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Abstract: Deep-learning methods rely on massive labeled data, which has become one of the main
impediments in hyperspectral image change detection (HSI-CD). To resolve this problem, pseudo-
labels generated by traditional methods are widely used to drive model learning. In this paper, we
propose a mutual teaching approach with momentum correction for unsupervised HSI-CD to cope
with noise in pseudo-labels, which is harmful for model training. First, we adopt two structurally
identical models simultaneously, allowing them to select high-confidence samples for each other to
suppress self-confidence bias, and continuously update pseudo-labels during iterations to fine-tune
the models. Furthermore, a new group confidence-based sample filtering method is designed to
obtain reliable training samples for HSI. This method considers both the quality and diversity of the
selected samples by determining the confidence of each group instead of single instances. Finally, to
better extract the spatial–temporal spectral features of bitemporal HSIs, a 3D convolutional neural
network (3DCNN) is designed as an HSI-CD classifier and the basic network of our framework. Due
to mutual teaching and dynamic label learning, pseudo-labels can be continuously updated and
refined in iterations, and thus, the proposed method can achieve a better performance compared
with those with fixed pseudo-labels. Experimental results on several HSI datasets demonstrate the
effectiveness of our method.

Keywords: change detection; bitemporal hyperspectral image; pseudo-label; mutual teaching

1. Introduction

Hyperspectral imaging techniques can obtain continuous spectral information over a
wide range of spectral wavelengths. The ability to display the subtle spectral variations
of different ground objects has played an important role in many land-cover monitoring
applications, such as mineral exploration [1,2], land-use monitoring [3,4], and military
defense [5]. Change detection (CD) is the process of identifying differences in the state
of an object or phenomenon by observing it at different times [6], which has been an
indispensable application in the remote sensing field for a long time. Because of the rapid
increase in spectral information, hyperspectral images (HSIs) are able to help detect finer
changes than other remote sensing images and observe more change details. However, due
to the spectral variability and redundant information, it is still a substantial challenge to
effectively mine the spectral–spatial information to complete the HSI-CD task.

For decades, a variety of unsupervised methods have been applied to HSI-CD. Change
detection aims to generate an accurate binary change map. In traditional methods, the
change map can be obtained by analyzing the difference image (DI), which is usually based
on differencing or log-rationing function. The most typical method is the change vector
analysis (CVA) method [7], which identifies the changed pixels and the type of change
according to the magnitude and direction of the spectral change vector. Some techniques
utilize image transformation to extract new features for better performance. Principal
component analysis (PCA) [8] retains the main information of original images according
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to the statistical characteristics, which reduces data redundancy enormously. Both mul-
tivariate alteration detection (MAD) [9] and the improved iteratively reweighted MAD
(IRMAD) [10] methods calculate the degree of change by canonical correlation analysis.
These measures all assume that the characteristics of unchanged pixels are uniform, but
in reality, due to atmospheric conditions, illumination, etc., completely identical features
rarely exist [11]. To suppress the difference in unchanged pixels, slow feature analysis (SFA)
extracts the most temporally invariant component and then converts images into a new
feature space [12]. Furthermore, some methods [13,14] directly determine the changing
type of pixels using the postclassification comparison (PCC), but their performances fully
depend on the accuracy of the classifier.

Recently, deep-learning (DL) methods have been favored by many researchers because
of their strong nonlinear representation ability. Change detection needs to process bitempo-
ral images simultaneously, as feature fusion must be carried out to form a single feature
vector, which is usually a similarity measure between those two features [15]. Conven-
tional methods inevitably lose partial information via difference or other processing, while
deep-learning methods can avoid this problem. Mou et al. [16] proposed an end-to-end
network. A convolutional neural network (CNN) extracts spectral–spatial features and
a recurrent neural network (RNN) analyzes the temporal dependence between images.
Considering the mixed pixels in HSIs, some methods [17] utilize subpixel-level information
obtained by unmixing to improve detection accuracy. Chen et al. [18] proved that the 3D
convolution kernel combined with regularization can effectively extract the spectral–spatial
features of HSIs for classification tasks. Based on this, a 3D convolutional neural network
(3DCNN) for hyperspectral image change detection is designed as the basic model of the
proposed framework.

However, the great success of existing deep learning methods in many tasks mainly
benefits from a large amount of labeled data. Pixel-wise labels for bitemporal HSIs need
to be annotated by experts, which is time-consuming and expensive. Thus, it is difficult
to obtain in large quantities. To solve the problem, existing unsupervised HSI-CD meth-
ods usually use pseudo-labels generated by traditional algorithms [17,19–21]. One of the
main challenges is that the training process of neural networks is susceptible to noise in
pseudo-labels. It is difficult to deal with the high-dimensionality of hyperspectral data
for traditional CD methods. Additionally, affected by atmospheric conditions, illumina-
tion, and topography changes, the spectral variability of ground objects further increases
the difficulty of change detection. Due to the limitations of these traditional methods,
there certainly exist some discrepancies between the pseudo-labels and the true labels.
Zhang et al. [22] proved that advanced neural networks can easily fit training sets with arbi-
trary labels. Once the network fits inaccurate labels, it will seriously affect the classification
results. Wang et al. [17] utilized subpixel information to enhance robustness of the model.
Du et al. [19] designed a deep slow feature analysis (DSFA) algorithm based on SFA theory
and deep network to extract invariant components. These methods largely ignore handling
the noisy labels. Li et al. [20] added a noisy model with zero-mean Gaussian distribution to
their loss function, yet the experimental effect was general. The authors in [21] adopted two
unsupervised algorithms to jointly generate credible labels. However, the same problem
still exists, where it is impossible to filter all noisy labels by only one-time sample selection.

To address the noisy labels, we propose dynamically correcting pseudo-labels instead
of safely relying on labels. The momentum correction approach is based on mutual teaching,
where two learning models are mutually updated to jointly learn. Dynamic learning
approaches by sample selection are popular in robust learning from noisy labels [23–27].
Yao et al. [24] adjusted the number of training samples in each iteration according to the
learning curve. Self-paced learning (SPL) [25,26], which reduces the confidence threshold as
the number of iterations increases, automatically selects more complex samples. However,
the self-training of networks is prone to self-confidence bias and cannot be corrected when
errors accumulate. Co-teaching [27] trains two classifiers simultaneously and enables them
to select small loss samples for each other in every mini-batch, effectively suppressing the
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phenomenon of overfitting. It is generally assumed that small loss samples are more likely
to be correctly labeled. Nevertheless, simply using loss to select training data is not suitable
for bitemporal HSIs with complex variations. The selected samples are easily concentrated
in the two categories of maximum and minimum changes, which is not conducive to the
generalization of models. Therefore, we divide all samples into multiple groups according
to the similarity of the difference vector in advance and randomly select from the high-
confidence groups to ensure that multiclass samples can be selected. In addition, although
our approach uses incompletely correct labels during initialization, utilizing the newly
derived more reliable results to update the pseudo-labels can further boost the classifier
performance [28,29]. The main contributions are summarized as follows:

(1) We introduce to a novel mutual teaching framework with momentum correction for
resisting noisy labels generated by traditional methods in unsupervised HSI-CD. Due
to mutual teaching and dynamic label learning, pseudo-labels can be continuously
updated and refined in iterations, and thus the proposed method can achieve superior
results.

(2) A group confidence-based sample selection approach is proposed to avoid selecting
the two most extreme types of samples, and it is used alternately with another selection
mechanism in iteration to ensure that complex samples can participate in training.

(3) An end-to-end 3DCNN is designed as a classifier for HSI-CD and the basic model
of the proposed framework. Experiments on four datasets demonstrate that our
framework can effectively improve model performance.

2. Related Work
2.1. Unsupervised Deep Methods for Change Detection

Remote sensing image annotation is more difficult than that of natural images, espe-
cially for pixel-level change detection. Therefore, unsupervised methods without manual
labeling steps have more advantages. Currently, unsupervised deep-learning methods
can be divided into two categories. As shown in Figure 1a, the network is treated as a
feature extractor to transform original images into a new feature space, and the model
parameters are optimized based on the analysis of current output features in each iteration.
For example, Liu et al. [30] proposed a symmetric convolutional coupling network (SCCN),
which was initialized by a denoising autoencoder, and then minimized the feature differ-
ence between those unchanged pixels. Zhang et al. [31] adopted clustering analysis and
detected multiple types of changes. Liu et al. [32] established an energy function driven
network according to the feature difference. The advantage of these methods is that the
newly derived features are used in each iteration to progressively improve the accuracy
of the results. However, due to the limitation of optimization, it is difficult to use more
complex models without any labels and the high dimension of HSIs is not conducive to
model convergence. The other is shown in Figure 1b. The results obtained by the traditional
algorithms are assigned to all samples as pseudo-labels to train neural networks, which
is more commonly used [17,19–21,25,26,33,34]. These methods are easy to implement and
closer to end-to-end patterns, avoiding the intermediate steps of difference image analysis.
The only problem is that the pseudo-labels are not completely correct, which may mislead
the network training. Inspired by the first category of methods, we utilize new predictive
values to update pseudo-labels in multiple iterations to gradually reduce noise labels.
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(a) (b)

Figure 1. Architectures of two unsupervised deep methods for change detection. (a) Feature analysis-
driven model training. (b) Pseudo-labels-driven model training.

2.2. Deep Learning with Noisy Labels

Noisy labels are ubiquitous in deep-learning applications, such as in large-scale low-
quality datasets collected from the internet or crowdsourcing platforms in supervised
learning, predictive pseudo-labels in semi-supervised learning and in domain adaptation
learning. The overfitting of noisy labels will directly weaken the generalization of the
models. Thus, learning with noisy labels still attracts researchers’ attention. The noise
transition matrix and robust loss function are commonly used for antinoise training. Gold-
berger et al. [35] added another softmax layer to capture the transitional relationship
between the noisy and true labels. Ghosh et al. [36] confirmed that the loss function based
on the mean-absolute error is inherently robust to noise. CleanNet [37] determined whether
the sample label is correct by comparing it with a representative “class prototype”. How-
ever, these methods generally require prior knowledge or rely on certain constraints. To
avoid consuming additional resources or more complex networks, it is a good way to select
clean parts from noisy instances to update models. The memorization effects of deep neural
networks show that the samples with smaller values collected from the loss function are
more likely to be correctly annotated. Therefore, some studies [24–27] allow the model to
select reliable samples for itself in each iteration to improve classification accuracy, which
is similar to active learning and reinforcement learning.

2.3. Mutual Teaching Paradigm

Although sample selection can effectively prevent noisy labels from participating
in training, it is difficult to ensure that the selected labels are absolutely clean. The self-
training process is sensitive to noise and outliers, and multiple iterations will accumulate
the model bias caused by a few wrongly selected instances or unbalanced samples. For
this purpose, MentorNet [38] is learned to compute time-varying weights for each training
sample based on a predefined course, which provides meaningful supervision to help
StudentNet overcome corrupted labels. However, the problem of error accumulation still
exists. Inspired by co-training [39], co-teaching [27] trains two identical deep networks
and lets them select small loss samples for each other in every minibatch. The difference
between them is that co-training needs to establish two viewpoints to generate reliable
pseudo-labels, which are generally used for semisupervised learning. Co-teaching only
needs one viewpoint, which utilizes the randomness of the network training process to
resist self-confidence bias, similar to finding their potential shortcomings by “peer-review”.
Likewise, deep mutual learning [40] enables multiple student networks to learn from
each other to produce a more robust and generalized network in model distillation. This
simple and effective learning paradigm is easily extended to other applications [41–44].
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Unfortunately, few studies have focused on pseudo-label noise in HSI-CD. Therefore, we
develop a dynamic change detection framework using the novel mutual teaching approach
and an improved sample selection method.

3. Methodology

In this section, we detail the proposed method from three aspects: the training process
of the mutual teaching framework, sample selection and class balancing, and the classifier
for HSI-CD.

3.1. The Mutual Teaching Framework

An overview of the proposed mutual teaching framework for bitemporal HSI-CD is
shown in Figure 2. First, the original pseudo-labels are obtained from a traditional method,
and after screening, they are used to initialize two DL models with the same structure.
After each iteration, the two DL models update pseudo-labels for each other with new
predictions and alternately use two different sample selection procedures to ensure the
accuracy and diversity of training instances. In the end, the final result is generated by
combining the predictions of the two models.

Figure 2. Graphical illustration of the proposed method. (a) Overall framework of the proposed
mutual teaching based on collaborative training and label correction. Both models update their
pseudo-labels with each other’s predictions and select clean samples to optimize parameters. (b) The
model parameters and pseudo-labels are alternately updated and the final result is generated by the
predictions of the two models. (c) Two sample selection methods jointly ensure the accuracy and
diversity of training samples.

In this work, the HSI-CD task is regarded as a classification problem, that is, to
determine whether the sample corresponding to each pixel belongs to the changed or
unchanged class. Taking a pair of pixels in the same position of bitemporal images as
a training instance. With a total of m samples, xi is the ith sample, and m equals w× h,
where w and h are the width and height of the original image, respectively. We adopt
the CVA algorithm to obtain initial pseudo-labels y ∈ Rm, yi equals 1 to represent the
change sample, and 0 is unchanged. In contrast to the existing deep-learning-based change
detection methods, the pseudo-labels generated by CVA are only used to initialize the
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parameters of the two networks w(A) and w(B) and serve as initial values of y(A) and y(B).
They will be updated dynamically by mutually training the two networks.

To further improve the accuracy of classifiers, it is necessary to select samples with
the label as correct as possible. After feeding all pseudo-labels into the sample selection
program, two sets of training data v(A) and v(B) can be obtained. Here v ∈ Rm indicates
whether the sample xi is selected, where vi equals 1 indicating selected and 0 unselected.
The parameter updating procedures of both models are described below:

ŵ(A) = argmin
w(A)

m−1

∑
i=0

v(A)
i L

(
y(A)

i , f
(

xi, w(A)
))

ŵ(B) = argmin
w(B)

m−1

∑
i=0

v(B)
i L

(
y(B)

i , f
(

xi, w(B)
)) (1)

where L(yi, f (xi, w)) is the loss between the classifier’s predicted value f (xi, w) and the
pseudo-label yi. Then, we can update the pseudo-labels with a new prediction:

ŷ(A)
i = αy(A)

i + (1− α) f
(

xi, w(B)
)

ŷ(B)
i = αy(B)

i + (1− α) f
(

xi, w(A)
) (2)

where α is the momentum parameter. Note that both models use each other’s predicted
values to update their own pseudo-labels for mutual teaching purposes.

Sample selection can effectively reduce noisy labels, but it is impossible to completely
screen them. Due to various factors such as unbalanced samples and noisy labels, it is
inevitable for the classifier to generate confidence bias. The error will be transferred back
to itself in the next iteration, and it should be increasingly accumulated in the self-training
process. Benefiting from the respective training of the two models, they can filter out
different types of errors by mutual teaching and effectively reduce the accumulation of
these errors. Meanwhile, with the improvement of model prediction accuracy, the influence
of noisy labels can also be mitigated by gradually modifying pseudo-labels. After multiple
iterations, the final results are derived from the predicted values of two classifiers. When
their predictions are different, we choose one with less loss.

3.2. Sample Selection

To reduce the impact of noisy labels, sample selection is utilized in large studies.
The most common approach is to judge the credibility according to the sample loss, which
can be formulated as:

vi =

{
1, if |yi − f (xi, w)| < λ

0, otherwise
(3)

The threshold λ is a critical parameter. When λ is too large, noisy labels will increase,
and when λ is too small, the lack of complex samples is not conducive to the generalization
of the classifier.

In previous studies [25,26], the above selection method was used, and it is designed
for synthetic aperture radar (SAR) image data, which is comparatively simple. However,
it performs poorly on HSIs. The selected samples tend to focus on the simplest regions
and ignore other types. Thus, we need to design a more appropriate sample selection
algorithm for such HSIs. Considering the distribution of data, we use a clustering-based
method to select data in blocks. The data in the same cluster have high similarity. When
most samples in the cluster have consistent prediction, it is relatively reliable. To select
samples of different types evenly and ensure correct labels, a group confidence-based
sample selection approach is designed, as shown in Figure 3. First, the PCA is used to
reduce the feature dimension of the difference image, and k-means algorithm is applied
on the results to obtain the grouping information. Then, we can obtain a grouping label
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vector c ∈ Rm, which indicates the grouping information of all samples and takes the value
in {0, 1, . . . , n− 1}, while n is the total number of groups. We consider the label with the
highest proportion in each group as the group label:

gj = max
l∈{0,1}

{
m−1

∑
i=0

(ci == j)× (yi == l)

}
, j = 0, 1, · · · , n− 1 (4)

where yi is the pseudo-label; g = [g0, . . . , gn−1] ∈ Rn, gj is the group label. If there are more
changed samples than unchanged samples within the group, gj takes 1; otherwise, it takes
0. The group confidence is determined by the proportion of group labels:

rj =
∑m−1

i=0 (ci == j)×
(
yi == gj

)
∑m−1

i=0 (ci == j)
, j = 0, 1, · · · , n− 1 (5)

where r ∈ Rn represents a group confidence vector. When the value exceeds a certain
threshold, the sample in the group is considered reliable:

vi =

{
yi == gj, if rj ≥ σ

0, otherwise
s.t. j = ci (6)

where σ is the group confidence threshold. Note that we only select samples with the same
label as the group. In this way, the selected training dataset contains samples of varying
degrees of change and has a low proportion of noisy labels.

Figure 3. Sample selection based on group confidence. (a) Pseudo-labels. (b) Multiclass map.
(c) Sample loss-based method. (d) Group confidence-based method. In (c,d), white is the selected
samples with correct label, red is the selected noisy samples, and black is the discarded samples.

Figure 3c,d shows the samples selected in two ways respectively. It is obvious that
the dataset contains two main changes, and the changed samples selected by a single
sample confidence focus on one class while ignoring the other. Moreover, the sampling of
our method is more even, and the noisy labels contained in both methods are negligible.
Another advantage of our method is that it can be used on pseudo-labels of discrete values,
such as 0 or 1. The sample loss-based algorithm can only be used on continuous values,
which are usually between 0 and 1.

The group confidence-based sample selection approach can consider screening noisy
labels and the diversity of the training data. There are mainly two kinds of samples to be
discarded: one with low group confidence and the other has a different label from most of
the samples in the group. Thus, some complex samples may never participate in training,
and the two models cannot adequately exchange information. Therefore, we alternately
use two selection strategies to jointly guarantee the accuracy and the stability of the final
results, as shown in Figure 2c. The group confidence-based sample selection method is
used to select samples which are as clean possible, to improve the accuracy of models, and
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the parameter σ is set to 0.8. The loss-based method is used to select as many samples as
possible to encourage these easily overlooked complex samples to participate in training,
and the parameter λ is set to 0.4.

In addition, we apply different weights for sample loss to balance class. General binary
classification uses cross-entropy loss, which can be defined as follows:

lce(yi, pi) = −yi log pi − (1− yi) log(1− pi) (7)

where pi is the predicted value. Then, the final weighted loss function is:

L(yi, f (xi, w)) = |yi − f (xi, w)|γ · lce(yi, f (xi, w)) (8)

where the first item enhances the weight of large loss samples, and γ is set to 2 according to
article [45]. The weighted loss can balance the multiclass samples to avoid a large deviation
of the model. The entire procedure for the proposed method is summarized in Algorithm 1.

Algorithm 1: Procedure of the proposed method.
Input: Two images I1 and I2; thresholds σ and λ; the number of iterations nt; the

momentum parameter α.
Output: The final result p.

// Initialization
Get pseudo-labels y and multiclass map c; initialize y(A) and y(B);
Randomly initialize w(A) and w(B);
for i← 1 to nt do

if i % 2 == 1 then
Update selected sample v(A) and v(B) by (6);

else
Update selected sample v(A) and v(B) by (3);

end
Update model parameters w(A) and w(B) by (1) and (8);
Update pseudo-labels y(A) and y(B) by (2);

end

p⇐ {p(A) = f
(

x, w(A)
)

, p(B) = f
(

x, w(B)
)
}

3.3. A 3D Convolutional Neural Network Establishment

The bitemporal hyperspectral data have four dimensions, two spatial axes, a spectral
axis and a temporal axis. To extract features using general 2D convolution kernels, most
change detection methods reduce one dimension of data by stacking or with a difference
operation. However, direct stacking increases the number of convolution kernel channels
and network parameters, especially for HSIs with hundreds of channels, and the difference
operation leads to the loss of original information. In HSI classification, the authors in [18]
verified that 3D convolution can better extract spectral spatial features of HSI than 2D
convolution. In some video processing applications, 3D convolution kernel has been used
to extract temporal and spatial features simultaneously. Similar to change detection, these
kinds of data have an additional temporal dimension relative to a single image. Therefore,
3D convolution is an appropriate feature extractor without additional operations in HSI-CD.

In convolutional layers, the calculation of new features uses convolution kernels to
multiply local domain features of the previous layer, then adds a bias and passes through
an activation function. For 2D convolution, the value of the feature map extracted by the
ith convolution kernel of the lth layer at position (x, y) is calculated as:

Xxy
l,i = f

(
∑
m

Pi−1

∑
p=0

Qi−1

∑
q=0

Wpq
l,i X(x+p)(x+q)

l−1,m + bl,i

)
(9)
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where f (·) is the activation function, Pi and Qi are the height and width of the kernel,
Wpq

l,i is the value of the kernel connected to the feature map at position (p, q), m represents
the l − 1th layer feature map connected to the current feature, and bl,i is the bias. For 3D
convolution, the value of the feature map extracted by the ith convolution kernel of the lth
layer at position (x, y, z) is calculated as:

Xxyz
l,i = f

(
∑
m

Pi−1

∑
p=0

Qi−1

∑
q=0

Ri−1

∑
r=0

Wpqr
l,i X(x + p)(y+ q)(z+ r)

l−1,m + bl,i

)
(10)

where Ri is the size of the 3D kernal along the spectral dimension. Because the adjacent
spectral channels of HSIs have a strong correlation, it is reasonable to extract the spatial and
spectral neighborhood information of two images simultaneously with 3D convolution.

For HSI-CD tasks, we design a 3D convolutional neural network as the basis classifier,
as shown in Figure 4. A sample consists of two data blocks of a neighborhood size of 3
extracted from bitemporal images at the same location, and is filled to size 5 with 0 when
input into the network. After three 3D convolution layers and a pooling layer, the fused
feature vector is extracted, and finally, the change information is output through two fully
connected layers. The last layer is activated by the softmax function, and the other uses
the ReLU function. After all of the samples are fed into the network, a result map with
the same size as the original image representing the degree of change can be obtained. To
verify the effectiveness of 3D convolution, we design a similar 2D convolutional neural
network for comparison in subsequent experiments.

Figure 4. Architecture of the proposed 3DCNN.

4. Result

To verity the effectiveness of the proposed method, several experiments were con-
ducted using a multispectral dataset and three popular hyperspectral datasets. This section
first introduces the datasets used in the experiment. Then the evaluation measures of
change detection and experimental setup are described. Finally, comparative experiments
with other methods are analyzed in detail.

4.1. Introduction to Datasets

The first dataset “Bastrop” is shown in Figure 5a,b, which consists of two multispectral
images (MSI) taken before and after a forest fire in Bastrop County, Texas, in September
2011 and October 2011 [46]. This multispectral dataset was selected from Landsat 5 The-
matic Mapper (TM) multispectral images consisting of six spectral bands with a spatial
resolution of 30 m for bands 1–5 and 7 and one thermal band (band 6). Their spatial size is
1534 × 808 pixels with 7 bands.

The other three HSI datasets were collected from Earth Observing-1 (EO-1) Hyperion
data. EO-1 has a spectral resolution of 10 nm and a spatial resolution of approximately
30 m, with a total of 242 different bands. The second dataset “Umatilla” is irrigated
farmland in Umatilla County, OR, USA, as shown in Figure 5d,e. The images contain
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390 × 200 pixels and 242 bands. The third dataset, “Yancheng”, was acquired on 3 May
2006, and 23 April 2007, in Yancheng, Jiangsu Province, China, as shown in Figure 5g,h.
The two images both consist of 450 × 140 pixels with 155 bands after eliminating the
noise. The fourth dataset, “river”, was obtained on 3 May 2013, and 31 December 2013,
in Jiangsu Province, China, as shown in Figure 5j,k. This dataset contains two HSIs with
463 × 241 pixels and 198 channels [17].

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 5. Experimental datasets. (a) Bastrop dataset in September 2011. (b) Bastrop dataset in October
2011. (d) Umatilla dataset on 1 May 2004. (e) Umatilla dataset on 8 May 2007. (g) Yancheng dataset
on 3 May 2006. (h) Yancheng dataset on 23 April 2007. (j) River dataset on 3 May 2013. (k) River
dataset on 31 December 2013. (c,f,i,l) groundtruth change map for Bastrop, Umatilla, Yancheng and
River dataset, respectively.

4.2. Evaluation Measures and Experimental Configurations

In this paper, specific evaluation metrics are used to evaluate the change detection
results of all methods on the datasets. Generally, the results of change detection use pixel-
level indicators, which mainly include the following four metrics: true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN). The positive sample refers to
the changed samples, displayed in white in the result image, and the negative sample refers
to unchanged samples, displayed in black. The correct rate of classification is represented
by the overall accuracy (OA), and the formula is

OA =
TP + TN

TP + TN + FP + FN
(11)

Compared with OA, the kappa coefficient and F1 score can better reflect the consistency
between the predicted results and the actual results. It is calculated as

PRE=
(TP + FP)×(TP + FN) + (FN + TN)×(FP + TN)

(TP + TN + FP + FN)2 (12)
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Kappa =
OA− PRE

1− PRE
(13)

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

F1 =
2× Precision× Recall

Precision + Recall
(16)

For the experimental setting, the proposed 3DCNN network structure is shown in
Figure 4. For hyperspectral images, the size of the first two 3D convolution kernels is
2× 2× 5, while on the Bastrop dataset, the size of the 3D convolution kernels is 2× 2× 1
because it has only seven bands. The parameter n is the total number of groups. For
the Bastrop datasets, n is set to 10, and for the other three datasets, n is set to 20. The
momentum parameter α is set to 0.4.

4.3. Comparison with Other Methods

To verity the effectiveness of the proposed method, we tested our method on three
hyperspectral datasets and a multispectral dataset, then compared it with other classical
methods, including the change vector analysis (CVA) [7], iteratively reweighted multivari-
ate alteration detection (IRMAD) [10], iterative slow feature analysis (ISFA) [12], support
vector machines (SVM), GETNET [17], 2DCNN, and 3DCNN. The Otsu threshold algorithm
is used in CVA to generate the final change detection result, which is used as pseudo-labels
for other methods that require labeled data. Among the above methods, only CVA, IRMAD
and ISFA do not require labeled samples. Other classification-based methods use the same
pseudo-labels for supervised training and select training samples through our proposed
sample selection method.

4.3.1. Experiments on the Bastrop Dataset

Figure 6 shows the final binary result images of the eight methods, and Table 1 lists
the results of the numerical evaluation. It can be clearly seen from the figure that there
is a large amount of misclassification noise in CVA, mainly false negative samples, and
the kappa coefficient is only 0.7241. IRMAD is the worst and ISFA is relatively better
among the three unsupervised traditional algorithms, but they have the same problems.
Other methods use the results of CVA as pseudo-labels to train their models. Although
SVM significantly reduces FP values, it also leads to a huge deviation that causes the
changed samples to be mistaken for unchanged. Then, the kappa coefficient was reduced
by 22%. Deep-learning methods have wonderful advantages. They all increase the OA
and the kappa coefficients and outperform traditional algorithms visually. Remarkably, the
performance of our method is considerably better than other methods on this dataset, with
kappa rising to 0.9406, which is 9% higher than the second-highest value. In particular, a
large number of false negative samples have been well-corrected.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. The change map on Bastrop dataset. (a) CVA. (b) IRMAD. (c) ISFA. (d) SVM. (e) GETNET.
(f) 2DCNN. (g) 3DCNN. (h) ours.

Table 1. Quantitative evaluation of CD results by different methods for Bastrop dataset.

Methods FP FN OA Kappa F1

CVA 10,272 46,813 0.9539 0.7241 0.7487
IRMAD 13,490 54,000 0.9455 0.6688 0.6977

ISFA 10,082 32,010 0.9660 0.8073 0.8259
SVM 2799 83,435 0.9304 0.4992 0.5290

GETNET 6744 31,319 0.9693 0.8241 0.8408
2DCNN 6923 34,276 0.9668 0.8076 0.8257
3DCNN 7420 26,299 0.9728 0.8473 0.8623

ours 7212 6811 0.9887 0.9406 0.9469

4.3.2. Experiments on the Umatilla Dataset

These dataset results are shown in Figure 7 and listed in Table 2. Among the three
unsupervised traditional algorithms, CVA has the most serious noise and the lowest
accuracy. From the visual effect, the results of IRMAD are closest to the real labels, but there
is no substantial advantage compared with ISFA in quantitative analysis. Deep-learning
methods can basically filter out the background noise, which also confirms the effectiveness
of our sample selection method. Although the gap is small, our method has achieved the
best performance in quantitative analysis.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. The change map on Umatilla dataset. (a) CVA. (b) IRMAD. (c) ISFA. (d) SVM. (e) GETNET.
(f) 2DCNN. (g) 3DCNN. (h) ours.

Table 2. Quantitative evaluation of CD results by different methods for Umatilla dataset.

Methods FP FN OA Kappa F1

CVA 1092 198 0.9835 0.9258 0.9352
IRMAD 452 246 0.9911 0.9586 0.9637

ISFA 506 191 0.9911 0.9588 0.9639
SVM 256 2125 0.9695 0.8442 0.8612

GETNET 216 337 0.9929 0.9667 0.9707
2DCNN 210 445 0.9916 0.9604 0.9651
3DCNN 277 291 0.9927 0.9660 0.9701

ours 151 309 0.9941 0.9723 0.9756

4.3.3. Experiments on the Yancheng Dataset

The changes in this dataset are mainly related to farmland. The results are shown
in Figure 8 and listed in Table 3. The Yancheng dataset is a relatively simple, traditional
method that can also achieve a good performance, especially the performance of ISFA
and deep-learning methods that are very similar. Additionally, their OAs are all over 97%.
The performance of SVM is the worst and there is too much noise in the changed area. In
addition, these four deep-learning methods have all performed very well, but GETNET
and 2DCNN still have obvious noise in the unchanged regions, and 3DCNN performs
poorly in the changed regions. Only our method eliminates the background noise and also
ensures the accuracy of the changed region with multiple iterations.
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 8. The change map on Yancheng dataset. (a) CVA. (b) IRMAD. (c) ISFA. (d) SVM. (e) GETNET.
(f) 2DCNN. (g) 3DCNN. (h) ours.

Table 3. Quantitative evaluation of CD results by different methods for Yancheng dataset.

Methods FP FN OA Kappa F1

CVA 1833 1158 0.9525 0.8860 0.9197
IRMAD 2268 356 0.9583 0.9019 0.9318

ISFA 1303 296 0.9746 0.9394 0.9574
SVM 512 4619 0.9186 0.7882 0.8419

GETNET 810 792 0.9746 0.9383 0.9562
2DCNN 1162 611 0.9719 0.9323 0.9522
3DCNN 554 1059 0.9744 0.9373 0.9553

ours 548 817 0.9783 0.9472 0.9624

4.3.4. Experiments on the River Dataset

The River dataset is more complex than the other datasets and contains a variety
of changes, mainly the disappearance of substances in rivers. Figure 9 shows the maps
obtained by eight methods and the quantitative comparison is shown in Table 4. It is
obvious from the numerical indicators that the results of CVA are extremely unbalanced,
and the number of false-positive samples is approximately 6 times that of the false-negative
samples. In addition, ISFA, which performs relatively well in the other datasets, has the
worst accuracy here. There is no significant difference among the results of the three
networks. The OA can grow to more than 95%, which once again proves that the deep
neural network has a strong learning ability and that sample selection can effectively
suppress noisy labels. Through multiple iterations and sample selection, the proposed
method eliminates the huge deviation of the initial pseudo-labels and obtains the best
performance.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. The change map on River dataset. (a) CVA. (b) IRMAD. (c) ISFA. (d) SVM. (e) GETNET.
(f) 2DCNN. (g) 3DCNN. (h) ours.

Table 4. Quantitative evaluation of CD results by different methods for River dataset.

Methods FP FN OA Kappa F1

CVA 6196 1123 0.9344 0.7103 0.7467
IRMAD 3343 3089 0.9424 0.7005 0.7328

ISFA 10,244 1355 0.8961 0.5897 0.6453
SVM 2595 6007 0.9229 0.5373 0.5784

GETNET 4185 1369 0.9502 0.7636 0.7915
2DCNN 3618 1127 0.9575 0.7958 0.8196
3DCNN 2447 2215 0.9582 0.7827 0.8061

ours 1595 1809 0.9695 0.8387 0.8558

5. Discussion
5.1. Ablation Study

To argue the effectiveness of the mutual teaching paradigm, on the above four datasets
we make the two networks perform mutual teaching and separate training under the same
conditions. Figure 10 shows the OA of the results in 10 consecutive iterations. Classifiers A
and B refer to each other’s predicted values, while A′ and B′ only use their own results. The
two sets of experiments have the same initialization. In the mutual teaching framework,
high-precision classifiers are often dragged down by low-precision classifiers, undergoing
raising and lowering changes. However, overall, the performances of the two models
basically show an upward trend. Although this process has some fluctuations, it does not
affect the overall performance. The self-training performance is relatively poor, and the
Umatilla and Yancheng datasets are almost not improved. The improvement of the Bastrop
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and River datasets is mainly due to sample selection and label correction, but it is also
inferior to the mutual teaching models.

(a) (b)

(c) (d)

Figure 10. The iterative performance of the mutual teaching framework, where A and B use mutual
teaching and A′ and B′ are self-training. (a) Bastrop dataset. (b) Umatilla dataset. (c) Yancheng
dataset. (d) River dataset.

As shown in Figure 11, we compare the alternating training with only one sample
selection method. If a dataset itself is relatively simple, the difference between these results
is not large. To show the difference in performance, we only use the most complicated River
dataset. Figure 11 shows the overall accuracy of the final results and the variance between
two models under three settings in each iteration on the River dataset. Although the model
accuracy increases faster when only the group confidence-based sample selection method
is used, the accuracy no longer increases and remains stable from the sixth iteration. The
overall accuracy is further improved by alternating training and significantly exceeds other
settings, which proves that the participation of complex samples in training is beneficial to
improving the model performance and preserving the details of the change map.

Figure 11. The result accuracy and the variance of two models under three settings on River dataset.
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5.2. Compatibility of the Proposed Framework with Other Models

Figure 12 displays the change detection results of three networks during initialization
and after 10 iterations in our framework. GETNET and 3DCNN have considerably more
false-positive samples during initialization, which is mainly misled by the pseudo-labels
generated by CVA. However, after multiple corrections, these noises have been improved
to a certain extent, especially for the 3DCNN (as shown in the red box). The main error
of the 2DCNN result is that some changed regions were not detected, and it had also
been recovered after iteration. In other words, both false-positive and false-negative noise
labels have the opportunity to be corrected under the proposed framework. The results
demonstrate that the mutual teaching framework can also benefit other deep-learning
methods based on pseudo-labels.

(a) (b) (c)

(d) (e) (f)

Figure 12. Results of different networks in the first and last iterations on River dataset. (a) GETNET
in the first iteration. (b) 2DCNN in the first iteration. (c) 3DCNN in the first iteration. (d) GETNET in
the last iteration. (e) 2DCNN in the last iteration. (f) 3DCNN in the last iteration.

5.3. Hyperparametric Analysis
5.3.1. Analysis of the Pseudo-Label Update Rate

In the process of pseudo-label correction, the momentum parameter α (in Equation (2))
selection is worth discussing. When α = 0, pseudo-labels in each iteration are determined
only by new predicted values; when α = 1, our method depends entirely on the initial
pseudo-label without any updates. We measure the results of different parameters on four
datasets, as shown in Figure 13. Experimental results show that the update of pseudo-labels
can bring a better performance. If the false labels are not corrected, they will inevitably
limit the final result. With the increase in α, the overall accuracy shows a downward trend.
A value of 0.2∼0.5 is a suitable range for all datasets. Therefore, we choose α = 0.4 for our
experiments.
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(a) (b)

(c) (d)

Figure 13. Analysis of the momentum parameter α. (a) Bastrop dataset. (b) Umatilla dataset.
(c) Yancheng dataset. (d) River dataset.

5.3.2. Analysis of the Number of Groups

Sample selection by clustering methods can ensure the diversity of training samples.
However, too detailed a classification makes it difficult to remove noise for datasets with
simple ground objects types (the sample loss-based method is more effective here). For com-
plicated datasets, especially HSI that are sensitive to ground changes, classified sampling
is crucial to class balance and model generalization. The results for different numbers of
groups are shown in Figure 14. Since the Bastrop dataset has only one change type, and the
spectral information of MSI is much less than that of HSI, the value of n needs to be small.
Based on the experiment, we choose n = 10 on the Bastrop dataset. For the other three
HSI datasets, we choose n = 20. Moreover, other clustering methods that automatically
determine the number of groups can be considered to avoid parameter selection.

(a) (b)

Figure 14. Cont.
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(c) (d)

Figure 14. Analysis of the number of groups n. (a) Bastrop dataset. (b) Umatilla dataset. (c) Yancheng
dataset. (d) River dataset.

5.4. Computing Time

The computing device is equipped with Intel i7-9700K CPU (3.6 GHz) and NVIDIA
GeForce RTX2080Ti GPU. The program is written in Python via the code library of PyTorch.
Here, we list the computing time for each dataset in Table 5. With the multiple models and
numerous iterations for optimization, the proposed method suffers from high computa-
tional complexity. Theoretically, the optimization process of the two models is independent.
Therefore, the method can be accelerated by parallel computing to reduce the computing
time by 50%, which is the same as the self-training time of a single model.

Table 5. Time cost (seconds) of each dataset.

Bastrop Umatilla Yancheng River

3DCNN 343.52 51.18 46.94 67.99
ours 2919.93 414.29 339.44 496.96

6. Conclusions

In this article, a general mutual teaching framework with momentum correction is
proposed for the HSI-CD task by dual-3DCNN. It aims to perform robust training for deep-
learning methods using pseudo-labels generated by traditional approaches. Adopting
the idea of collaborative training, the proposed framework encourages the two models
to teach each other to mitigate self-confidence bias and boosts label correction in the
iterative process to further improve performance. Then, focusing on the complexity of HSI
change types, a new sample selection method based on group confidence is designed to
extract better quality and diverse training data. Furthermore, the 3DCNN can effectively
extract spatiotemporal spectral features of bitemporal HSIs, and thus, it is developed as
the basic classifier of the above framework. Our approach uses pseudo-labels obtained by
unsupervised algorithms, which means it can also be compatible with other networks that
require labeled data.

We implemented our approach and performed experiments on a multispectral dataset,
as well as on three public hyperspectral datasets. The visual and quantitative results show
that our method can effectively improve the robustness and generalization of the deep
neural network for the HSI-CD task.
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