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Abstract: In this paper, a novel framework for the automatic extraction of road footprints from
airborne LiDAR point clouds in urban areas is proposed. The extraction process consisted of three
phases: The first phase is to extract road points by using the deep learning model PointNet++,
where the features of the input data include not only those selected from raw LiDAR points, such as
3D coordinate values, intensity, etc., but also the digital number (DN) of co-registered images and
generated geometric features to describe a strip-like road. Then, the road points from PointNet++
were post-processed based on graph-cut and constrained triangulation irregular networks, where
both the commission and omission errors were greatly reduced. Finally, collinearity and width
similarity were proposed to estimate the connection probability of road segments, thereby improving
the connectivity and completeness of the road network represented by centerlines. Experiments
conducted on the Vaihingen data show that the proposed framework outperformed others in terms
of completeness and correctness; in addition, some narrower residential streets with 2 m width,
which have normally been neglected by previous studies, were extracted. The completeness and the
correctness of the extracted road points were 84.7% and 79.7%, respectively, while the completeness
and the correctness of the extracted centerlines were 97.0% and 86.3%, respectively.

Keywords: airborne LiDAR; road footprints; geometric features; road centerline

1. Introduction

Airborne light detection and ranging (LiDAR) is an active remote sensing technique
for acquiring 3D geospatial data over the Earth’s surface [1,2], with which a point clouds
dataset encoding 3D coordinate values under a given geographic coordinate system can be
generated [3]. The point clouds can be further processed to extract thematic information and
to generate geo-mapping products, such as man-made objects [4], stand-alone plants [5],
a digital elevation model (DEM) [6], etc. The latest commercial LiDAR systems, such as
the Leica ALS80 airborne LiDAR, can provide a planar accuracy better than 10 cm and a
vertical accuracy better than 6 cm at a typical flying height of 1000 m.

LiDAR point clouds are becoming one of the main data sources for road extraction
because of at least four advantages compared with optical imagery. First, the elevation in-
formation from LiDAR points can be used to separate elevated structures, such as buildings
and vegetation from roads [7,8]. Second, LiDAR points can cover an urban road contin-
uously. The ability of LiDAR’s penetration through tree canopies reduces the occlusion
effect caused by trees; its relatively narrow scanning angle also ensures the integrity of
road information [9]. Third, LiDAR data contains extra information, such as intensity and
full-waveform, which help to improve the accuracy of road extraction [10]. Finally, as
acquired by an active sensor, LiDAR data are not affected by shadow and are less likely to
be affected by weather [11].
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Road extraction from LiDAR data has been a research topic since the late 1990s. A
variety of approaches have been proposed and explored since then. Rieger et al. [12]
extracted roads in forested areas from LiDAR data, and used the extracted roads to enhance
the quality of a digital terrain model (DTM). Clode et al. [13] proposed a hierarchical
classification method to convert LiDAR data into a digital surface model (DSM) to extract
road points from point clouds. The road candidate points were obtained by filtering from
a given distance to the DTM and intensity value. Road patches were later connected to a
road network through a morphological closing operation. However, the correctness of this
method was not high, especially when a road was connected to a bridge. To improve the
efficiency of this method, Clode et al. [14] introduced another algorithm called phase coded
disk (PCD) to vectorize the road centerlines and calculate the road width. Choi et al. [15]
demonstrated that the integration of height, reflectance, and geometric information of roads
was a crucial factor for reliable and correct classification of road points. Samadzadegan
et al. [16] proposed a road extraction method from point clouds based on combining
multiple classifiers. In their proposed method, majority voting and selective naive Baysian
were used for the fusion of the results of multiple classifiers. Zhu and Mordohai [17]
formulated road extraction as a minimum coverage problem, then solved it in the presence
of large-scale range datasets. Zhao and You [18] designed structure templates to search
for roads on ground intensity images, and road widths and orientations were determined
by a subsequent voting scheme. Matkan et al. [19] classified the LiDAR data into five
classes: roads, trees, buildings, grassland, and cement using support vector machines
(SVM) classification, where a method based on Radon transform and Spline interpolation
was employed to automatically locate and fill the gaps and holes in the road network;
this showed acceptable performance under straight road conditions, but did not perform
well at intersections. Li et al. [20] presented a novel algorithm for road detection from
airborne LiDAR point clouds adaptively for the variability of intensity data of the road
network. The candidate road points were identified from ground points by a local intensity
distribution histogram, while the final road points were verified by global inference based
on the roughness and area of the road candidate point sets. Hui et al. [21] proposed a
method called SRH, which was composed of three key algorithms: skewness balancing,
rotating neighborhood, and hierarchical fusion and optimization. The skewness balancing
algorithm used for filtering was adopted as a new method for obtaining an optimal intensity
threshold such that the “pure” road points can be labeled. The rotating neighborhood
algorithm was developed to remove narrow roads, such as corridors leading to parking lots
or sidewalks. The hierarchical fusion and optimization algorithm was applied to extract the
complete urban road network. Husain and Vaishya [22] proposed a new pipeline for the
detection of road surface and corresponding centerline and boundary lines using terrestrial
LiDAR data. The pipeline includes two basic phases. In the first phase, the candidate road
surface pixels of intensity image converted from LiDAR point clouds were detected after
applying an averaging mask. In the second phase, centerlines and boundary lines were
detected by forming vertical grids at detected road surfaces. Chen et al. [23] developed a
higher-order tensor voting-based method, which could locate road junctions by identifying
multi-directional features in an encoded high-order tensor model.

Although many efforts have been made by previous studies, the problem of road
detection and extraction from LiDAR data is still far from being solved. A common
framework for extracting roads from airborne LiDAR point clouds mainly includes two
phrases: (1) distinguishing ground points from non-ground points, referred to as filtering,
which can be achieved by elevation analysis, and (2) extracting road points from ground
points. The ground points typically contain roads, grass, bare land, parking lots, etc. The
elevation is not a suitable feature for further point classification for road extraction from
ground points, because different neighboring points on the ground may have similar
elevations. Therefore, some studies [13–16,20] use the intensity of LiDAR data as the main
cue to distinguish roads from other ground points. However, the intensity value of LiDAR
data is affected by various factors such as surface reflectance, atmospheric attenuation,
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incident angle, etc., and cannot describe the texture and structure of ground objects fully,
making it difficult to extract high-quality road footprints from ground points even with the
application of LiDAR intensity. In addition, point clouds usually lack spectral information,
which poses difficulties for reliable object recognition. Moreover, because of the irregular
distribution of point clouds, more effort is needed to extract accurate break lines or features,
such as road edges. Due to the aforementioned problems of road extraction from the single
dataset of point clouds, some studies have started to focus on using the combination of
optical images and point clouds for road extraction.

A current airborne LiDAR system usually integrates a high-resolution charge coupled
device (CCD) metric camera, from which high-resolution aerial images can be collected
along with laser scanning data. Optical images can provide spectral and texture information
simultaneously, which can be fused with LiDAR point clouds to identify ground objects,
including mandate ones such as roads. Zhu et al. [24] presented an innovative automatic
road extraction technique that combined information from digital images and laser scan-
ning data, which could recover the hidden road edges in digital images by removing any
high objects identified by point clouds. Hu et al. [25] focused on the integrated processing
of high-resolution image and LiDAR data for automatic extraction of grid structured urban
road network. The method firstly segmented the road areas from the LiDAR data using the
intensity and height information. Then, road detection was performed by iterative Hough
transform based on the contextual targets (i.e., parking lots and grasslands) obtained by
image analysis. Youn et al. [26] presented a method for automatically extracting urban
road networks from orthophotos and LiDAR data. The method started from the subdivi-
sion of a study area into small regions based on the homogeneity of the dominant road
directions from the orthophotos. A process called “acupuncture” was used to select the
road candidates in each region. Finally, extracted road candidates were edited to avoid
collocation with non-road features such as buildings and grass fields. Wang et al. [27]
preprocessed both point clouds and aerial images, and then used an improved mean shift
algorithm to classify the LiDAR data fused with spectrum attributes into clusters, such
as roads, buildings, vegetation, etc. Sameen and Pradhan [28] proposed a two-stage opti-
mization strategy based on fuzzy object analysis for extracting urban road networks from
LiDAR data combined with spectral information. In the strategy, the scale parameter was
optimized using the Bhattacharyya distance, while the shape and compactness parameters
were optimized using the Taguchi method. Milan [29] developed an integrated object-
based analysis framework for detecting and extracting various types of urban roads from
high-resolution optical images and LiDAR data.

Nevertheless, the problem of road detection and extraction from the combination of
point clouds and optical images still poses challenges to the research community: (1) The
accuracy of road extraction results in complex urban scenes is low. Although the fusion
of point clouds and optical images can improve the quality of road extraction, a large
number of high buildings, tree shadows, vehicles, and road traffic signs reduce the integrity
of road data and affect the extraction of road features. (2) The current mainstream road
points extraction methods mainly adopt intensity and elevation of point clouds as the input
features to a classifier. However, even if these two features are used [16,27], they cannot
fully describe the difference between road areas and non-road areas (such as parking lots,
low grass, bare land, etc.), resulting in low quality of the extracted roads.

As the development of deep learning and its applications to remote sensing data
processing progresses, it shows that deep learning networks can learn the deep features
of input data [30–35], which can be used as compensation for artificially constructed
features to achieve high-accuracy classification and segmentation of remotely sensed data,
including point clouds. Maturana and Scherer [31] proposed a method called VoxNet,
which converted point clouds into voxels, and successfully applied 3-D convolutional
neural networks (CNN) to process voxel data, achieving the recognition of geometric
shapes in point clouds. Sun et al. [32] converted the point clouds into a normalized digital
surface model (NDSM) image, then combined it with the spectral image, and adopted a
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classic autoencoder to semantically segment the point clouds. However, the first step of
each above-mentioned deep learning model is to rasterize the point clouds by interpolation.
PointNet [33] is the first deep learning model that is directly applicable to point clouds. It
was designed to be invariant to the permutations of input points; thereby, the process of
classifying points into specific categories was greatly simplified into an end-to-end method,
without the need for preprocessing steps such as rasterization. PointNet could learn global
features from a set of point data, but it lost the description of local geometric features. To
solve this problem, the authors further proposed a hierarchical network PointNet++ [34]
to capture fine geometric structures from the neighborhood of each point. Following
these two models, several modifications and variations were developed. Inspired by
the scale invariance feature transform (SIFT) feature descriptor, PointSIFT [35] added a
series of orientation-encoding units in the architecture of the PointNet++, to combine
features from different orientations. Because the simple max or average pooling used
in PointNet++ did not make the best use of local contextual information, PointWeb [36]
proposed an adaptive feature adjustment module by which each feature could be pulled or
pushed by the other features in a given local region according to the adaptively-learned
impact indicators. Local contextual information could be encoded in this manner and
the experimental results outperformed the compared ones. Liu et al. [37] proposed a
point context encoding (PointCE) module to learn a set of scaling factors, by which the
network could selectively focus on a few important intermediate features. Similarly, LAE-
Conv [38] learned the coefficients that represented the importance of a neighborhood to the
central point by multilayer perceptron (MLP), then aggregated the central point features
as a weighted sum of its neighbors’ features. Hu et al. [39] proposed an efficient and
lightweight network called RandLA-Net for large-scale point clouds segmentation. This
network utilized random point sampling to achieve remarkably high efficiency in terms of
memory and computation. A local feature aggregation module was proposed to capture
and preserve geometric details by progressively increasing the receptive field for each 3D
point. The experiments showed that RandLA-Net could process 1 million points in a single
pass up to 200× faster than existing approaches.

Compared with the extensive application of deep learning to terrestrial laser scanning
(TLS) and mobile laser scanning (MLS) point clouds, there are relatively fewer studies on
airborne laser scanning (ALS) data. Ödemir et al. [40] classified aerial point clouds into
ground-level objects, including roads and pavements, vegetation, buildings’ facades and
roofs, and three deep learning algorithms and one other machine learning algorithm were
tested and evaluated. Wen et al. [41] presented a global-local graph attention convolution
neural network (GACNN) that combined edge attention and density attention, which
was applied to the classification of unstructured 3D point clouds obtained by airborne
LiDAR and which achieved good results. However, in these applications, road and other
ground-level objects, such as pavements and parking lots, belong to the same class of
impervious surfaces. Bearing all the abovementioned in mind, the purpose of this article is
to introduce a new urban road extraction framework from airborne LiDAR point clouds
and high-resolution co-registered images. The framework consists of three phases:

(1) Road points extraction by PointNet++, where the features of the input data include not
only those selected from raw LiDAR points, such as 3D coordinate values, intensity,
etc., but also the DN values of co-registered images and generated geometric features
to describe a strip-like road.

(2) Two-step post-processing of the extracted road points from PointNet++ by graph-cut
and constrained triangulation irregular networks (CTINs) to smooth road points and
to remove clustered non-road points.

(3) Centerline extraction based on a modified method originally proposed in [21], where
road segment gaps and holes caused by the occlusion of vehicles, trees, and buildings
are recovered by estimating the connection probability of the road segment through
collinearity and width similarity.

In summary, there are two main contributions of the work:
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(1) Strip-like descriptors are proposed to characterize the geometric property of a road,
which can be applied to both point clouds and optical images. Strip-like descriptors,
together with other features, are input to the PointNet++ network, resulting in a more
accurate road point classification.

(2) Collinearity and width similarity are proposed to estimate the connection probability
of road segments to repair the road gaps and holes caused by the occlusion of vehicles,
trees, buildings, and some omission errors.

Experimental results show that the proposed framework not only outperformed
previous methods [14,21,42] in terms of completeness and correctness, but also extracted
narrower residential streets, which have normally been neglected by previous studies.

2. Materials and Method
2.1. Sample Materials

Experiments were conducted on the Vaihingen dataset provided by the International
Society for Photogrammetry and Remote Sensing (ISPRS) to compare the results of the
proposed framework with previous methods. The data were acquired in August 2008 by
Leica ALS50 with an average flying height of 500 m and a 45◦ field of view. The point
density was approximately 4.0 points/m2. In this dataset, all LiDAR points contain the x-,
y-, z-coordinates in the WGS84 reference coordinate system, intensity values, and other
attributes that were not likely to be useful for classification. In addition, orthophotos that
had been co-registered with the point clouds could provide DN values of R, G, B channels
for the corresponding laser scanning point. Ground truth was manually classified as roads,
public patches, buildings, and low, medium, and tall vegetations. The testing area was
located in the center of the city of Vaihingen, with an area of 500 m × 600 m. The testing
area included diverse landcover, mainly roads, buildings, trees, lawns, vehicles, a river,
etc., which was an adequately complicated landscape for road detection in practice. The
training data contained about 3,474,448 points covering an area of 1000 m × 1100 m. The
training and testing areas are illustrated in Figure 1.

Figure 1. Top view of the Vaihingen dataset. (a) Optical image, (b) Zoomed in training, and (c) testing
area. Training and testing area correspond to blue and yellow boxes in (a), respectively.

2.2. Method
2.2.1. Overview of Method

The workflow of the proposed approach is described in Figure 2, which is broadly
divided into three phases: road points classification, extracted road points optimization
and road centerline extraction. In the first phase, the road points were extracted from
the input data using PointNet++ network, which were termed as initial road points. The
input data are those featured by three coordinate values of the point clouds, intensity, RGB
DN values from the co-registered image, and nine geometric features that were generated
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by the proposed approach to describe road geometry both in point clouds and image
space. In the second phase, graph cut and non-road cluster filtering based on CTINs were
performed to refine the initial road classification results. In the third phase, collinearity
and width similarity were proposed to estimate the connection probability of the road
segments, thereby improving the connectivity and completeness of the road network. The
experimental results were evaluated on different quantitative metrics.

Figure 2. Workflow of the proposed framework.

2.2.2. Road Points Classification

As mentioned in the workflow of the proposed approach, the initial road points
were labeled by PointNet++. A crucial point of PointNet++ is to learn multiple layers
of local context information progressively. First, the raw dataset was grouped into a
set of overlapping sub-datasets. Local features were learned from these sub-datasets
to generate low-level features. Higher-level features were learned from these low-level
ones, subsequently, with the same procedure. These grouping and learning processes
were repeated until the global features of all input points were obtained. A hierarchical
propagation strategy was adopted by propagating the features extracted from sub-dataset
points back to the original dataset.

PointNet++ can recognize fine-grained patterns, which helped produce better results
in complex scenes. Moreover, PointNet++ showed higher robustness to changes in point
density. Therefore, we chose PointNet++ to label initial road points in the first phase.

However, as the original of PointNet++ is mainly for the segmentation of point clouds
acquired by terrestrial LiDAR, the input data were merely the three-dimensional coordinate
values of point clouds. Some studies [43,44] expanded the input features to include intensity
and RGB color information acquired by fusing optical images or by multispectral LiDAR.
Although the PointNet++ network claims it can provide many deep learning features
during the learning process, these features are based on the entire dataset and are not always
optimal for the extraction of specific objects, such as roads. This is mainly caused by the
application of unsupervised learning in the model initialization stage, where MLP mapping
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with shared weights showed difficulty in fully characterizing the spatial distribution of the
point clouds, resulting in the network lacking the ability to learn geometric features of some
specific objects, such as a strip-like road. Therefore, several additional features, such as
intensity, RGB DN values, point density, and strip descriptors were used as input features to
the PointNet++ model in the proposed framework. Most of the features are straightforward;
two parameters to describe a strip-like road are expounded in the following subsections.

First, project the point clouds onto the x-y plane. Given a point P, which is termed
a reference point, define a virtual point Q, which is a point dis far from point P and the
direction to it is θ, measured counterclockwise from the North, as shown in Figure 3. With
the variance of dis and θ, lots of virtual points can be defined. The virtual points which
possess the same or similar intensity values are identified as similar virtual points.

Figure 3. Locations of a reference point and virtual points.

Length and width are used to characterize the elongation and narrowness of a road,
both of which need a defined main direction. Given a reference point, count the number of
consecutive similar virtual points in a given direction. Define the direction with the largest
number of consecutive similar virtual points as the main direction of the reference point,
as shown in Figure 4. It is worth noting that there may be several main directions of a
given reference point, depending on the similarity of paved material in the neighborhood
of the reference point. Armed with the main direction, the length of a road Tpt_length can
be defined by the number of consecutive similar virtual points along the main direction.
In the case of multiple main directions, Tpt_length is the same along each direction, and
any one of these directions can be the main direction. Considering that road width varies
in intersections, main direction divergence Tpt_div is proposed to describe road width
variation in road intersections. It is defined as the number of directions that are clockwise
and counterclockwise rotated from the main direction, under the condition that, along
each direction, the number of consecutive similar virtual points is less than the difference
between Tpt_length and a given threshold. Figure 5 shows the strip-like descriptors of point
clouds in different regions. Calculation details are as follows:

(1) Generate the virtual point set Q = {qi(xi, yi)} of the current reference point p(x0, y0)
by Formula (1), where dL = 2.5× the maximum width o f the roads. The 0◦ direction is
defined as the direction where P points to North. The increase of θ by 10◦ can reduce
computation load while ensuring the accuracy of strip descriptors [21].{

xi = x0 + dis ∗ cos(θ)
yi = y0 + dis ∗ sin(θ)

dis = 1, 2, · · · , dL; θ = 0◦, 10◦, 20◦, · · · , 340◦, 350◦ (1)

(2) Calculate the average intensity value of each virtual point. Select a virtual point q
from the virtual point set Q = {qi(xi, yi)}. Search the k-neighborhood points on the
projected LiDAR points of q, and assign the average intensity of all points in the
neighborhood to the intensity value of q. To guarantee that each virtual point from the
road contains at least one neighborhood point, the value of k is 2 times the average
point spacing. In cases where a virtual point contains no neighborhood points, its
intensity value is set to −1, indicating an invalid point.
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(3) Calculate the intensity difference between each virtual point and the reference point
and mark the virtual points with an intensity difference lower than a given threshold
TI as similar virtual points. Count the number of consecutive similar virtual points
starting from the reference point in 36 directions from 0◦, 10◦, 20◦, · · · , 350◦, and
denote them by {N0, N1, · · · , N35}. This step can be formulated as follows:

∆Idis, θ =
∣∣∣Ip − Iq(dis,θ)

∣∣∣ (2)

Mdis,θ =

{
1, i f ∆Idis, θ < TI
0, i f ∆Idis, θ > TI

(3)

where Ip is the intensity value of the reference point and Iq(dis,θ) is the intensity value
of the virtual point at the distance dis in the θ direction with regard to the reference
point. TI is the intensity difference threshold, and, as noted in [20], the range of road
intensity difference in a local road area is around -15 ~ +15 if the road is paved with
the same material, so the absolute value of TI is set to 15 for the data sets tested in this
study. “Mdis,θ = 1” is used to mark the similar virtual points. Therefore, the number
of consecutive similar virtual points in any direction can be counted by the following
steps:

a. Set the initial values of Ni (i = 0, 1, · · · , 35) to 0.
b. Set the initial direction ω to 0◦, denote the virtual points in this direction

by Qω = {q1, q2, · · · , qL}, where the points are sequenced by the increasing
distance from the virtual points and the reference point.

c. For a given point qi (i = 1, 2, · · · , dL) from Qω, if its corresponding Mdis,θ = 1,
then go to the next point qi+1 and add 1 to Ni. Otherwise, stop the counting for
this direction, set ω = ω + 10◦, and go to step b.

d. Repeat the steps until ω = 360◦.

(4) Suppose ε is the main direction of P, which, according to the definition of the main
direction, is the direction with the largest number of consecutive similar virtual points.
Let Nε be the number of continuous similar virtual points in the ε direction. Iteratively
calculate the difference between Nε and Ni, record them as {n0, n1, · · · , n35}, which
can be expressed as:

Nε = max(Ni), i = 0, 1, 2, · · · , 35 (4)

ni = Nε − Ni , i = 0, 1, 2, · · · , 35 (5)

Figure 4. Main direction of reference point.
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Figure 5. Strip-like descriptor of roads and squares (Red point: the reference point; Yellow points:
virtual points with similar intensity value to the reference point; Blue points: other virtual points;
Red lines: the main directions; Dotted line: delineates the area of roads, squares and parking lots).

The divergence of the main direction ε of the reference point can be obtained by calcu-
lating two parameters: MεL and MεR. MεL refers to the number of consecutive directions in
which ni is less than a given threshold TdL in a counterclockwise direction starting from the
main direction ε. While MεR refers to the number of consecutive directions in which ni is
less than a given threshold TdL in a clockwise direction starting from the main direction ε.
TdL is the difference threshold. A too large value of TdL causes roads with large widths to
be labeled as parking lots or other patches of paved surface, while a too small value of TdL
will distinguish some narrow lanes through which a car can hardly pass. It is set to half of
the width of the widest road in the area, which is obtained by trial-and-error. The detailed
steps are as follows.

a. Rotate from the main direction ε counterclockwise, every 10◦, to check whether ni is
less than the given threshold TdL where subscript i =

(
ε

10◦ + 1
)

or i = 0 if ε = 350◦.
If it is true and i 6= ε/10◦, then,

i =
{

i + 1, others
0, i f (i + 1) = 36

(6)

MεL = MεL + 1 (7)

Otherwise, if ni > TdL, or i = ε/10◦, continue to the next step.
b. Rotate from the main direction ε clockwise, every 10◦, to check whether nj is less than

the given threshold TdL where subscript j =
(

ε
10◦ − 1

)
or j = 35 if ε = 0◦. If it is true

and j 6= ε, then,

j =
{

j− 1, others
35, i f (j− 1) = −1

(8)

MεR = MεR + 1 (9)

Otherwise, if nj > TdL, or j = ε/10◦, continue to the final step.

Finally, Tpt_length, Tpt_div_ε and Tpt_div are calculated by the following formulas:

Tpt_length = Nε (10)

Tpt_div_ε =

{
MεL + MεR, others
36, i f (MεL + MεR) > 36

(11)

Tpt_div =

{
Tpt_div_ε i f ε is the only main direction o f the re f erence point
max(Tpt_div_εi) εi(i < 36) are the main directions o f the re f erence point

(12)

Denote the counterpart of Tpt_length and Tpt_div in the image space as Timg_∗length and
Timg_∗div (where ∗ collectively denotes R, G, B). The calculation of these features is the
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same as that of Tpt_length and Tpt_div, except that Timg_∗length and Timg_∗div are calculated
from the image space. Reference point and virtual points are projected onto the co-registered
image, followed by the steps described above, where laser points replaced by image pixels
and channels R, G and B are viewed as 3 different intensity values; therefore, 6 features,
namely Timg_Rlength, Timg_Rdiv, Timg_Glength, Timg_Gdiv, Timg_Blength and Timg_Bdiv, are formed.
Figure 6 shows the strip descriptors conducted to the filtered point clouds, where only road
points and other ground-level points remained. Table 1 summarizes the employed features
used for the experiment.

Figure 6. Strip descriptors of points. (a) Tpt_length. (b) Tot_div. (c) Optical image.

Table 1. Set of features used in the experiment.

Features Symbol Definition

Coordinate values x, y, z The coordinate values of a given point.

Intensity I The intensity of a given point.

Point density Tpt_density The number of points per unit area.

Strip descriptors for
point clouds

Tptlength

Tpt_div

Tpt_length and Tpt_div are used to describe the length and
main direction divergence (width) of a road in point
clouds, see the text for details.

Color R, G, B The DN values of a co-registered image.

Strip descriptors for
optical image

Timg_Rlength
Timg_Rdiv
Timg_Glength
Timg_Gdiv
TimgBlength

Timg_Bdiv

Timg_∗length and Timg_∗div ,,) are used to describe the length
and main direction divergence (width) of a road in an
image, see the text for details.

Prior to the training of the PointNet++, point clouds of the training and testing data are
divided into small 3D cubic voxels. The size of a voxel is 200 m. Each point is represented
by a 16D vector where x-, y-, z- coordinates, intensity, density, Tpt_length and Tpt_wid are
obtained from LiDAR point clouds, while digital numbers of R, G, B channels, Timg_∗length
and Timg_∗div (∗ = R, G, B) are provided by the co-registered image. Figures 7 and 8 show
the schemes of the basic steps of using PointNet++ for point clouds classification.
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Figure 7. Initial road points classification using PointNet++.

Figure 8. Illustration of the deep feature learning architecture in PointNet++ [34].

In the training process, the Adam optimizer is used with an initial learning rate of
0.001, a momentum value of 0.1 and a batch size of 16. The learning rate is iteratively
reduced based on the current epoch by a factor of 0.5. Moreover, the training process lasts a
total of 300 epochs and the weights are saved if the loss function decreased. The network is
implemented via TensorFlow and performed on a computer with NVIDIA Corporation
GP102 (GeForce GTX 1080 Ti) 32 GB GPU. The code of PointNet++ can be downloaded
online: https://github.com/yanx27/Pointnet_Pointnet2_pytorch (accessed on 25 June
2021).

In the experiments, training samples and the standard testing data were obtained by
hand labeling using the editing tools provided by LiDAR_Suite, an airborne point clouds
processing software developed by the author’s R&D group that has been commercialized.
Figure 9 shows the results of the initial road points extracted at this stage. There were many
small clustered and isolated points (Figure 9b), indicating commission errors. Furthermore,
the edges of the roads were not smooth, and there were holes inside the road caused by
vehicles, trees, etc., as shown in Figure 9c,d.

Figure 9. Road points in the testing area. (a) The true road points are obtained by hand labeling. (b)
The initial road points are extracted with geometric PointNet++. (c) & (d) The zoomed in displaying
results of the selected area in (b).

https://github.com/yanx27/Pointnet_Pointnet2_pytorch
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2.2.3. Two-Step Post-Processing of Initial Road Points

The initial road points extracted by the first phase of the proposed workflow contained
both commission and omission errors. Therefore, two-step post-processing by graph-cut
and CTINs were applied to optimize the classification results.

Road Point Smoothing with Graph-Cut

As pointed out in [45], local smoothing of the initial classification results can effectively
remove isolated “road points”, while the omitted road points located on the edge and inside
the road will be relabeled. A graph-cut-based mathematical framework was proposed
in [45] for this purpose. As illustrated in Figure 10, this approach can be divided into
the following three steps: construction of the graphical model, construction of the energy
function, and redefinition of point labels. The model was constructed by the undirected
adjacency graph, expressed as {V, E}, where V denotes the nodes (representing the initial
road points) and E denotes a set of edges connecting the nodes. Unlike [45], we did not
directly use a k-nearest neighbors (KNN) algorithm to search for nodes; rather, we pre-
defined a flattened cuboid as the neighborhood of a given point whose height is much
smaller than its length and width, as shown in Figure 11, to prevent the points reflected
from low objects, such as bushes, along the road from the construction of the graph, because
a road surface can be viewed as a flat plane along its direction. The interested reader is
referred to the cited reference for a detailed description of the method.

Figure 10. Road point smoothing via graph-cut [45].

Figure 11. Illustration of nodes selection. (a) Nodes selected by KNN algorithm; (b) Flattened cuboid;
(c) Nodes selected by the improved method.

Clustered Non-Road Points Removal Based on CTINs

Though some commission and omission errors can be removed after the graph-cut
smoothing, small clusters of non-road points can remain. CTINs is applied to eliminate
these clusters. The mechanism behind CTINs is based on the following observation: The
side length of a triangle formed by road points is smaller than the side length of a triangle
formed by the edge points of the road and the adjacent non-road points. Therefore, side
length can be used as the constraint to divide the triangles constructed by Delaunay
triangulation performed on the smoothed initial road points into an unconnected cluster
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of triangles and isolated points. Since a road surface is well connected, and it extends for
several or even several tens of kilometers in urban areas, the area of the road surface is
normally larger than many clusters of non-road points, which can be removed by setting
a coverage area threshold. For the elimination of other large area clusters composed of
non-road points, such as parking lots, public parks, etc., we utilized the following facts: (1)
The shape of a road is a regular rectangle or curved rectangle, where the length is far greater
than the width, as shown in Figure 12a. (2) For a given urban area, most are occupied by
residential and commercial buildings, which means the total area of roads is a small fraction
of the total area of the given region, as shown in Figure 12b. (3) Clusters of non-road points
from patches such as parking lots, public parks, etc., stretch omnidirectionally, so that the
length and width of a bounding rectangle for the patch holds the same level of values,
as shown in Figure 12c. Zhang et al. [46] pointed out that parameters describing object
shape, such as length, width, etc., could effectively detect man-made objects. Therefore, it is
possible to filter out large-area non-road point clusters, such as parking lots, by determining
the ratio of length to width (aspect ratio) and point coverage of the bounding rectangle of
such a cluster. The specific steps are as follows:

(1) The Bower–Watson algorithm [47] is applied to construct the Delaunay triangulation
of the graph-cut processed initial road points.

(2) Traverse the edges of the triangles and remove the edges with lengths greater than
TL, which is set to twice the mean average point spacing in the raw point clouds.
Figure 13 shows the triangles before and after this step is performed.

(3) Remove isolated points, resulting in separated clusters of triangles, as shown in
Figure 13b.

(4) Calculate the total area of individual clusters of triangles obtained in step 3. Remove
those clusters with areas less than a given threshold TS, which is the minimum area of
a road in the urban setting. The empirical value of Ts for urban areas is 100 m2.
The total area of clustered triangles can be calculated as follows: the points constructed
from the triangles are projected onto the x-y plane. Their maximum and minimum X,
Y values, which are denoted by Xmax, Xmin, Ymax and Ymin, respectively, are obtained.
A rectangle can be formed by them. Grid the rectangle with the cell size of 1.5×
average point spacing o f the raw dataset. Count all cells with at least one point inside
and then sum up the area of these cells, which is the approximation of the total area
of the clustered triangles. We used this approximation method rather than calculating
the area of individual triangles, and then summed them up to reduce computational
load.

(5) For the remaining clusters of triangles, the minimum bounding rectangle (MBR)
method proposed in [48] was used to form a bounding rectangle for each cluster. De-
note the length, width and area of the rectangle by LMBR, WMBR and SMBR. Calculate
aspect ratio lwCDT and point coverage pcCDT as follows:

lwCDT =
LMBR
WMBR

pcCDT =
SCDT
SMBR

=
SCDT

LMBR ×WMBR

(13)

where SCDT is the area of a given triangle cluster calculated in step 4. If lwCDT > Tlw
and pcCDT > Tpc, where Tlw, pcCDT are two predefined thresholds, then remove the
cluster and all points inside. The values of Tlw and Tpc are 6 and 0.3, respectively,
which are based on prior knowledge acquired by inspecting these parameters in a
given urban region.
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Figure 12. Illustration of the shape difference between a road and a parking lot. (a) Local Road; (b)
Road Network; (c) Parking Lot.

Figure 13. Triangulated irregular network (TIN). (a) TIN formed by Delaunay triangulation; (b)
Result of (a) after step 2 described in the text is performed.

The results of initial road points followed by the two-step post-processing are illus-
trated in Figure 14. It is obvious that most of the patches can be removed; however, gaps
in a continuous road remain, as shown by the rectangle in Figure 14c,d which will be
connected in the third phase of the proposed framework for centerline extraction.

Figure 14. Road point extraction results. (a) Road points extracted by PointNet++ with geometric
features. (b) Smoothing with graph-cut. (c) Clustered non-road points removal. (d) Road points
obtained by hand editing. (e) Optical image of the corresponding area.

2.2.3.3. Road Centerlines Extraction

Road centerlines are not only functional for the extraction of a complete road net-
work, but also for quantitative comparison with previous studies. We mainly adopted
the approach presented in Hui et al. [21], which is a hierarchical fusion and optimization
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grouping strategy for road centerline extraction, for this purpose. In this approach, several
linear structural elements (SE) of different lengths are used to yield different road extraction
outcomes of different levels, and the results of each level are combined and optimized with
those of the previous level in a bottom-up manner. However, the method cannot effectively
solve the road interruption caused by the occlusion of vehicles, trees or buildings, resulting
in poor connectivity of the extracted centerlines; this inconsistent topological relationship
makes it difficult to form a complete road network. Therefore, this paper proposes the
connection probability of two disconnected road segments as the criteria to determine if
the segments should be connected. The main principles of the method are that the same
road segment usually has the same width, and most roads are straight. Collinearity and
width similarity are defined first to calculate the connection probability of road segments.
The calculations of the two parameters are as follows:

(1) First, define the connection range. To prevent connecting two lines that are far apart,
a radius R is defined to determine the connection range. If the distance between the
endpoints of two road segments is greater than R, the connection probability of the
two lines sets to 0. The value of R is set to the width of the smallest residential block
in the study area, which is 50 m in the testing region.

(2) Collinearity (Cline): A road with enough length may be curve in some part, which can
change the extension direction of the road at the endpoints. To keep the true extension
direction, a segment with length L at the end part of a road is selected to fit a straight
line, as shown in Figure 15. A too-small value of L causes a large deviation between
the direction of the fitted straight line and the actual direction, while a too-large L
value may include the curved part of the road in the straight fitted line. It was set
to 20 m in the study, by trial-and-error, which may be set as a constant parameter if
similar studies are performed. Then, collinearity is defined by the following formula:

Cline = 1− 0.5× d1 + d2

L1 + L2
− 0.5× θ

90◦
(14)

where, d1 and d2 are the distances from one end of a road to another fitted straight
line (see Figure 15). θ is the angle between the two fitted straight lines. L1 and L2
are the lengths of the matched lines. A matched line is defined as follows: create the
buffer zone of a fitted straight line. Project the road segment surrounded by the buffer
zone onto the direction of the fitted straight line, then Li (i = 1, 2) is the length of the
projected segment. The buffer width is half the largest road width in the studied area.

(3) Width similarity Cwidth is another parameter for calculating connection probability,
which is defined by the following:

Cwidth = 1− |w1 − w2|
Max(dw)

(15)

where, w1 and w2 are the widths of the two road segments. Max(dw) is the difference
between the possible largest and smallest widths of roads in study area.

(4) Connection probability of the two road segments can then be calculated by the follow-
ing formula:

p = g1 × Cline + g2 × Cwid (16)

where, g1 and g2 are the weights for collinearity measure and width similarity, respec-
tively, both of which can be set to 0.5 if the two parameters are of similar importance.
If the connection probability is greater than a given threshold Tp, then the two road
segments are connected.
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Figure 15. Collinearity measurement.

Figure 16 shows the results of the road centerlines extraction by [21] and by the
proposed method, as well as the true centerlines determined by hand editing. Interruptions
seen in Figure 16b have all been connected by the proposed method, as shown in Figure 16c.

Figure 16. Centerline extraction results. (a) Road points after two-step post-processing; (b) Cen-
terlines extracted by [21]; (c) Centerlines extracted by the proposed method; (d) True centerlines
obtained by hand editing.

2.3. Evaluation Metrics

Three standard evaluation metrics, completeness (EC), correctness (ECR) and quality
(Q) [49,50] are adopted to quantitatively assess intermediate and final results:

EC =
TP

TP + FN
× 100% (17)

ECR =
TP

TP + FP
× 100% (18)

Q =
TP

TP + FN + FP
× 100% (19)

where the true positive (TP) and the false positive (FP) are, respectively, the correctly and
wrongly extracted road points, and the false negative (FN) refers to the missed road points.

For road centerlines, if the deviation of the extracted centerline from the true one
(which is extracted manually) is less than the average point space, then it is a true positive
centerline, otherwise, it is a false positive one.
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3. Results

As stated in the flowchart, the first phase of the proposed framework is to distinguish
road from non-road points by PointNet++. To verify the effectiveness of PointNet++ for
road points labeling, three experiments were conducted:

(1) Input the raw point clouds directly to PointNet++ with each point represented by
a 16D vector, described in Section 2. Six output classes are set to the PointNet++,
namely, roads, public patches, buildings, and low, medium and tall vegetations. The
result is denoted by M_class6.

(2) The same input as (1) but only two outputs are set to the classifier: road points and
non-road points; the result is denoted by M_class2.

(3) Raw point clouds are firstly filtered by auto-adaptive progressive TIN proposed in [51]
to obtain ground points, then input into PointNet++ to distinguish road and non-road
points with and without the 9 strip descriptors, respectively; results are denoted by
M_class2_from_ground_points and M_without_geometric_features.

Figure 17 shows all the experimental results. In addition, the minimal width of roads
is set to 2.0 m, through which most cars can pass.
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Figure 17. Road point extraction results. (a) True road obtained by hand editing; (b) PointNet++ result
with 6 output classes. Only road points are displayed; (c) PointNet++ result with only two output
classes: road and non-road points. Only road points are displayed; (d) Input data to PointNet++
are firstly filtered with TIN, then are classified to two classes (road and non-road) with 16D vector
representing the input points. (e) Input data to PointNet++ are firstly filtered with TIN then are
classified to two classes (road and non-road), but 9 strip descriptors are dropped from the vector for
representing input points.

Table 2 shows the quantitative assessment of the results from PointNet++ with different
inputs, as well as the results after two-step post-processing. It can be seen from Table 2
that the PointNet++ classification result with the input of ground points obtained by auto-
adaptive progressive TIN filtering the raw data, and with the 16D vector representation
of the input points, achieved the highest accuracy, both in terms of completeness and
quality. Correctness is the lowest, but it is still at the same level as M_class6, M_class2 and
M_class_without_geometric_features. It is obvious from Figure 17b–e that there are many patches
of road points that actually belong to parking lots, public parks, etc. Furthermore, pepper-
and-salt noises are common. Therefore, two-step post-processing aiming to improve the
accuracy of the initial road points is necessary; the initial road points with the highest road
integrity M_class2_from_ground_points were selected for the two-step post-processing.

Results of two-step post-processing are shown in Figure 18, where Figure 18a illustrates
isolation points elimination by graph-cut, and Figure 18b displays the final result after
clustered non-road points removal by CTINs. The last two rows in Table 2 show that
the improvement obtained by the three evaluation metrics is slight after the first post-
processing step, but that they are improved significantly after the second post-processing
step, indicating that, in general, patches such as parking lots, public parks, etc., affect the
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road extraction more than other factors such as vegetations, vehicles, and buildings on or
along a road.

Figure 18. Road point extraction results after two-step post-processing. (a) Smoothing the road
points of Figure 17d with graph-cut; (b) Clustered non-road points removal from Figure 18a based on
CTINs.

Table 2. Evaluation of road point classification results.

EC (%) ECR (%) Q (%)

PointNet++

M_class6 76.2 74.0 60.1
M_class2 79.8 73.9 62.3

M_class2_from_ground_points 85.5 73.0 64.9
M_without_geometric_features 82.7 71.0 61.9

Graph-cut smoothing 85.6 73.0 65.0

Clustered non-road points removal 84.7 79.7 69.6

Centerlines that are extracted in the final stage of the proposed framework not only
serve for the generation of the road network, but also allow for further comparison with
previous studies, as shown in Figure 19 and Table 3. The completeness, accuracy and
quality achieved by the proposed approach are 97.0%, 86.3% and 84.1%, respectively. They
are much higher than others, which the authors attribute to the following three reasons:

(1) The deep features learned by PointNet++ and the geometric features generated in the
first phase of the framework jointly improved the completeness of the extracted road
points.

(2) Two-step post-processing is applied to decrease both omission and commission errors
in the initial road points distinguished by PointNet++.

(3) Collinearity and width similarity are introduced to calculate the connection probability
to further improve the completeness of extracted roads.

Table 3. Three evaluation metrics comparing the proposed method to previous studies. The indicators
of PCD [14] are provided by [42].

Method ECR (%) EC (%) Q (%)

PCD [14] 53.2 58.3 38.5
SRH [21] 91.4 80.4 74.8
MTH [42] 73.8 53.4 44.9

Proposed method 97.0 86.3 84.1
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Figure 19. Centerline extraction result. (a) True centerlines obtained from Figure 17a by hand editing;
(b) Duplicate of Figure 18b for comparison; (c) Centerlines extracted from Figure 19b by the proposed
framework.

4. Discussion

Though the experimental results show that the proposed framework outperformed
the other methods compared, a significant point that is worthy of further study is that the
framework adopted many features other than 3D coordinate values of point clouds to the
deep learning model, such as intensity, DN values from optical images, point density and
strip descriptors. This motivated us to investigate more specific features describing the
characteristics of roads and more intermediate features generated in the learning stage, so
that higher quality road footprints could be extracted in the first phase of the framework.
The quality of the final road network is mainly determined by the completeness of the
extracted road centerlines. A reasonable connection between the endpoint of a road and a
road intersection can improve the completeness of the centerlines, but how to measure the
reasonability remains a challenge.

KNN search and fixed radius searches were used in the experiment when features
were generated. Though they performed well, both of them possess drawbacks:

(1) When the KNN search is applied to filter point clouds where only ground points
(including road footprints) remained, the distance between a pair of points in the
search region may be too large, resulting in useless features. That is, though the
features can be generated, they are insignificant to the classifier or even decrease the
classification accuracy.

(2) When a fixed radius search is applied, some points may lack enough neighbor points
for feature calculation, causing some feature loss.

In the selection of different deep learning models for the first step of the proposed
framework, we found that the recently proposed model RandLA-Net takes similar training
time as PointNet++, but, as for the efficiency of the application of the learned model to
testing data, the former is much higher than the latter, though the classification accuracy
of PointNet++ is slightly higher than RandLA-Net. The higher efficiency of RandLA-Net
can be attributed to its random sampling mechanism. Considering that deep learning
classification was the first step in our approach, which was followed by refined steps and
the slightly higher classification achieved by PointNet++ in the experiment, we selected
PointNet++ as the deep learning classifier in the proposed framework. However, it is worth
noting that RandLA-Net can be a better choice in terms of its high efficiency in the model
application. Further studies should be conducted on this issue.

Another observation that is interesting enough to study is the relationship between
point density and road detectability. A road that can be detected and extracted from point
clouds is strongly correlated to the point density of the dataset. Narrower roads or strip-
shaped objects can be distinguished from higher density point clouds. To analyze the
influence of point density on the extracted road width, the raw point clouds are resampled



Remote Sens. 2022, 14, 789 20 of 23

to certain average point spacing to form 3 datasets with a point density of 4.0 points/m2,
1.0 points/m2, and 0.25 points/m2, respectively. The proposed framework was applied to
extract road points from these datasets. Figure 20 and Table 4 show the results. It is worth
noting that, when the point density was greater than 1.0 points/m2, meaning there were
at least three points on the cross section of a road with a width of 3 m, the reduction in
the point density displayed little influence on the extraction of the minimum width road.
However, when the point density continued decreasing, such as when the point density
was 0.25 points/m2, many narrow roads were not detected and extracted, as shown by the
rectangle in Figure 20c.

Figure 20. Road points extracted under different point densities. (a) True road points. (b) Density = 4
points/m2. (c) Density = 1.0 points/m2. (d) Density = 0.25 points/m2.

Table 4. Road results extracted under different point densities.

PD 4.0 Points/m2 1.0 Points/m2 0.25 Points/m2

RW 2.0m 3.0 m 5.0m

5. Conclusions

A novel framework for extracting urban roads from LiDAR point clouds was proposed.
Firstly, the recently developed deep learning model, PointNet++, was used to directly
distinguish road points from non-road points, where two geometric features describing
a strip-like road were generated both from point clouds and optical images, and input to
PointNet++ with other features of the raw point clouds. Then, a two-step post-processing
algorithm composed of graph-cut smoothing and CTINs-based clustered non-road points
removal was performed to refine the initially-labeled road points. Finally, a connection
probability based on centerline tracking was proposed to generate road network. The
effectiveness of the proposed framework was verified by the experimental results using the
Vaihingen dataset. Quantitative evaluations show that the proposed method outperformed
others in terms of higher evaluation metrics and narrow street detection.

Although the proposed method was tested here with the Vaihingen dataset for the
purpose of comparison with other methods, where point density was about 4.0 points/m2,
it should be applicable to higher point density datasets, as new generation airborne LiDAR,
such as Geiger-mode LiDAR, single-photon LiDAR, etc., are available for acquiring point
clouds with a density over 100 points/m2. More studies should be focused on the applica-
bility of the proposed framework and strip-like descriptors characterizing road geometric
properties in very high-density point clouds, which are the future research topics of the
authors’ group.
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