI) that is smaller
than 3.0) [14]. It was also found that ignoring the anisotropy of soil reflectance will cause
significant errors on canopy BRF estimation at low LAI conditions, and the bias could reach
up to 0.3 in the hotspot direction [10], which highlighted the importance of considering soil
anisotropy on canopy BRDF modeling.

Currently, great efforts have been made to model canopy BRDF with anisotropic
soil reflectance. For example, the Hapke soil reflectance model [18], together with the
PROSPECT-5 leaf radiative transfer model [19], were coupled to the ED2 (Ecosystem De-
mography model, version 2), in order to predict canopy spectral reflectance accurately [20].
Similar efforts, considering soil anisotropy, have been reported in physical BRDF models,
such as GORT (hybrid GO and RT) [21], SLC (soil-leaf-canopy) [15], and so on. Besides,
computer simulation models can also easily implement the coupling of soil BRDF mod-
els [22–24]. However, it can be found that current canopy BRDF models are either physical
models for flat land surface or computer simulation models with low computational effi-
ciency and complicated inversion operation. Over the last several decades, canopy BRDF
models for complex terrain were developed [2,6,7,25], yet they ignored the anisotropy of
soil reflectance and caused a major uncertainty for subsequent, such as mountain vegetation
canopy variable retrievals [26,27]. Therefore, the topographic effects and anisotropy of soil
reflectance should be considered together in canopy BRDF modeling over complex terrain.

The aim of this study is to extend the GOSAILT model to consider reflectance anisotropy
of soil for better modeling of forest canopy bi-directional reflectance over sloping terrain,
as well as to evaluate the effect of soil anisotropy on mountain forest canopy BRF, based on
the modified GOSAILT model. In Section 2, the GOSAILT model and its extension method
are introduced. In Section 3, the simulated and observed datasets for model validation
are described. In Sections 4 and 5, the performances of model and effects of Lambertian
soil reflectance assumption on mountain forest canopy BRF are analyzed and discussed,
respectively. Finally, the conclusion is briefly summarized in Section 6.

2. Methods
2.1. Extending GOSAILT Model to Consider Soil Reflectance Anisotropy

The GOSAILT model is a sloping surface forest canopy hybrid physical BRDF model,
based on the GOMS model and coupled with the SAIL model [7]. In the GOSAILT model,
the canopy reflectance of discrete forest (R), observed by remote sensing sensor, is expressed
as the sum of the reflectance of four individual components (i.e., the sunlit crown (C), sunlit
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soil (G), shaded crown (T), and shaded soil (Z)), weighted by their areal proportion within
the pixel (Equation (1)). The GOSAILT modified the four-component areal proportion
(i.e., KC, KG, KT , and KZ), and the four-component BRFs (i.e., Cs(d), Gs(d), Ts(d), and Zs(d)),
whereas the quantities of the four-component BRFs were modeled by Lambertian soil
reflectance (see Equations (A1)–(A10) in Appendix A).

R(θs, θv, ϕ) = KC ∗ C + KG ∗ G + KT ∗ T + KZ ∗ Z (1)

where θs and θv are the solar zenith angle (SZA) and view zenith angle (VZA), respectively;
ϕ is the relative azimuth angle (RAA) between the sensor and the sun; KC, KG, KT , and KZ
are the areal proportion of C, G, T, and Z within the pixel, respectively.

According to the GOSAILT model, considering atmospheric diffuse scattering, the
reflected radiation X is, respectively, expressed as the linear weighted sum of the solar
direct radiation Xs and atmospheric diffuse scattering X f of each component by the ratio
( fd) of the diffuse scattering and total radiation. The four-component BRFs modeling,
considering soil anisotropic reflectance characteristics, can be carried out in two cases.

2.1.1. Four-Component BRFs Modeling with Only Direct Solar Radiation ( fd = 0)

For fd = 0, only direct solar radiation with a certain incidence geometry exists in
the scene. At this moment, four components of the forest canopy can be observed by
sensor, namely sunlit crown, sunlit soil, shaded crown, and shaded soil. The reflected
radiation of the four components in the forest canopy were parameterized according to
the four-stream approximation algorithm [15]. Since the four-component BRFs all contain
the interaction terms between photons and soil, the reflected radiation of soil can be
divided into four four-stream reflected radiation (bi-directional, hemispherical-directional,
directional-hemispherical, and bi-hemispherical reflected radiation), in consideration of
the soil anisotropic reflected radiation during the parameterization. Figure 1 displays the
reflected radiation transfer process of the four components in the forest canopy, in which
each serial number represents a specific radiation transfer process. At the same time, the
types of directional reflectance factors of the soil involved in the radiative transfer process
are also marked with different colors (corresponding to different directional reflectance
factors) in the diagram.

As for the sunlit crown (Figure 1a), the radiative transfer process of the sunlit crown
included four cases: (1) single scattering from the crown without soil interactions ( 1©); (2)
multiple scattering from the crown without soil interactions ( 2©); (3) photons transmitted
through within-crown gaps ( 3© and 4©); and (4) photons transmitted through between-
crown gaps ( 5© and 6©). The component BRF Cs, in the GOSAILT model (marked with
Cold

s ), was initially expressed as Equation (2), where the single variable rsoil was used to
describe the contribution of the soil reflectance to canopy BRF.

Cold
s = ρsos + ρsod +

[(
1− Pgap

)
(τss + τsd) + Pgap

]
rsoil(τoo + τdo)

1− rdd
(
1− Kopen

)
ρdd

(2)

where Pgap represents the canopy gap ratio, and Kopen represents the canopy openness;
ρsos and ρsod represent the single and multiple scattering of tree crown, respectively. rsoil
represents Lambertian soil reflectance. τss, τsd, τoo, and τdo represent the bi-directional trans-
mittance, hemispherical-directional transmittance, directional-hemispherical transmittance,
and bi-hemispherical transmittance of tree crown, respectively.

Considering the soil reflectance anisotropy, the rsoil in the Equation (2) is refined into
four reflectance factors of soil: bi-directional reflectance (rso), hemispherical-directional
reflectance (rdo), directional-hemispherical reflectance (rsd), and bi-hemispherical reflectance
(rdd); then, the Cs is extended as the functions of four anisotropic soil reflectance factors
(Equation (3)).
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Cs = ρsos + ρsod +

[(
1− Pgap

)
(τssrso + τsdrdo) + Pgaprso

]
τoo +

[(
1− Pgap

)
(τssrsd + τsdrdd) + Pgaprsd

]
τdo

1− rdd
(
1− Kopen

)
ρdd

(3)

Similarly, according to the radiative transfer processes of Figure 1 and Table A1, the
other component BRF Gs, Ts, and Zs can be derived by following (Equations (4)–(6)).

Gs = rso +

[(
1− Pgap

)
(τssrsd + τsdrdd) + Pgaprsd

][(
1− Kopen

)
ρdd
]
rdo

1− rdd
(
1− Kopen

)
ρdd

(4)

Ts = ρsod +

[(
1− Pgap

)
(τssrso + τsdrdo) + Pgaprso

]
τoo +

[(
1− Pgap

)
(τssrsd + τsdrdd) + Pgaprsd

]
τdo

1− rdd
(
1− Kopen

)
ρdd

(5)

Zs =
(
1− Pgap

)
(τssrso + τsdrdo) +

[(
1− Pgap

)
(τssrsd + τsdrdd) + Pgaprsd

][(
1− Kopen

)
ρdd
]
rdo

1− rdd
(
1− Kopen

)
ρdd

(6)
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Figure 1. Radiative transfer processes of the four components considering soil anisotropic reflec-
tance. (a) Sunlit crown. (b) Shaded crown. (c) Sunlit soil. (d) Shaded soil. ①: Single scattering from 
the crown. ②: Multiple scattering from the crown. ③: Photons transmitted through the within-
crown gaps. ④: Multiple scattering between crown and soil, initiated from ③. ⑤: Photons trans-
mitted through the between-crown gaps. ⑥: Multiple scattering between crown and soil, initiated 
from ⑤. The bi-directional reflectance (𝑟௦௢), directional-hemispherical reflectance (𝑟௦ௗ), hemispher-
ical-directional reflectance (𝑟ௗ௢), and bi-hemispherical reflectance (𝑟ௗௗ) of soil are represented by 
red, orange, green, and bule solid ovals, respectively. 

As for the sunlit crown (Figure 1a), the radiative transfer process of the sunlit crown 
included four cases: (1) single scattering from the crown without soil interactions (①); (2) 
multiple scattering from the crown without soil interactions (②); (3) photons transmitted 
through within-crown gaps (③ and ④); and (4) photons transmitted through between-
crown gaps (⑤ and ⑥). The component BRF 𝐶௦, in the GOSAILT model (marked with 𝐶௦௢௟ௗ), was initially expressed as Equation (2), where the single variable 𝑟௦௢௜௟ was used to 
describe the contribution of the soil reflectance to canopy BRF. 𝐶௦௢௟ௗ = 𝜌௦௢௦ + 𝜌௦௢ௗ + ൣ൫1 − 𝑃௚௔௣൯(𝜏௦௦ + 𝜏௦ௗ) + 𝑃௚௔௣൧𝑟௦௢௜௟(𝜏௢௢ + 𝜏ௗ௢)1 − 𝑟ௗௗ൫1 − 𝐾௢௣௘௡൯𝜌ௗௗ  (2) 

where 𝑃௚௔௣ represents the canopy gap ratio, and 𝐾௢௣௘௡ represents the canopy openness; 𝜌௦௢௦  and 𝜌௦௢ௗ  represent the single and multiple scattering of tree crown, respectively. 𝑟௦௢௜௟ represents Lambertian soil reflectance. 𝜏௦௦, 𝜏௦ௗ, 𝜏௢௢, and 𝜏ௗ௢ represent the bi-direc-
tional transmittance, hemispherical-directional transmittance, directional-hemispherical 
transmittance, and bi-hemispherical transmittance of tree crown, respectively. 

Considering the soil reflectance anisotropy, the 𝑟௦௢௜௟ in the Equation (2) is refined 
into four reflectance factors of soil: bi-directional reflectance (𝑟௦௢), hemispherical-direc-
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Similarly, according to the radiative transfer processes of Figure 1 and Table A1, the 
other component BRF 𝐺௦, 𝑇௦, and 𝑍௦ can be derived by following (Equations (4)–(6)). 𝐺௦ = 𝑟௦௢ + ൣ൫1 − 𝑃௚௔௣൯(𝜏௦௦𝑟௦ௗ + 𝜏௦ௗ𝑟ௗௗ) + 𝑃௚௔௣𝑟௦ௗ൧ൣ൫1 − 𝐾௢௣௘௡൯𝜌ௗௗ൧𝑟ௗ௢1 − 𝑟ௗௗ൫1 − 𝐾௢௣௘௡൯𝜌ௗௗ  (4) 

Figure 1. Radiative transfer processes of the four components considering soil anisotropic reflectance.
(a) Sunlit crown. (b) Shaded crown. (c) Sunlit soil. (d) Shaded soil. 1©: Single scattering from the
crown. 2©: Multiple scattering from the crown. 3©: Photons transmitted through the within-crown
gaps. 4©: Multiple scattering between crown and soil, initiated from 3©. 5©: Photons transmitted
through the between-crown gaps. 6©: Multiple scattering between crown and soil, initiated from
5©. The bi-directional reflectance (rso), directional-hemispherical reflectance (rsd), hemispherical-

directional reflectance (rdo), and bi-hemispherical reflectance (rdd) of soil are represented by red,
orange, green, and bule solid ovals, respectively.

2.1.2. Four-Component BRFs Modeling with Only Atmospheric Diffuse Scattering ( fd = 1)

For fd = 1, there is only atmospheric diffuse radiation and no shaded component
in the forest canopy. In order to retain the same formats as those in direct illumination,
the two components are split into a similar four components (i.e., Cd, Td, Gd, and Zd). In
this case, the sunlit crown radiation of Cd is consistent with that of shade crown radiation,
Td, and the sunlit soil radiation of Gd is consistent with that of shade soil radiation, Zd.
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Referring to Figure 1 and Table A2, the quantities Cd, Gd, Td, and Zd can be expressed as
the functions of anisotropic soil reflectance factors (Equations (7) and (8)).

Cd = Td = ρdos + ρdod +

[(
1− Kopen

)
τdd + Kopen

]
(rdoτoo + rddτdo)

1− rdd
(
1− Kopen

)
ρdd

(7)

Gd = Zd =

[(
1− Kopen

)
τdd + Kopen

]
rdo

1− rdd
(
1− Kopen

)
ρdd

(8)

where ρdos and ρdod represent single and multiple scattering of the tree crown under the
condition of pure sky light diffuse scattering, respectively.

2.2. Anisotropic Reflectance Factors of Soil

The simple soil directional (SSD) reflectance model is a two-parameter soil directional
reflectance model, which is a simplification of Hapke model, based on radiative transfer
theory, but has the similar simulation capability [16], which is expressed as follows:

r(θs, θv, ϕ, λ) =
ρ0(λ)

µ0 + µ

(
eag

1 + g
− θs

2 + θv
2

10

)
(9)

where ρ0(λ) is the brightness parameter, varying with wavelength; a is the direction-
dependent shape parameter; and r(θs, θv, ϕ, λ) is the rso of four-component BRFs. The two
terms, in the bracket of right side of the equation, denote the single and multiple scattering,
respectively.

Theoretically, the hemispherical-directional reflectance (rdo), directional-hemispherical
reflectance (rsd), and bi-hemispherical reflectance factors (rdd) can be solved by numerical
integration of r(θs, θv, ϕ, λ), according to the following formula.

rdo(θv, λ) =
1
π

∫ 2π

0

∫ π
2

0
r(θs, θv, ϕ, λ) sin θs cos θsdθsdϕ (10)

rsd(θs, λ) =
1
π

∫ 2π

0

∫ π
2

0
r(θs, θv, ϕ, λ) sin θv cos θvdθvdϕ (11)

rdd(λ) =
2
π

∫ π
2

0

∫ 2π

0

∫ π
2

0
r(θs, θv, ϕ, λ) sin θs cos θs sin θv cos θvdθvdϕdθs (12)

However, in order to avoid the over-complexity of the extended GOSAILT model and
improve the efficiency of model operation, the empirical equations of rdo, rsd, and rdd are
derived by fitting the integral values simulated by the SSD model [16]. The results of the
rdo, rsd, and rdd empirical equations are highly consistent with the numerical integration
results, which proves that the empirical equations of rdo, rsd, and rdd are reliable enough to
be used as inputs to the four-component BRFs model.

rdo(θv, λ) = ρ0(λ)c1ec2a (13)

where {
c1 = −0.037θv

2 + 0.006θv + 0.297
c2 = 0.763θv

2 − 0.130θv + 0.924
(14)

And,
rsd(θs, λ) = ρ0(λ)c1ec2a (15)

where {
c1 = −0.037θs

2 + 0.006θs + 0.297
c2 = 0.763θs

2 − 0.130θs + 0.924
(16)

Besides,
rdd(λ) = 0.270ρ0(λ)e1.446a (17)
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3. Datasets

The UAV multi-angle BRF observation and DART simulation BRF datasets were
used to evaluate the accuracy of GOSAILT-SSD model. Since grounded multiangular BRF
observations of mountain forest are difficult to obtain, the UAV multi-angle BRF dataset
was obtained over flat land surface, and the DART simulation dataset covered various
topographic conditions.

3.1. UAV-Observed BRF Dataset

The targets of UAV observation dataset are three sample plots, located in the rural
area (40.34◦ N, 115.78◦ E) of Huailai County, Hebei Province, China, which are in a flat
terrain with a subhumid continental climate and an altitude of 480~485 m (Figure 2a).
Three sample plots are typical orchards of northern China, and their background is bare,
dry clay (soil moisture content is less than 18%, and clay content on the top layer of soil
is around 60–75%). The dataset was acquired on 30–31 July 2019. During the experiment,
the weather was clear, with no wind or clouds. Two observations (i.e., Mission 1 and
Mission 2) were implemented for each sample plot (Figure 2b–d). The UAV used in the
experiment was the DJI M600 pro (DJI Technology Co., Ltd., Shenzhen, China), on which a
multispectral camera (MAPIR survey 3 NRGN, manufactured by Peau Productions, Inc.,
San Diego, CA, USA) with three narrow spectral bands (central wavelengths of 550, 660,
and 850 nm) was loaded. The detailed scheme about UAV observation experiment can be
referred to the literature [10]. Besides, canopy structure properties (vegetation coverage,
LAI, crown diameter and so on), leaf spectral profile and soil BRF profile of each plot were
also observed.
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Figure 2. Overview of the study area (a) and angular samplings of the UAV multi-angle observation
(b–d). Plot 1: a sparse apricot plantation. Plot 2: a dense apricot plantation. Plot 3: peach and apricot
mixed plantation [10].
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Radiometric calibration, geometric correction, and multiangular information extraction
(including illumination geometry, observation geometry, and BRF) were carried out for
each UAV image acquired in the field, so as to obtain the multiangular BRF dataset, under
the conditions of two illumination geometry, for each sample plot. For each illumination
geometry, each sample plot contains multiangular observation, with an VZA interval of
5◦ from −60◦(backward-scattering) to 60◦ (forward-scattering) in the solar principal plane
(PP). A more detailed flowchart on calculating UAV BRF can be founded in the work of
Li et al. [10]. In the model evaluation with the UAV dataset, the two parameters in soil
anisotropic reflectance factors of the GOSAILT-SSD model were inversed optimally using
the UAV-derived soil BRF profile of each sample plot (see Table 1), and the Lambertian
soil reflectance in the original GOSAILT model was set a constant value of the nadir view
direction, simulated by the SSD.

Table 1. GOSAILT-SSD parameters, corresponding to the UAV multi-angle observations.

Input Parameters Unit Plot 1 Plot 2 Plot 3

Spectral
properties
(850 nm)

Leaf reflectance [-] 0.449 0.477 0.455
Leaf transmittance [-] 0.449 0.477 0.455

SSD parameter (ρ0 ) [-] 0.62 0.65 0.64
SSD parameter (a ) [-] 0.17 0.31 0.32

Canopy
structural
properties

Tree density [hr−1] 646 456 883
LAI [m2/m2] 2.36 1.71 2.83

Coverage [%] 58 34 62
Crown vertical axis [m] 1.44 1.13 1.01

Crown horizontal axis [m] 1.69 1.54 1.5
Canopy height [m] 1.93 1.78 1.56
Leaf dimension [m] 0.2 0.2 0.2

Topographic Slope [◦] 0 0 0
Aspect [◦] 0 0 0

Atmospheric SKYL [-] 0 0 0

Illumination-
observation

geometry

SAA (Massion 1) [◦] 184.21 218.22 134.44
SZA (Massion 1) [◦] 23.5 30.8 33.5
SAA (Massion 2) [◦] 255.47 240.66 107.34
SZA (Massion 2) [◦] 45.5 42.8 48.5

VAA [◦] PP PP PP
VZA [◦] 0–60 0–60 0–60

3.2. DART-Simulated BRF Dataset

The DART (discrete anisotropic radiative transfer) model is one of the computer
simulation models, which can simulate the anisotropic reflection characteristics of complex
3-D scenes at pixel scale [28]. Here, it was used as a benchmark to evaluate the accuracy of
BRDF model, considering anisotropic background soil reflectance for a mountain forest.
The area of the forest scene was set as 100 m × 100 m, the leaf area index (LAI) of a single
tree crown was set as 4, and the tree crown was uniformly distributed in the scene. Three
kinds of forest canopies (including 50, 59, and 78 trees) were set, corresponding to three
different crown densities (see Figure 3). For each forest canopy with specific density, a
further 49 scenes were constructed, according to its topographic slope changing from
0◦ to 60◦ and SZA changing from 0◦ to 60◦. Therefore, a total of 147 forest scenarios
were constructed using the DART simulation system, covering different crown densities,
topographies, and SZAs. For each forest scene, both the topographic aspect and solar
azimuth angle (SAA) were set to a fixed value of 0◦, while the observation geometry (VZA
and VAA) remained with 50 default values of DART; that is, the observation geometry
positions were uniformly distributed in the hemispheric (2π) space.
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Figure 3. Canopy structural parameter settings and nadir views of three DART-simulated forest
scenes over a 30◦ slope. Each scene has the same area of 100 m × 100 m.

The setting of spectral parameters mainly involves leaf reflectance, leaf transmittance,
and soil reflectance in red and near-infrared (NIR) spectral bands. As with the GOSAILT
model, the leaves were still treated as Lambertian reflectors, with reflectance and transmit-
tance varying only in wavelength. Background soil was treated as an anisotropic reflector in
this study, and its anisotropy was described by the five parameters Hapke model (Table 2)
in the DART software (version 5.7.0). There are 294 groups of forest canopy multi-angular
reflectance data (uniformly distributed in hemispheric space) in the DART simulation
dataset, including the red and NIR bands, and each group of data covers 50 observation
directions in hemispheric space. The reflectance output of the DART software employed in
the simulation experiment is the reflectance based on the definition of horizontal incident
energy; thus, the cosine correction method was used to convert the reflectance simulated by
DART into slope reflectance [7], which is then used as the reference truth value to evaluate
the model. In the model evaluation with the DART dataset, the two parameters in the
soil anisotropic reflectance factors of GOSAILT-SSD model were inversed optimally using
the DART-simulated soil BRF profile, and the Lambertian soil reflectance in the original
GOSAILT model was set a constant value of the nadir view direction, simulated by the SSD
model (shown in Figure 4).

Table 2. Canopy spectral parameter settings of the DART.

Object Parameters Red Band NIR Band Data Source

Leaf
reflectance 0.055 0.496 GOSPEL spectral library [7]

transmittance 0.015 0.441

Soil

ω 0.5106 0.5434 Zeng et al. [29]
b 0.82 0.86

Default Hapke parameters
of for a typical plowed

field [18]

c 0.67 0.70
B0 0.30 0.33
h 0.25 0.21
a 0.0720 0.0614
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the PP, observed by the UAV, is asymmetric in the NIR band, showing an obvious bowl 
shape. The higher and lower BRF correspond to the backward-scattering (VZA < 0) and 
forward-scattering directions (VZA > 0), respectively, and the canopy BRF in the hot spot 
direction reaches the maximum. With the increase of SZA, the bowl shape of the canopy 
BRF is more obvious, and the BRF in the backward-scattering direction is larger. Com-
pared with the UAV observations, the original GOSAILT underestimates the BRF near the 
hotspot directions, while the GOSAILT-SSD simulations show similar shape patterns, 
which indicates the GOSAILT-SSD can improve the BRF simulations (especially near the 
hotspot directions). Meanwhile, the improvement degree of the canopy BRF simulations 
by the GOSAILT-SSD varies with the fraction of vegetation cover and SZA, which is be-
cause different fractions of vegetation cover or SZAs can lead to the areal proportion dif-
ferences of sunlit soil. For example, with the GOSAILT-SSD, the BRF simulations RMSE 
(MAPE) of sparse canopy in Plot-2 are decreased from 0.039 (16.932%) to 0.020 (9.561%) 
(see Figure 5e), while the RMSE (MAPE) of dense canopy in Plot-3 are decreased from 
0.031 (7.556%) to 0.020 (5.482%) (see Figure 5f). Although the differences exist, a higher 

Figure 4. Anisotropic soil reflectance along the PP in the GOSAILT-SSD and isotropic soil reflectance
in the GOSAILT. (a–c) Red band; (d–f) NIR band; (a,d) SZA is 0◦; (b,e) SZA is 30◦; (c,f) SZA is 60◦.
Here, the anisotropic soil reflectance is simulated with the SSD model (ρ0 = 0.5755, a = 0.0720 in the
red band; ρ0 = 0.6429, a = 0.0614 in the NIR band). The isotropic soil reflectance varies with spectral
band and is set as the value of anisotropic soil reflectance, at VZA = 0◦, SZA = 30◦.

4. Results
4.1. Validation with UAV-Observed BRF

As shown in Figure 5, the UAV multi-angular observations are used to further evaluate
the modified GOSAILT (GOSAILT-SSD) model. The fruit-plantation canopy BRF in the
PP, observed by the UAV, is asymmetric in the NIR band, showing an obvious bowl
shape. The higher and lower BRF correspond to the backward-scattering (VZA < 0) and
forward-scattering directions (VZA > 0), respectively, and the canopy BRF in the hot
spot direction reaches the maximum. With the increase of SZA, the bowl shape of the
canopy BRF is more obvious, and the BRF in the backward-scattering direction is larger.
Compared with the UAV observations, the original GOSAILT underestimates the BRF near
the hotspot directions, while the GOSAILT-SSD simulations show similar shape patterns,
which indicates the GOSAILT-SSD can improve the BRF simulations (especially near the
hotspot directions). Meanwhile, the improvement degree of the canopy BRF simulations by
the GOSAILT-SSD varies with the fraction of vegetation cover and SZA, which is because
different fractions of vegetation cover or SZAs can lead to the areal proportion differences
of sunlit soil. For example, with the GOSAILT-SSD, the BRF simulations RMSE (MAPE) of
sparse canopy in Plot-2 are decreased from 0.039 (16.932%) to 0.020 (9.561%) (see Figure 5e),
while the RMSE (MAPE) of dense canopy in Plot-3 are decreased from 0.031 (7.556%) to
0.020 (5.482%) (see Figure 5f). Although the differences exist, a higher overall accuracy of
the GOSAILT-SSD model is shown, which underlines the significance of coupling the SSD
to the GOSAILT to model canopy BRF of fruit-plantation with anisotropic soil reflectance.
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Figure 5. Comparisons between the model simulations and UAV observations in the PP under
different sample plots and SZA conditions. (a,d) Plot 1; (b,e) Plot 2; (c,f) Plot 3. The view zenith
angle in the forward scattering direction of the PP is positive, whereas that of the backward scattering
direction of the PP is negative.

Figure 6 shows the total scatterplot and statistical results of all scenarios simulated by
the GOSAILT and GOSAILT-SSD model. The results suggest that the GOSAILT-SSD can
improve the directional reflectance simulations in the NIR band, leading to a higher accu-
racy, compared with original GOSAILT simulations, which neglects reflectance anisotropy
of soil. With the GOSAILT-SSD model, the fitting line of scatterplot is close to the 1:1
line, and all accuracy indexes are improved (RMSE = 0.019, MAPE = 7.7%, bias = 0.016,
R2 = 0.97). This means that simulations of the GOSAILT-SSD model are broadly in line with
the field observations, and the GOSAILT-SSD model has a good performance for directional
reflectance simulations of artificial forest canopy on flat surface.
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4.2. Validation with DART-Simulated BRF

As shown in Figure 7, the GOSAILT-SSD simulated BRFs in the red band are compared
with the DART-simulated reflectance. As it can be seen, both the GOSAILT-SSD and original
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GOSAILT show a larger BRF in the solar illumination direction, but the latter has a larger
BRF value and more significant hot spot effect. Compared with the BRFs simulated
by DART, the original GOSAILT model shows BRF underestimation in the observation
direction of the high-BRF region (near the hot spot direction) and observation direction of
low-BRF region (forward-looking direction), and this phenomenon is more obvious when
the SZA is small. However, the GOSAILT-SSD model shows a better agreement with the
reference BRFs by DART simulation, which can better describe the hot spot effect and BRDF
characteristics (shape) of canopy BRF in mountain forest. These results indicate that the
GOSAILT-SSD model with non-Lambertian soil has high accuracy in the red band.
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Figure 7. Comparisons of BRF, estimated by DART and GOSAILT-SSD or GOSAILT, of a sparse forest
scene (Cv = 25.13%), over a medium slope (30◦), with an aspect (0◦) in the red band. From top to
bottom, SZA are 0◦, 30◦, and 60◦, respectively, and SAA are all 0◦. In the polar maps, the length of
the radius represents VZA, and the direction of the radius represents VAA.

Similarly, the results of the comparison in the NIR band are shown in Figure 8. It
can be found that, when SZA is small, the original GOSAILT cannot describe the hot
spot effect of forest canopy BRF, and the maximum BRF appears in the forward-scattering
direction. Although the hot spot effect of BRF is captured with the increase of SZA, there is
a serious underestimation, compared with the DART simulation, which is consistent with
the phenomenon of that in the red band. However, the GOSAILT-SSD model can better
describe the hot spot effect of mountain forest canopy BRF in the NIR band, and anisotropic
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characteristics of the simulated BRF are in good agreement with the reference BRF by
DART. Compared with the original GOSAILT, which does not consider the non-Lambertian
reflection characteristics of soil, the GOSAILT-SSD model can significantly improve the
simulation performance.
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Figure 8. Comparisons of BRF, estimated by DART and GOSAILT-SSD or GOSAILT of a sparse forest
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bottom, SZA are 0◦, 30◦, and 60◦, respectively, and SAA are all 0◦. In the polar maps, the length of
the radius represents VZA, and the direction of the radius represents VAA.

The performance of the GOSAILT-SSD under different topographic conditions and
canopy density was further evaluated, and it was found that the model could accurately
describe the anisotropic characteristics of forest canopy BRF under different topographic
conditions and canopy density levels. Figure 9 shows the overall accuracy of the GOSAILT
and GOSAILT-SSD. In the mountain forest canopy with rough soil background, the RMSE,
MAPE, bias, and R2 of the original GOSAILT model for canopy BRF simulation of red band
were 0.027, 13.61%, 0.019, and 0.335, respectively. The corresponding accuracy indexes
of NIR band were 0.051, 18.61%, 0.044, and 0.780, respectively. However, the accuracy
of the modified model was significantly improved, and RMSE, MAPE, bias, and R2 for
the red band were 0.017, 8.67%, 0.012, and 0.768, respectively; those of NIR band were
0.037, 12.03%, 0.031, and 0.845, respectively. These results indicate that the GOSAILT-SSD
performs well in mountain forest with rough soil because it considers the anisotropy of soil
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reflectance. On the other hand, the GOSAILT shows considerably worse results over the
same scene, which manifests that it is not enough to consider only the anisotropy of tree
crown reflectance to describe the BRF of canopy in the mountain forest with rough soil, but
the anisotropy of soil reflectance should be considered.
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5. Discussion
5.1. Sensitivity of Forest Canopy BRF to Soil Reflectance

Soil reflectance is an important driving variable of forest canopy BRDF model. The
local sensitivity analysis of soil reflectance was performed with the original GOSAILT
model, and it was found that forest canopy BRF, under all VZA conditions in the PP,
increased with the increase of soil reflectance (Figure 10a,c). Meanwhile, the canopy BRF
showed a perfect linear relationship with soil reflectance (Figure 10b,d). Here, the slope of
the regression line can be expressed as ∆BRFCanopy/∆rsoil , so the slope of regression line
is used to quantitatively characterize the contribution of soil reflectance to canopy BRF.
The slope of regression line varies from 0 to 1, which means the contribution of the soil
reflectance varies from 0% to 100%. As shown in Figure 10b, in terms of the red band,
the slope of the regression line varies with VZA, with the maximum (0.83) and minimum
(0.43) corresponding to the hot and cold spot directions, respectively, and the slope of the
nadir direction is 0.7. The slope of the regression line, under most VZA conditions, is
greater than 0.6 in the red band. For the NIR band, it had similar results (Figure 10d). The
results suggest that the contribution of soil reflectance to canopy BRF is large (more than
60%) for sparse canopy (Cv = 25.13%). The local sensitivity analysis results demonstrate
the importance of soil reflectance for canopy BRF and show that soil reflectance is an
important and highly-sensitive driving variable for the discrete forest canopy BRDF model
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over a sloped surface. Therefore, in addition to topography, the accurate description of soil
reflectance should not be ignored in BRDF modeling for discrete forest canopy.
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(a,b) Red band; (c,d) NIR band. (a,c) Canopy BRF profiles under different soil reflectance conditions.
(b,d) The sensitivity of canopy BRF to soil reflectance under different VZA conditions. Here, the
fraction of vegetation cover of forest is 25.13%, slope angle of terrain is 30◦, and SZA is 30◦. The
single-arrow red line in (a) or (c) represents the nadir view direction (VZA = 0◦), while the single-
arrow blue and green lines represent the hot spot direction (VZA = −30◦) and maximum VZA in the
forward scattering direction (VZA = 40◦), respectively. The solid red line in (b) or (d) represents the
regression line between canopy reflectance (dependent variable) and soil reflectance (independent
variable) in the nadir view direction, and the dotted black line represents the 1:1 line.

5.2. Impact of Soil Reflectance Anisotropy on Forest Canopy BRF Characteristics

To characterize the impacts of soil anisotropy on forest canopy BRF characteristics, the
canopy BRF profiles of various virtual forest scenes were firstly simulated using GOSAILT
and GOSAILT-SSD; then, the discrepancies of canopy BRF between isotropic and anisotropic
soil conditions (shown in Figure 4) were analyzed under different fractions of vegetation
cover (Cv), view zenith angles (VZA), incident solar zenith angles (SZA), and spectral
bands. The setting of canopy other structural and spectral parameters was the same as that
in Section 3.2. The absolute deviation (AD = BRFGOSAILT

vi − BRFGOSAILT−SSD
vi ) at a given

view direction between the GOSAILT and the GOSAILT-SSD was used to estimate canopy
BRF discrepancies.

(1) Fraction of vegetation cover: Five types of forest scenes with different tree-crown
densities are set to control the fractions of vegetation cover (Cv), including 2.5%, 25%, 50%,
75%, and 100%. By comparing the canopy BRF error of Lambertian soil assumption under
different Cv levels in Figure 11, it can be found that the smaller the Cv, the more significant
the absolute bias is (except for some specific VZA), which is because the smaller the Cv, the
larger the area proportion of soil observed (Figure 12b), resulting in the absolute bias of
forest canopy BRF larger. However, as for some specific VZA, where all lines converge to
the same point (e. g. VZA = 0◦ in Figure 11b), there is no discrepancy among different Cv
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levels, which is because Lambertian soil assumption does not cause four-component BRF
errors in these VZA conditions (Figure 12a). As shown in Figure 11b, when the SZA is 30◦

and VZA is 30◦, the BRF absolute bias of forest canopy with Cv = 25% in the red (NIR) band
is −0.071 (−0.083), while the BRF absolute bias of forest canopy with Cv = 100% is −0.04
(−0.048). Since the GOSAILT model assumes that the tree crown is spherical and randomly
distributed in the scene, sunlit soil can still be observed when the forest Cv increases to
100% (Figure 12b), leading to canopy BRF errors not equal to 0.
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Figure 11. Forest canopy reflectance error along the PP over a medium-slope terrain (slope = 30◦,
aspect = 0◦), under different fractions of vegetation cover (Cv) and different solar zenith angles
(SZA) due to Lambertian (versus anisotropic) soil reflectance. (a–c) Red band (d–f); NIR band; (a,d)
SZA is 0◦; (b,e) SZA is 30◦; (c,f) SZA is 60◦. Here, the solar azimuth angles (SAA) are set as 0◦.
Negative value of VZA represents backward-scattering direction (VAA = 0◦), and positive value of
VZA represents forward-scattering direction (VAA = 180◦).

(2) View zenith angles: The canopy BRF errors of Lambertian soil assumption differ
from the view zenith angles along the PP. As shown in Figure 11b, for forest canopy with
Cv = 25% and SZA = 30◦, when the VZA are −60◦ and −30◦, the corresponding absolute
biases of red band are 0 and −0.071, respectively. When the VZA are +30◦ and +45◦,
both absolute biases are 0.022 (see Table 3). The results indicate that the Lambertian soil
assumption can cause underestimation and overestimation of forest canopy BRF; the most
serious underestimation occurs in the direction of hot spot effect, and the most serious
overestimation occurs in the direction of forward-scattering. This is because the reflectance
of real soil is anisotropic and has weak forward-scattering, as well as strong backward-
scattering (especially in the direction of hot spot effect). When the VZA is 0◦, the absolute
bias is 0, which means there is no deviation in canopy BRF, due to the correct value of soil
BRF in the nadir view direction. Meanwhile, at other VZA (e.g., VZA = −60◦ in Figure 11b,
where all lines also converge to the same point), the absolute bias of canopy BRF is also 0.
This occurs because the value of anisotropic soil reflectance, under these VZA conditions,
is exactly equal to the value of isotropic soil reflectance (see Figure 4b), resulting in the
unbiasedness of canopy BRF.
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Figure 12. BRF error and area proportion of the four components along the PP, over a medium-slope
terrain (slope = 30◦, aspect = 0◦), under different fractions of vegetation cover (Cv). (a) BRF error of
sunlit crown; (b) BRF error of sunlit soil; (c) BRF error of shaded crown; (d) BRF error of shaded soil;
(e) area proportion of sunlit soil. Here, the SZA and SAA are set as 30◦ and 0◦, respectively.

Table 3. Forest canopy reflectance error statistics under different spectral bands (SZA = 30◦).

VZA Cv = 25% (Sparse Forest) Cv = 100% (Dense Forest)

(◦) ADred ADnir RDred RDnir ADred ADnir RDred RDnir

−85 0.02 0.027 20.4% 14.8% 0.004 0.01 11.1% 3.2%
−60 0 0.002 0.0% 0.1% 0 0.005 0.6% 1.5%
−30 −0.071 −0.083 −29.1% −26.3% −0.04 −0.048 −21.8% −10.0%

0 0 0.002 0.0% 0.1% 0 0.005 0.6% 1.5%
30 0.022 0.029 24.8% 16.5% 0.004 0.01 12.1% 2.9%
45 0.022 0.03 40.2% 9.8% 0.001 0.004 10.8% 1.2%

Note: VZA < 0 denotes backward-scattering direction, VZA > 0 denotes forward-scattering direction; ADred and
ADnir indicate the absolute deviation in the red and NIR bands, respectively, while RDred and RDnir indicate
the relative deviation in the red and NIR bands, respectively. The relative deviation is expressed as: RD =

AD/BRFGOSAILT−SSD
vi × 100% .

(3) Solar zenith angles: The incident solar zenith angle changes the angular distribution
of canopy reflectance by changing the area proportion and BRF shape of four components,
especially the area proportion and BRF shape of sunlit soil. Canopy BRF error at different
incident zenith angles are generated, including 0◦, 30◦, and 60◦. As shown in Figure 11a–c,
for forest canopy with Cv = 2.5%, when the SZA are 0◦, 30◦, and 60◦, the corresponding
absolute biases of hotspot observation direction in the red band are −0.110, −0.084, and
−0.110, respectively. Meanwhile, for forest canopy with Cv = 25%, the corresponding
absolute biases are of −0.09, −0.07, and −0.09, respectively. These results indicate that
the absolute biases of canopy BRF at SZA = 30◦ are smaller than those of at SZA = 0◦ and
SZA = 60◦, especially for sparser canopy. This is mainly because the BRF error of sunlit soil
is the smallest, and the area proportion of sunlit soil is large enough for sparser canopy,
when the SZA is 30◦ over a sloping terrain of slope = 30◦.

(4) Spectral bands: Comparing Figure 11a–c with Figure 11d–f, it can be found that
there are differences in the canopy BRF error between the red and NIR bands. Under
the same Cv, VZA, and SZA conditions, the absolute bias in the NIR band is slightly
larger than that of the red band, but the relative bias is smaller than that of the red band,
especially for the forest scene with larger Cv. For example, as shown in Figure 11b,e
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and Table 3, when the Cv is 25% and VZA is −30◦ (backward-scattering direction), the
absolute bias is −0.071 (underestimated by 29.1%) in the red band, while the absolute
bias is −0.083 (underestimated by 21.8%) in the NIR band. Under the same observation
geometry, for forest canopy with Cv = 100%, the absolute bias is −0.04 (underestimated by
26.3%) in the red band, and the absolute bias is −0.048 (underestimated by 10%) in the NIR
band. The results occur since vegetation is brighter than soil in the NIR band; meanwhile,
stronger multi-scattering of canopy moderates the impact of soil reflectance anisotropy on
canopy BRF.

6. Conclusions

The anisotropy of soil reflectance is a significant source of uncertainty in BRF sim-
ulation of sparse woodland. In order to reduce this uncertainty, the GOSAILT model is
extended and improved by coupling the background soil’s non-Lambertian reflectance char-
acteristic function, in order to develop the GOSAILT-SSD model. Thus, the GOSAILT-SSD
model could take the topographic effect, tree’s geotropic nature, atmospheric diffuse-
scattering, and soil anisotropic reflectance of mountain forest into account. The accuracy of
the GOSAILT-SSD model was validated by employing UAV field multi-angular observa-
tions and DART simulations. The results indicate that the GOSAILT-SSD model exhibits
good performance for woodland canopy BRF simulations. The validation with UAV field
multi-angle observation data shows high accuracy with RMSE (MAPE, Bias, and R2), corre-
sponding to 0.019 (7.7%, 0.016, and 0.97) for canopy BRF simulation of orchards over flat
surfaces. The validation with DART simulation data shows that the RMSE (MAPE, Bias,
and R2) of the GOSAILT-SSD model in the red and NIR bands are 0.017 (8.67%, 0.012, and
0.768) and 0.037 (12.03%, 0.031, and 0.845), respectively. The results indicate that, in addi-
tion to the topography effects, the anisotropy of soil reflectance should also be emphasized
in BRDF modeling for discrete woodland. To the best of our knowledge, GOSAILT-SSD is
the only one physical BRDF model over sloping terrain that has soil anisotropic reflectance
considered, so far.

Then, the sensitivity of canopy BRF to soil reflectance and the impact of soil reflectance
anisotropy on forest canopy BRF characteristics were analyzed, based on a series of GO-
SAILT and GOSAILT-SSD model simulations. It is found that the forest canopy BRF is
highly sensitive to soil reflectance. The BRF simulation accuracy of mountain forest canopy
is significantly affected by the Lambertian soil approximation, and there are differences in
the effect among different fractions of vegetation cover, different VZAs, different SZAs, or
different spectral bands. The canopy BRF error, caused by the Lambertian soil approxima-
tion, decreases with the increase of fraction of vegetation cover. In the solar principal plane,
the Lambertian soil approximation results in a severe underestimation of BRF in the hot
spot direction and an obvious overestimation in the large observation zenith angles. The ab-
solute error caused by the Lambertian soil approximation in the NIR band is slightly larger
than that of the red band, but the relative error in the red band is larger than that of the NIR
band. The results corroborate earlier findings, especially those by Privette et al. [14] and Li
et al. [10], who have carried out similar studies, regarding error analysis of Lambertian soil
assumption, based on computer simulation models. As the results show in this study, the
canopy reflectance is largely biased, due to the Lambertian soil assumption. If the canopy
BRDF model, ignoring the soil reflectance anisotropy, is used to retrieve canopy structural
parameters (e.g., LAI and clumping index) and leaf functional traits (e.g., foliar chlorophyll
content and leaf mass per area), it will cause large retrieval errors. The findings presented
in this research can be used to analyze the propagation mechanism of leaf functional and
canopy structural trait retrieval errors, due to the Lambertian soil assumption in the BRDF
model, further finding a better strategy for the estimation of leaf functional and canopy
structural traits, based on regular spectral measurements.

However, some limitations still exist in our study, such as the spheroidal crown shape
implication in the GOSAILT model [30], uncertainty of the SSD model, simplification
of forest background in the real world, and so on. Taking bare soil as an example, this
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paper considers the anisotropy of background reflectance in the BRDF model of mountain
forest canopy. In the real world, the forest background can also be dense grassland or
a combination of weeds, lichens, moss, litter, or even snow in the winter boreal [10,31].
For these cases, it is only needed to couple the corresponding background anisotropic
reflectance characteristic function into the extended GOSAILT model of this paper. For
example, the anisotropic reflectance characteristic function of grassland can be derived
by using the kernel-driven RTLSR model [32] or physical PROSAIL model [33], and the
anisotropic reflectance characteristic function of snow can be deduced by using the kernel-
driven snow BRDF model [34]. In the future, the method proposed in this paper will be
further evaluated and sequentially employed to couple the background grassland’s non-
Lambertian reflectance characteristic function, in order to develop tree–grass ecosystem
BRDF models over a sloped surface.
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Appendix A. The GOSAILT Model

If atmospheric diffuse scattering is considered in the GOSAILT model, the reflectance
of the four components can be assumed as a linear function of the diffuse scattering ratio in
the sky:

C = (1− fd)Cs + fdCd (A1)

G = (1− fd)Gs + fdGd (A2)

T = (1− fd)Ts + fdTd (A3)

Z = (1− fd)Zs + fdZd (A4)

where fd is the diffuse scattering ratio, namely the proportion of scattered light to the total
incident light, and its value ranges from 0 to 1. The spectral variables of C, G, T, and Z,
with subscript s, are the reflectance of each component, caused by the incident of direct
solar light; the variables with subscript d are the reflectance of each component, caused by
the incident of diffuse scattered light in the sky.

Cold
s = ρsos + ρsod +

[(
1− Pgap

)
(τss + τsd) + Pgap

]
rsoil(τoo + τdo)

1− rsoil
(
1− Kopen

)
ρdd

(A5)
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Cold
d = Told

d = ρsos + ρsod +

[
τdd
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1− Kopen
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)
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Gold
d = Zold

d =

[
τdd
(
1− Kopen

)
+ Kopen

]
rsoil

1− rsoil
(
1− Kopen

)
ρdd

(A10)

where Pgap represents the canopy gap ratio, and Kopen represents the canopy openness;
ρsos and ρsod represent the single and multiple scattering of tree crown, respectively. rsoil
represents Lambertian soil reflectance. τss, τsd, τoo, and τdo represent bi-directional trans-
mittance, hemispherical-directional transmittance, directional-hemispherical transmittance,
and bi-hemispherical transmittance of tree crown, respectively. The spectral variables of
C, G, T, and Z, with superscript old, are the reflectance of each component of the original
GOSAILT model.

Appendix B

Table A1. Radiative transfer processes of four scene components and relevant soil directional
reflectance factors, under the condition of fd = 0.

Scene Component ID Radiative Transfer Processes Soil Reflectance Factors

Sunlit crown

1© Solar photons→tree crown→sensor —

2© Solar photons→tree crown→(multiple scattering within tree
crown)→sensor —

3© Solar photons→(within-crown gaps)→soil→tree
crown→sensor rso, rsd, rdo, rdd

4© Solar photons→(within-crown gaps)→soil→tree
crown→soil→tree crown→sensor rdd

5© Solar photons→(between-crown gaps)→soil→tree
crown→sensor rso, rsd

6© Solar photons→(between-crown gaps)→soil→tree
crown→soil→tree crown→sensor rdd

Shaded crown

2© Solar photons→tree crown→(multiple scattering within tree
crown)→sensor —

3© Solar photons→(within-crown gaps)→soil→tree
crown→sensor rso, rsd, rdo, rdd

4© Solar photons→(within-crown gaps)→soil→tree
crown→soil→tree crown→sensor rdd

5© Solar photons→(between-crown gaps)→soil→tree
crown→sensor rso, rsd

6© Solar photons→(between-crown gaps)→soil→tree
crown→soil→tree crown→sensor rdd

Sunlit soil

4© Solar photons→(within-crown gaps)→shaded soil→tree
crown→sunlit soil→sensor rsd, rdd, rdo

5© Solar photons→(between-crown gaps)→soil→sensor rso

6© Solar photons→(between-crown gaps)→sunlit soil→tree
crown→sunlit soil→sensor rsd, rdo, rdd

Shaded soil

3© Solar photons→(within-crown gaps)→shaded soil→sensor rso, rdo

4© Solar photons→(within-crown gaps)→shaded soil→tree
crown→shaded soil→sensor rsd, rdd, rdo

6© Solar photons→(between-crown gaps)→sunlit soil→tree
crown→shaded soil→sensor rsd, rdo, rdd
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Table A2. Radiative transfer processes of four scene components and relevant soil reflectance factors,
under the condition of fd = 1.

Scene Component ID Radiative Transfer Processes Soil Reflectance Factors

Sunlit crown/shaded
crown

1© Solar photons→tree crown→sensor —

2© Solar photons→tree crown→(multiple scattering within tree
crown)→sensor —

3©/ 5© Solar photons→(within- and between-crown
gaps)→soil→tree crown→sensor rdo, rdd

4©/ 6© Solar photons→(within- and between-crown
gaps)→soil→tree crown→soil→tree crown→sensor rdd, rdo

Sunlit soil/shaded soil

3©/ 5© Solar photons→(within- and between-crown
gaps)→soil→tree crown→sensor rdo

4©/ 6© Solar photons→(within- and between-crown
gaps)→soil→tree crown→soil→sensor rdd, rdo
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