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Abstract: Mineral dust aerosols are composed of a complex mixture of silicates, carbonates, oxides,
and sulfates. The minerals’ chemical composition and size distribution are vital parameters to evalu-
ate dust environmental impacts. However, the quantification of minerals remains a challenge due
to the sparse in situ measurements of dust samples. Here we derive the size-resolved mineralogi-
cal composition of airborne dust aerosols from MODIS (Terra and Aqua) satellite-acquired optical
measurements and compare it with chemically analyzed elemental (Al, Fe, Ca, Mg) concentrations
of aerosols for PM2.5 and PM10 from Chonburi, Chiang Rai, and Bangkok in Thailand, and from
Singapore. MODIS-derived mineral retrievals exhibited high correlations with elemental concen-
trations with R2 ≥ 0.84 for PM2.5 and ≥0.96 for PM10. High mineral dust activity was detected in
the vicinity of biomass-burning areas with gypsum and calcite exhibiting tracer characteristics of
combustion. The spatiotemporal pattern of the MODIS-derived minerals matched with Ozone Moni-
toring Instrument (OMI)-derived dust, sulfates, and carbonaceous aerosols, indicating the model’s
consistency. Variation in aerosol loading by ±90% led to deviation in the mineral concentration by
<10%. An uncertainty of 6.4% between AERONET-measured and MODIS-derived AOD corresponds
to a < ± 2% uncertainty in MODIS-derived mineral concentration, demonstrating the robustness of
the model.

Keywords: mineral dust aerosol; aerosol size distribution; MODIS; OMI; AERONET; Southeast Asia;
biomass burning

1. Introduction

Mineral dust produced by wind erosion is the ubiquitous and dominant component
of the atmospheric particulate matter (PM) that plays a pivotal role in Earth’s climate
system. Mineral aerosols serve as cloud condensation and ice nuclei [1], thus stimulating
precipitation and impacting the hydrological cycle. Nutrients such as iron in the aerosol
stimulate biological productivity by fertilizing ecosystems upon deposition, thus influ-
encing the global carbon cycle [2,3]. Mineral dust is highly sensitive to variations in the
climate and has demonstrated potential feedback capabilities on the climate system and
contrariwise [4]. These atmospheric particulates degrade the air quality and adversely
affect human health by causing acute physical and psychological distress when transported
over densely populated areas. Choking air pollution can irritate the respiratory tract and
eyes, exacerbate cardiovascular diseases, and cause severe long-term health damage [5–7].
In particular, the finest, insoluble particles could be the most detrimental to health [8,9].
The spatiotemporal distribution of the mineralogical aerosols and their environmental
impacts are evaluated based on two key parameters: relative abundance and composition.

There has been increasing interest in designing reliable and robust numerical aerosol
models to simulate size-resolved mineral composition during dust emission and subse-
quent chemical transformation during atmospheric transport [10–14]. Aerosol particles’
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diverse chemical, microphysical, and optical properties can be determined using in situ
sampling devices [15]. Characterization of dust particles can be achieved through mea-
surements on composition, surface area, shape, size distribution, and mixing rate [16].
The distribution of mineral dust in the atmosphere is regulated by dust-emission sources,
which are exceptionally responsive to atmospheric and surface conditions. These surface
conditions are dynamic, with constantly evolving land-use patterns and climate change.
Hence, simulating the complicated processes involved during emission and transport and
predicting the size-resolved aerosol mineral composition is challenging [14].

Most aerosol retrievals are based on models that consider a mixture of homogeneous
spherical aerosol particles of different sizes with a chemical composition represented
by the complex refractive index, which satisfactorily reproduces the observed aerosol
properties [17]. Additionally, [18] demonstrated that the particles’ effect of non-sphericity
and non-homogeneity on the single-scattering phase function is small (20% ± 15%). The
entire matrix of wavelength-dependent aerosol single-scattering properties is pre-computed
and listed in look-up tables in more recent climate models to circumvent the highly time-
consuming Mie calculations for each aerosol type. These look-up tables are implemented
for quick and accurate simulations of the aerosol properties as a function of the particle
size at specific intervals [17,19,20].

We used Mie’s theory (assuming homogenous spherical particles) for pre-computation
of wavelength-dependent single-scattering properties for nine dust minerals at different
grain sizes (generating 91 dust models in total) and listed them in a look-up table. The
physical principle of mineral detection relies on the spectral distribution pattern of the dust
particle absorption and scattering corresponding to each mineral constituent across the
optical and infrared wavelengths. Therefore, the mineral identification scheme employs a
mathematical optimization approach between the satellite-acquired optical properties and
the microphysical properties tabulated in our designed mineral suite. Here, we present
an inversion model for the size-resolved mineralogical composition of aerosols from the
matrix of spectral optical properties varying as a function of the particle size. The model
is demonstrated using MODIS-Aqua and Terra multispectral optical measurements over
Southeast Asia.

Validation of the MODIS-generated mineral composition derived from the model is
essential to ensure the best estimates for further utilization in global climatological models.
However, the mineralogical composition of aerosols is rarely quantified in in situ collected
dust samples. Moreover, optical imaging satellite observations rely on cloud-free conditions,
and the heavy cloud cover across Southeast Asia interferes with satellite retrievals. Due to
the lack of direct in situ mineral composition data, three different validation approaches
were attempted to corroborate our MODIS-generated mineral concentrations. (a) The
quantitative performance of the model was evaluated by comparing the satellite-derived
mineral retrievals with chemically analyzed elemental (Al, Fe, Ca, Mg) concentrations of
aerosols for PM2.5 and PM10 from four terrestrial locations in Southeast Asia. (b) The spatio-
temporal pattern of MODIS-derived mineral composition was qualitatively compared with
an Ozone Monitoring Instrument (OMI)-derived ultraviolet (UV)-based Aerosol Index
(AI) and aerosol types. (c) The uncertainties associated with the derivation of mineral
concentrations were computed by comparing satellite-derived and ground-based aerosol
robotic network (AERONET)-derived mineral concentrations using the same model. In
addition, a sensitivity analysis of MODIS-derived mineral concentrations was carried out
to determine the robustness of the model and dispersion of the mineral concentrations
with respect to variation in AOD. The mineralogical analysis will contribute towards
designing dust hazard mitigation techniques, assessing dust surface radiative forcing, and
understanding the role of aerosol mineralogy in climate and environment modeling.
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2. Materials and Methods
2.1. Remote Sensing Input

We downloaded the MODIS Collection 6.1, Level 2 product (MOD04_L2) at a spatial
resolution of 10 km from https://ladsweb.modaps.eosdis.nasa.gov/(accessed on 1 June
2021), and extracted the following aerosol properties for land and ocean:

(a) AOD centered at 550, 860, 2100 nm over the sea.
(b) AOD centered at 412, 470, and 650 nm over the land.

AOD is an operational product computed using two retrieval procedures: (a) Dark
Target (DT) algorithm over visually dark regions [21] and (b) Deep Blue algorithm over
bright-desert regions [22]. The updated collection 6.1 has successfully reduced the high
biases observed over urban pixels compared to ground-based AERONET AODs with a
high correlation [23,24] which resulted in an increase (>20%) in the number of retrievals
falling within the expected error % range at the global scale. This gives us the confidence
that MODIS AOD retrievals can be considered an accurate and reliable "standard" for
identifying mineralogical compositions.

Aura Ozone Monitoring Instrument Level 2 near UV Aerosol operational data prod-
ucts was downloaded from NASA’s https://disc.gsfc.nasa.gov/datasets/OMAERUV_00
3/(accessed on 1 June 2021). The two UV-based products, UV aerosol index (UVAI), and
the classification of aerosol types, are based on decoupling the spectral radiances from
molecular scattering and aerosol effects at two wavelengths in the near-UV region [25].
Negative UVAI values (<−0.2) represent non-absorbing aerosol particles. Near-zero values
of ±0.2 UVAI correspond to either the negligible aerosol condition in the atmosphere or
the presence of coarse-mode non-absorbing particles and clouds.

2.2. Dust Mineral Suit Input

Individual aerosol particles are typically mixtures of liquid droplets and solid dry
components that have absorption and scattering (non-absorbing) properties. Absorbing par-
ticles represent carbonaceous particles and dust minerals, while the scattering components
represent sulfate, nitrate, sea salt, etc. [19,26,27]. Dust consists of various minerals, chiefly
silicates, carbonates, iron oxides, and sulfates, varying with the emission source. Hence,
we designed a mineral suite based on globally abundant uniform size fractions of mineral
dust content in natural aerosols [28] so that the satellite identification procedure replicates
the size and mineralogy compared to eolian soil. With spherical diameter <2 µm, phyl-
losilicates (illite, kaolinite, and montmorillonite) comprise the clay-sized silicate fraction.
Tectosilicates (feldspar, mica, and quartz) covered the coarser silt- (2–50 µm diameter) and
sand- (>50 µm diameter) sized counterparts. Silicates have strong mineral-specific infrared
absorption band centers, which aids in their identification from remote sensing [29,30].
Iron-rich hematite clay (<2 µm) has intense UV and visible absorption, which is further
enhanced when aggregated with silicate clay minerals [30,31]. In contrast, clay-silt-sized
carbonates (calcite) and clay-silt-sand-sized sulfates have strong infrared absorption but
no UV absorption. Overall, we have incorporated nine minerals with a diverse set (clay,
silt, sand) of particle sizes (Table A1), yielding a total of 91 mineral models in our suite to
invert aerosol mineralogy at a location. The real and imaginary components of the complex
refractive index for the nine dust minerals in the window (0–2200 nm) are exhibited in
Figure A1. Although other minerals occur in much smaller quantities in the atmosphere,
we have included the nine major minerals (silicates and non-silicates) that play potential
roles in climate and biogeochemical processes [10,26]. The differences in the microphysical
properties between minerals form the basis for this paper’s dust detection technique.

2.3. Elemental Metal Measurements for Validation

Concentrations of four elements (Al, Fe, Ca, Mg) in different size fractions (PM2.5,
PM10) were measured in the aerosol from Chonburi (PM2.5 monthly sampling for January–
December 2018), Chiang Rai (PM2.5 weekly sampling for January–April 2019), and Bangkok
(PM2.5 monthly sampling for February 2018–December 2019) in Thailand [32,33] and

https://ladsweb.modaps.eosdis.nasa.gov/
https://disc.gsfc.nasa.gov/datasets/OMAERUV_003/
https://disc.gsfc.nasa.gov/datasets/OMAERUV_003/
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Singapore (PM10 during 2013 and 2016–2017). Aerosol samples were collected on 47 mm
PTFE filters using a portable low-volume particulate sampler pump (Deployable Particulate
Sampler from Leland Legacy) with a flow rate of 10 L/min. Samples were collected for
24 hrs from 6 AM, once every week. The metals in the aerosols were dissolved in a 50%
3:1 (v/v) HNO3:HF dissolution mixture to ensure the complete dissolution of silicate
minerals. The extracted solution was measured using an inductively coupled plasma mass
spectrometer (ICP-MS, Thermo Element 2) at the Earth Observatory of Singapore. The
chemical extraction procedure and ICP-MS analytical details are published in [32]. The
major elements in minerals modeled in [32] are oxygen (O), silicon (Si), aluminum (Al),
iron (Fe), calcium (Ca), potassium (K), sodium (Na), magnesium (Mg), and sulfur (S). In
this study, only Al, Fe, Ca, and Mg were used for comparison with the minerals.

Table A2 gives the empirical formulae of the most commonly occurring minerals. The
major Ca-bearing minerals are calcite (40% Ca) and gypsum (23% Ca). The major Fe-bearing
mineral is hematite (70% Fe). Figure A2 shows a pie chart of the relative contribution of
each mineral towards total Al, Fe, Ca, and Mg measured in the dust aerosol. For example,
the measured Fe concentrations are plotted against 83%hematite + 15%mica + 2%illite
MODIS-derived mineral concentrations. As quartz consists of Si and O, none of which
were measured in situ, it was excluded from the mineral–metal comparison. The crustal
enrichment factor (EF) is often used to quantify anthropogenic inputs over the natural
background.

EF =
(metal/ref·metal)aerosol
(metal/ref·metal)crust

(1)

The measured element ratios are generally compared with the average upper conti-
nental crustal (UCC) composition [34]. Typically, crustal elements such as Fe, Al, Ti are
chosen as the reference element; we chose Al as the reference element in this study. The
sources of the elements in the atmosphere can be a combination of natural background
and anthropogenic inputs. Elements with a natural origin should have EF ~1. However, to
account for the local variability of upper continental crust composition, which forms the
immediate precursor of the aerosol metals, EF ≤ 10 is considered to have a natural origin.
Thus, while selecting in situ chemical measurement data, only metals with EF ≤ 10 were
considered to eliminate the influence of anthropogenic sources of these elements.

2.4. Ground-Based AERONET-AOD Data for Validation

AERONET ground-based measurements are a widely accepted standard benchmark
for assessing the satellite-estimated aerosol products. The observations are available for a
broad range of visible to near-infrared bands (0.34–1.02 µm) and have been reported to have
a low bias of 0.01–0.02 [35]. Cloud-screened and quality-assured L2.0 AERONET AOD
(accessed at http://aeronet.gsfc.nasa.gov, accessed on 1 June 2021) were downloaded for
Chiang Rai, Bangkok, and Singapore corresponding to the in situ elemental measurement
dates. The AOD at these stations is recorded every 15 min for seven spectral bands (340,
380, 440, 500, 670, 870, and 1020 nm) and does not provide AOD measurements at 550 and
860 nm. Therefore, to match MODIS-derived AOD at 550 nm and AE at 550/860 nm,
AERONET AOD values at 550 and 860 nm were interpolated using the AERONET angstrom
exponent at 500–870 nm. Notably, the location of the AERONET stations and the sampling
for in situ chemical analysis does not match but are closer to each other. Hence, in our case,
we assume that the AERONET stations are capturing a similar air parcel as sampled for in
situ chemical analysis. Additionally, Chonburi does not have an AERONET station; hence
the MODIS-AERONET comparison was restricted to three sites.

2.5. Modeling Size-Resolved Mineralogical Composition

A simple way of representing the AOD spectrum and the size of the aerosol particles
is by using the Ångström power law [36]:

τ(λ) = βλ−α (2)

http://aeronet.gsfc.nasa.gov
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where τ is AOD, α is the Ångström Exponent (AE), β is the turbidity, and λ is the wave-
length. The Ångström Exponent characterizes the spectral variation of AOD and is repre-
sented by the Volz function as the slope of the logarithm of the aerosol optical depth (AOD)
versus the logarithm of the wavelength:

α = −
ln τ(λ1)

τ(λ2)

ln λ2
λ1

(3)

The band-averaged AODs were first converted to mono-spectral AODs using the
corresponding spectral response functions. The mono-spectral AODs were utilized to
compute AE at 550–860 nm and 860–2100 nm for the ocean and at 412–470 and 470–650 nm
for land using the Volz method, which was then employed to finally yield mono-spectral
AOD (550 nm) and AE (550/860 nm) for both land and ocean. These two parameters
eventually furnished a combined land–ocean reconstructed spectral AOD profile from
380–2200 nm at a 15 nm interval using the Volz method (Equation (3), using the respective
AE for the spectral range), which was used to infer aerosol mineralogy. However, we
acknowledge that the reconstructed spectral AOD profile could be further enhanced by
employing hyperspectral measurements of AOD. Assuming that aerosols are homogenous
spheres of particle radius r, τ is expressed as a complex function of the columnar aerosol
size distribution and chemical composition, described by the Fredholm integral equations
of the first kind [37]:

τ(λi) =
π

4

∫ ∞

0
Qext(η(λi), r)· n(r)· r2·dr (4)

where n(r) is the mineral size distribution in a vertical column of air (i.e., the number
of particles per unit area per unit radius level), η is the complex refractive index of the
aerosol particles, and Qext (r, λ, η) is the extinction efficiency factor from Mie theory.
The approximate discretization of the integral Equation (4) into a system (sum) of linear
equations for a wavelength λi is represented by:

a
(
λi, rj

)
=

π

4
Qext

(
η(λi), rj

)
· rj

2 (5)

(λi) =
N=91

∑
j=1

aij·n
(
rj
)
+ Ci(λi) (6)

Each aerosol type (minerals in our case) is associated with a unique spectral distri-
bution of microphysical properties, as represented in Equation (5). The AOD spectrum
(Equation (4) is thus decoupled into these defined 91 spectral models (of different mineral
types and particle sizes) from our mineral suite in Equation (6). The wavelength-dependent
optical properties such as the extinction efficiency (Qext), single-scattering albedo, and
asymmetry factor of the particle of each mineral type (from 91 models) are pre-computed
and tabulated in LUT (Equation (4) by supplying the size parameter (2πr/λ) and complex
refractive index as the input parameters through the Lorenz–Mie theory for homogeneous
spheres [38–40]. The real and imaginary components of the complex refractive index for
common dust minerals in the window (0–2200 nm) are exhibited in Appendix A. This
allows us to compare the spectral shape of each mineral dust model (91 mineral models)
in terms of the best fit with the observed AOD spectrum. The unique solution for the
number concentration (n(rj)) associated with each mineral model (out of 91 models) in
Equation (6) is then computed by non-negative least-squares (NNLS) regularization [41].
The assumption of any power-law or log-normal distribution function for particle size n(r)
in the proposed model is avoided, and the exact number of particles for each group of
particle sizes is calculated by finding the non-negative solution of the equations in the study.

In brief, the mineral concentration is derived by matching the spectral shape of AOD
with 91 models from the mineral suite. It should be noted that the contribution from
other aerosol types is not assumed to be insignificant. The concentration of any ’dust’
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and ’non-dust’ aerosol types that are not included in the model library is accounted for
through the non-negative residual term Ci(λi). The residual term Ci(λi) represents the
contribution from all other aerosol types such as sea salt, black carbon, organic aerosols,
etc., which are currently not explicitly included in the model due to the lack of in situ
measurements for validation. The advantageous feature of the model is that it can be
expanded for other aerosol types and sizes as needed, provided that suitable validation
data become available. Because our spectral library or mineral suite includes nine types of
dust minerals of clay–silt–sand-size, which are commonly observed suspended in air and
in particular during a dust event, the model can thus simulate the range of mineral optical
signatures for any region.

2.6. Limitations of Mineral Aerosol Model

The model presumes that a suitable atmospheric correction has been applied to the
input satellite data to invert the correct AOD spectral profile. An improper atmospheric
correction applied to imagery could introduce a significant source of error. Additionally,
the satellite AOD retrieval algorithms for land and ocean differ, and therefore some biases
in the mineral estimates between land and ocean regions are expected. Fine-sized particles
have a stronger optical signature than coarse particles. Hence, the observed mineralogical
signals over the marine environment are more distinctive than land areas. Optical imaging
satellite observations rely on cloud-free conditions, and heavy cloud cover interferes with
satellite retrievals. Misclassification of thick aerosol plumes as water clouds can confuse the
physical interpretation and disrupt quantitative analyses. Consequently, the assimilation of
remotely sensed aerosol and mineral products was diligently planned, and quantitative
estimates were carefully interpreted so that the relative patterns over land and ocean
regions were accurate.

Dust minerals have indicative absorption bands in the spectral range of 400–2500 nm.
Both multispectral and hyperspectral remote sensing can effectively capture spectral char-
acteristics. Geologists have been using this technique for mineral resource exploration,
identification, mapping minerals, and soil type discrimination [42,43]. We acknowledge
that hyperspectral remote sensing certainly has the advantage of capturing the subtle
spectral variations between the minerals. However, the daily spatial coverage of such
hyperspectral sensors to monitor aerosol dynamics is limited. Data integration (multi- and
hyperspectral) can enhance our capabilities of complete assessment. The spectral library
used for mineral inversion does not explicitly include other aerosol types other than dust
minerals. However, the spectral library could easily be expanded to include subgroups of
non-dust if necessary. Expanding the spectral library beyond dust minerals to carbonaceous
particles will aid us in understanding smoke and dust interactions. Expanding the library
further to hygroscopic sea salt will help us understand the role played by marine aerosols
in aerosol–cloud interactions. There are still further improvements that could help us to
expand our understanding of dust aerosol models globally.

3. Results
3.1. Satellite-Derived Size-Resolved Mineral Aerosol Composition

Two clear non-dusty and two dusty (total four) satellite imageries from the MODIS
were selected to demonstrate the application of the model from the validation datasets (ele-
mental concentrations of in situ collected aerosols) acquired over Southeast Asia (Figure 1a).
The MODIS-derived spatial distributions of AOD (550 nm) and AE (550–860 nm) exhibit an
extensive range of apparent aerosol loadings throughout the region (Figure 1b,c). A high
concentration of continental dust is observed over terrestrial regions, with its widespread
influence extending to the coastal areas. Coastal environments receive a mixture of marine-
generated sea-spray aerosols and land-advected continental flux. The spatial gradients of
AE (550–860 nm) in Figure 1c display contrasting differences between the clean marine
(AE < 1) and terrestrial air masses (AE > 1). A significant increase in aerosol loading with
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AOD (500 nm) >0.5 and AE (550–860 nm) slightly >1 is observed around Thailand and
nearby regions during the dusty days.

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 20 
 

 

and 1c). A high concentration of continental dust is observed over terrestrial regions, with 
its widespread influence extending to the coastal areas. Coastal environments receive a 
mixture of marine-generated sea-spray aerosols and land-advected continental flux. The 
spatial gradients of AE (550–860 nm) in Figure 1c display contrasting differences between 
the clean marine (AE<1) and terrestrial air masses (AE>1). A significant increase in aerosol 
loading with AOD (500nm) >0.5 and AE (550–860 nm) slightly >1 is observed around Thai-
land and nearby regions during the dusty days. 

 
Figure 1. (a) Map of the Southeast Asia study domain showing validation locations Chonburi, 
Chiang Rai, and Bangkok located in Thailand and Singapore; (b) spatial distribution of MODIS-
derived aerosol optical depth (AOD) at 550 nm; (c) spatial distribution of MODIS-derived Angstrom 
exponent (AE) for 550–860nm encompassing Southeast Asian region corresponding to two non-
dusty and two dusty days from the validation dataset. 

Figure 1. (a) Map of the Southeast Asia study domain showing validation locations Chonburi, Chiang
Rai, and Bangkok located in Thailand and Singapore; (b) spatial distribution of MODIS-derived
aerosol optical depth (AOD) at 550 nm; (c) spatial distribution of MODIS-derived Angstrom exponent
(AE) for 550–860 nm encompassing Southeast Asian region corresponding to two non-dusty and two
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MODIS-derived spatial distribution of nine minerals (calcite, feldspar, gypsum, hematite,
illite, kaolinite, mica, montmorillonite, and quartz) captured the mineral dust composition
of aerosols throughout the Southeast Asian region (Figures 2–4) and demonstrated that
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the model performed well. It should be noted that the spatial distribution of minerals is
dependent on their estimated concentration. Hence, the data coverage of minerals will be
different than that of AOD, i.e., if a particular mineral concentration is estimated to be 0, it
is represented as a white color in the figures.
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Copious amounts of phyllosilicates (illite, kaolinite, and montmorillonite) prevailing
over the entire region (Figure 2) indicate that the dust is being enriched in clay-sized
alumino-silicates and is also being advected to the marine atmosphere during a haze
event. Similarly, traces of tectosilicates (feldspar, mica, and quartz) are observed (Figure 3)
in small quantities, probably near the dust emission sources over the terrestrial region.
Interestingly, calcium carbonate (calcite) was discerned in the MODIS-derived mineralogy
over the terrestrial regions on dusty days (Figure 4a) near the dust emission sources.
Besides phyllosilicates, a substantial contribution from hematite was observed in our
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MODIS-derived mineralogy (Figure 4b) over both land and oceanic regions. The presence
of hematite shows that ferric oxide is abundant over the entire region that can easily be
transported to marine areas, being fine-sized. Prominent traces of sulfates in the form of
gypsum, detected on hazy days (Figure 4c), can be a significant portion of fine particulate
matter (PM2.5) that can induce a wide range of adverse health effects.
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MODIS-derived spatial distribution of the percentage of clay (<2 µm diameter) and
silt (2–50 µm diameter) minerals are shown in Figure A3. In contrast, the sand particles
(>50 µm diameter) were found to be absent for Southeast Asia. The small, submicron
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clay-sized aerosols observed in the particle size spectra (Figure 5) are pronounced (>70%)
over both terrestrial and marine areas, contributing significantly to the AOD. The mean
size distribution of dust aerosols displays a bi-modal spread dominated by fine-sized
clay particles ranging from 0.2–0.7 µm with a secondary peak at 0.9–1.0 µm on a clean,
non-dusty day. An increase in the number concentrations by a factor of five was noted,
along with two additional minor peaks with maxima at >2 µm for the wind-mobilized
coarser silt particles on a hazy day.
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3.2. Validation of the Size-Resolved Mineral Aerosol Model

Southeast Asia experiences high levels of cloud cover throughout the year due to
its geographical location. This severely limits the number of in situ satellite matchups.
Hence, in total, we obtained 60 satellite matchups out of 150 in situ measurements covering
four different terrestrial locations—Chonburi (20 out of 39), Chiang Rai (4 out of 10),
Bangkok (20 out of 37), and Singapore (16 out of 64)—each with different atmospheric
conditions and contaminants. The MODIS mineral retrievals exhibited good correlations
with four chemically analyzed elemental (Al, Ca, Fe, and Mg) concentrations of aerosols
(Figure 6) from Chonburi (PM2.5), Chiang Rai (PM2.5), Bangkok (PM2.5), and Singapore
(PM10). The strength of regression was described using the coefficient of determination (R2).
MODIS-derived mineralogy demonstrated an R2 ≥ 0.84 for PM2.5 elemental concentrations
and ≥0.96 for PM10. This indicates that ≥84 and ≥96% variance in PM2.5 and PM10
minerals considered in this study is explained by the variance of its respective elemental
concentrations (Figure 6). The correlation coefficient (r, Pearson) indicates the strength of a
relationship. The Pearson coefficient r ≥ 0.95 for PM2.5 and ≥0.99 for PM10 signifies a strong
relationship between the mineral and elemental concentrations. These correlations were
statistically significant (p << 0.005). However, bias or uncertainty associated with MODIS-
derived minerals cannot be interpreted from mineral–metal correlations. Nevertheless, low
values of the y-intercept suggest that the 1:1 line is passing from the origin 0:0 and the close
distribution along the 1:1 line indicates a high correlation.
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tures the smoke-generated aerosols released during biomass burning. Higher quantities 
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Figure 6. Comparison plots of MODIS-derived minerals (relative contribution, refer SI: Table A2
and Figure A2) with in situ measured and chemically analyzed elemental concentration of
(a,b) Aluminum—Al; (c,d) Calcium—Ca; (e,f) Iron—Fe; (g,h) Magnesium—Mg. Panels (a,c,e,g)
show the comparison of minerals with the elemental concentration of size fraction PM2.5 measured
over Chonburi, Chiang Rai, and Bangkok, while panels (b,d,f,h) show the comparison of minerals
with the elemental concentration of size fraction PM10 measured over Singapore. The light shade of
the color shows clear non-dusty days, while the darker shades show the data corresponding to the
dusty days.

The UVAI values and aerosol types classified by OMI aided us in validating aerosol
types identified by our model. The appearance of higher quantities of smoke tracer
minerals—calcite and gypsum (indicated by red color in Figure 4)—during a fire event
in MODIS-derived mineralogy (Figure 3) is coherent (co-located) with the OMI detected
smoke aerosols (gray color in Figure 7a). This reinforces that the model accurately cap-
tures the smoke-generated aerosols released during biomass burning. Higher quantities
of tectosilicates—feldspar, mica, and quartz (indicated by red color in Figure 3)—further
exemplify dust entrainment into convective fire plumes and matches with OMI detected
dust aerosols. The OMI-classified dust aerosols (brown color in Figure 7a) are also spatially
and temporally coherent with higher quantities of all the minerals.
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Figure 7. Spatial distribution of (a) aerosol type (b) UV aerosol index (AI) derived from Ozone
Monitoring Instrument (OMI) sensor on Aura satellite differentiating between smoke, dust, and
weak or non-absorbing aerosols corresponding to two non-dusty and two dusty days from the
validation dataset.

AERONET-measured AOD and AE were used to derive the mineral concentrations
using the proposed model. Hence, MODIS-derived mineral concentrations were compared
with AERONET-derived mineral concentrations, and the performance of the proposed
model was evaluated using root mean square error (RMSE) and mean absolute percentage
error (MAPE). AERONET AOD sun-photometer installations are fewer in number and
have limited spatial coverage. Hence, in total, we obtained 16 satellite cloud-screened and
quality-assured L2.0 AERONET AOD matchups out of 80 in situ chemical measurements
covering Chiang Rai, Bangkok, and Singapore.

On average, the percentage deviation between satellite-derived and AERONET-
measured AOD at 550 nm (Figure 8) ranged from −22 to +10.5%, with a mean absolute
percentage error (MAPE) of 6.4%. The AE tends to be overestimated in dusty regions for
particles with effective radii between 0.26 and 2.8 µm [44]. However, AE in our analysis
varied from −5.3 to +7.2% (MAPE = 2.4%), retaining the shape of the AOD spectra so
that the composition of the minerals derived from the model remains unaltered. The
MODIS-retrieved mineral concentrations exhibited strong correlations with AERONET-
derived mineral concentrations (Figure 8), with the strength of regression R2 ≥0.95 for all
the minerals. Low values of RMSE ≤ 0.047 µg m−3 and MAPE ≤ 19% except for calcite
(~149%) and feldspar (~32%) are indicative of a high correlation between AERONET and
MODIS-derived minerals.
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Figure 8. Comparison plots of MODIS satellite derived and AERONET (a) measured aerosol optical
depth (AOD); (b) measured Angstrom exponent (AE) used to compute mineral concentrations for
(c) calcite; (d) feldspar; (e) gypsum; (f) hematite; (g) illite; (h) kaolinite; (i) mica; (j) montmorillonite;
(k) quartz.

A sensitivity assessment analysis was performed to investigate the response of the
dust-mineral distribution with respect to the varying AOD values. Hence, input AOD was
altered in steps of ±10, ±30, ±50, ±70, ±90% to assess the corresponding sensitivity and
variability in (a) the concentration of each mineral and (b) the particle size distribution. For
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a demonstration of spatial variability purposes, the average distribution of deviation in
a mineral concentration corresponding to a +50% rise in AOD is shown here (Figure 9).
Regions with larger AOD values (Figure 1) typically demonstrated higher deviation in
each mineral (Figure 9); however, the variation of AOD does not increase the mineral
contribution linearly (Figure 10). The errors for the aerosol loading AOD < 0.25 are observed
to be smaller than 2%; hence, the deviation in the mineral retrieval observed over the oceanic
region is smaller than the terrestrial region. This implies that the deviation will be highest in
the vicinity of the dust emission sources over terrestrial regions (>2%). The most sensitive
minerals noticed in this region are iron-rich hematite, illite, and kaolinite (Figures 9 and 10)
over both land and ocean for all the categories of AOD deviation. A maximum deviation
of ~10% was noted corresponding to +30% deviation in AOD and remained <10% for
the variation in the aerosol loading by ±90%. Deviation for the rest of the minerals is
approximately half of the deviation of these three sensitive minerals for all the categories.

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 20 
 

 

variability in a) the concentration of each mineral and b) the particle size distribution. For 
a demonstration of spatial variability purposes, the average distribution of deviation in a 
mineral concentration corresponding to a +50% rise in AOD is shown here (Figure 9). Re-
gions with larger AOD values (Figure 1) typically demonstrated higher deviation in each 
mineral (Figure 9); however, the variation of AOD does not increase the mineral contri-
bution linearly (Figure 10). The errors for the aerosol loading AOD <0.25 are observed to 
be smaller than 2%; hence, the deviation in the mineral retrieval observed over the oceanic 
region is smaller than the terrestrial region. This implies that the deviation will be highest 
in the vicinity of the dust emission sources over terrestrial regions (>2%). The most sensi-
tive minerals noticed in this region are iron-rich hematite, illite, and kaolinite (Figure 9 
and 10) over both land and ocean for all the categories of AOD deviation. A maximum 
deviation of ~10% was noted corresponding to +30% deviation in AOD and remained 
<10% for the variation in the aerosol loading by ±90%. Deviation for the rest of the miner-
als is approximately half of the deviation of these three sensitive minerals for all the cate-
gories.  

 
Figure 9. The average spatial distribution of deviation in the mineral concentration corresponding 
to a 50% rise in AOD represents the model's sensitivity towards the variable aerosol load. 

Figure 9. The average spatial distribution of deviation in the mineral concentration corresponding to
a 50% rise in AOD represents the model’s sensitivity towards the variable aerosol load.



Remote Sens. 2022, 14, 761 16 of 24
Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 20 
 

 

 
Figure 10. The average response of the dust-mineral retrieval with respect to the varying AOD 
(550nm) values in steps between ±10-90%. 

Our computations (Figure 11) show the largest deviation of ~14% (in total) for the 
fine-sized aerosols (<2 μm) un 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. The average response of the dust-mineral retrieval with respect to the varying AOD
(550 nm) values in steps between ±10–90%.

Our computations (Figure 11) show the largest deviation of ~14% (in total) for the fine-
sized aerosols (<2 µm) under loading at +90% AOD over terrestrial regions. In comparison,
the deviation was ~8.5% over marine areas, whereas it was ~0.85% over the terrestrial
region and ~1.7% over marine areas for coarse silt particles (>2 µm). Nevertheless, the
composition of the minerals in the dust and the particle size spectrum remains the same, as
the AOD spectral shape was retained and not altered.
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4. Discussions

Southeast Asia hosts mixtures of a wide range of atmospheric aerosols originating
from various natural and anthropogenic sources, such as volcanic eruptions, industry,
mobile sources, biofuel, deforestation, and biomass burning [6]. Spatial heterogeneity
observed in Figure 1a from clean marine areas to highly contaminated terrestrial regions
is thus apparent. Biomass burning is common in the Southeast Asia region to remove
the post-harvested crop residues and prepare fields for cultivation during the monsoon.
The intense burning typically peaks during the dry season between January–April for
Thailand, Vietnam, Cambodia, Myanmar, and Laos PDR, and July–October in Indonesia and
Malaysia [45,46]. Hence, the satellite images of March demonstrate the burning generated
haze in Thailand and nearby areas, whereas June and November images represent the
clear non-dusty days (Figures 1–4). The AE presented in Figure 1b captures the spectral
variation of AOD and is inversely proportional to the particle size according to classical
Mie scattering theory. It identifies an ambient aerosol scene’s dominating aerosol mode
(fine or coarse) [47]. Therefore, AE ≥ 1 over the terrestrial regions indicates an abundance
of fine particles, mainly from continental sources such as black carbon or sulfate. At the
same time, AE < 1 over the marine areas represents the dominance of coarse particles such
as sea salt from natural sea spray [47] and hygroscopic continental aerosols. The coarser silt
particles (>2 µm) prominent over terrestrial regions (Figure 5) in the immediate vicinity of
their emission sources are short lived, and particles settle within a short distance, thereby
causing localized effects. Conversely, the fine-sized clay particles (<2 µm) observed over
the region (Figure 5) have a greater residence time in the atmosphere, and hence they are
subject to long-range transport [48]. Upon reaching the marine areas, these continental
particles expand in size according to their hygroscopicity. The finest, insoluble particles
with a diameter <2.5 µm are the most detrimental to health [8,9].

Understanding the emission sources corresponding to different aerosol components
is critical for air pollution control. Silicon (Si) and aluminum (Al) are the second- and
third-most abundant element in the Earth’s crust, and the dominant component of soil
systems and dust [10]. The predominance of typical aluminosilicate minerals (phyllosili-
cates in Figure 2 and tectosilicates in Figure 3) discerned in MODIS-derived mineralogy is
thus apparent. The calcite observed in our Southeast Asian region (Figure 4a) other than
limestone bedrock is most likely formed from calcium oxalate in vegetation during biomass
burning, which is transformed into calcium carbonate crystals during combustion [49,50].
Combustion-released calcium carbonate observed in dust mineralogy potentially plays a
vital role in regulating the pH of precipitation in the region [51,52]. The major iron oxide
species in mineral dust prevailing in the region are hematite and goethite (Figure 4b), whose
relative abundances vary by source region [53]. Ferric minerals are essential components
of lithogenic soil that control magnetic susceptibility [54]. Ferric oxide minerals in atmo-
spheric dust are efficient at absorbing solar radiation at UV and visible wavelengths [30],
and can thus influence atmospheric temperatures and accelerate the melting of snow and
ice by diminishing surface albedo [55]. Iron aerosols can also stimulate marine phyto-
plankton productivity [3,56]. Emitted sulfur during biomass burning is oxidized to sulfur
dioxide (SO2) and consequently undergoes chemical reactions to produce sulfate PM in
the atmosphere [57]. Field measurements of smoke released from biomass burning over
Southeast Asia are well-documented in the literature [58,59]. Hence, the observation of
sulfurized gypsum in Figure 4c released due to biomass burning is apparent. Significant
amounts of sulfate aerosols released during biomass burning are hygroscopic in nature and
act as a smoke tracer for the region [46,60]. Additionally, carbonate crystals formed during
combustion are also chief precursors of secondary gypsum [57]. Hence, the minerals (illite,
kaolinite, montmorillonite, feldspar, mica, quartz, calcite, hematite, and gypsum) and the
metals (Al, Ca, Fe, and Mg) considered in this study are either aerosolized during biomass
burning or are introduced by secondary production during the fire.

Statistical significance, high correlations and a strong relationship observed between
the mineral and metal concentrations (Figure 6) suggest that the percentage of the derived
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mineral composition matches the in situ measured metal composition. This indicates that
the proposed model can identify the chemical (mineral) composition both quantitatively
and qualitatively. The highest contributors are phyllosilicates and hematite. Satellite
retrievals of UVAI from OMI are extensively utilized for identifying the source of dust
aerosols and combustion of biomass and fossil fuels [45,61]. The high values of MODIS-
derived mineral concentrations noticed during a haze event overlap with the peak UVAI
values (Figure 7) due to increased activity of absorbing aerosols emitted from biomass
burning and dust particles. These findings agree with the previous investigations by [62]
over Cairo and [63] over Durban. This reflects that the model precisely captures the
location and areal extent of dust and smoke plumes during a haze event. UVAI is an
excellent marker for carbonaceous absorbing aerosols from biomass burning. We noticed
significantly high UVAI values ranging from 1.0 to 2.0 for forest and plantation/peatland
mixed fires. The mineral composition model developed in this study is sufficiently flexible
to be applied to both in situ and satellite measurements. Therefore, AERONET-measured
AOD and AE from Chiang Rai, Bangkok, and Singapore were used to derive the mineral
concentrations using the proposed model and compared with their respective MODIS
counterparts. Close distribution along the 1:1 reference line between the AERONET and
MODIS-derived minerals (Figure 8) signifies less scatter and provides us the confidence of
a robust correlation. Lower values of the Y-intercept indicate a strong relationship. This
suggests that the proposed model is robust and stable enough in managing the uncertainties
involved in satellite derivations of AOD and AE quite well without altering the shape of
the AOD spectra and composition of the minerals.

Appropriate mineral derivations from the modeling approach discussed here rely
on the accurate AOD and AE values. Deviations in AOD or AE will change the shape
of the AOD spectra, yielding inaccurate estimates of mineral concentrations. We must
also acknowledge that uncertainty is an inherent property of satellite AOD derivations
and cannot be entirely eliminated and will likely propagate to further derivations [64],
i.e., to mineral concentrations in our case. An analysis of uncertainty involved in mineral
derivations due to the deviations in AOD and AE (Figures 9–11) is, therefore, a beneficial
measure to determine the model’s performance. The sensitivity of the retrieval of the
mineral composition is negligible for low aerosol loading and weakly and non-absorbing
aerosols (Figures 9 and 10). However, uncertainties associated with space-borne AOD
derivations for absorbing aerosol analogs and unevenly shaped dust particles or mixtures
containing aerosols from combustion sources and urban regions cannot be neglected [44].
Hence, more attention should be provided to dense and elevated aerosol layers caused
by fires or extreme dust events. This appears reasonable, as the most sensitive minerals
identified in our study are phyllosilicates and ferric oxides (Figure 9). They prevail in
copious amounts over the entire region (Figures 3 and 4). During combustion events (in
the vicinity of smoke), fine and coarse iron-rich silicate dust is mobilized by large fires.
Remarkably, our analysis reveals that sensitivity to the mineral derivation remained <10%
even when the aerosol loading was varied by ±90%.

The purpose of the sensitivity analysis is to help us evaluate the uncertainties involved
in the retrieval of each mineral based on the agreement between AERONET- and MODIS-
derived AOD. Consequently, an uncertainty of 6.4% between AERONET-measured and
MODIS-derived AOD (from Figure 8) corresponds to a < ± 2% deviation in mineral com-
position inversion from satellite using the proposed model (Figure 10). This demonstrates
the robustness of the mineral inversion model and that the model is reliable enough for
such mineral derivations without altering the composition (Figures 9 and 10) of mineral
dust or its particle size spectrum (Figure 11).

5. Conclusions

This study investigates a cost-effective and feasible way of retrieving the spatial dis-
tribution of aerosols’ particle size and mineral composition from satellite remote sensing
across Southeast Asia. The smoke tracing minerals—calcite and gypsum—highlight the
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poor air quality over combustion-affected regions. High correlation with chemically ana-
lyzed metal and AERONET-derived mineral concentrations together with low uncertainties
demonstrates the robustness and stability of the proposed model. Reasonable agreement
with the OMI-derived dust, smoke, and non-absorbing aerosols signifies that the model
can characterize the chemical, optical, and microphysical properties of aerosol mineralogy
across large scales. Besides climatic effects, epidemiological and toxicological evidence
of increased particulate matter levels is emerging as a significant cause of concern. The
ability to measure aerosol composition from remote sensing will enable us to improve our
understanding of the effects of aerosols on climate, which remains a significant source
of uncertainty in our understanding of the climate system. We recommend that opera-
tional satellite derivations on aerosols include chemical composition to perform source
apportionment and health risk assessment studies.
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Appendix A

Table A1. Adopted size distribution of mineral species and the sources of its derived complex
refractive indices.

Minerals Particle Size (Diameter) Source

Illite 0.4–2.0 µm at an interval of 0.2 µm (100%Clay) [65,66]
Kaolinite 0.4–2.0 µm at an interval of 0.2 µm (100%Clay) [65,66]

Montmorillonite 0.4–2.0 µm at an interval of 0.2 µm (100%Clay) [65,66]
Hematite 0.4–2.0 µm at an interval of 0.2 µm (100%Clay) [67]

Quartz
0.4–2.0 µm at an interval of 0.4 µm (Clay)

4.0–10 µm at an interval of 2 µm (Silt)
20–50 µm at an interval of 20 µm (Silt)

[68]

Calcite
0.4–2.0 µm at an interval of 0.2 µm (Clay)

4.0–10 µm at an interval of 2 µm (Silt)
20–50 µm at an interval of 20 µm (Silt)

[66,69,70]

Feldspar

0.4–2.0 µm at an interval of 0.2 µm (Clay)
4.0–10 µm at an interval of 2 µm (Silt)
20–50 µm at an interval of 20 µm (Silt)

80–100 µm at an interval of 20 µm (Sand)
100–500 µm at an interval of 250 µm (Sand)

[65]

Gypsum

0.4–2.0 µm at an interval of 0.2 µm (Clay)
4.0–10 µm at an interval of 2 µm (Silt)
20–50 µm at an interval of 20 µm (Silt)

80–100 µm at an interval of 20 µm (Sand)
100–500 µm at an interval of 250 µm (Sand)

[70]

Mica 2.0–10 µm at an interval of 2 µm (Silt)
20–50 µm at an interval of 20 µm (Silt) [65]

https://ladsweb.modaps.eosdis.nasa.gov/
http://aeronet.gsfc.nasa.gov
https://disc.gsfc.nasa.gov/datasets/OMAERUV_003/
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Table A2. The chemical formula of the modeled minerals.

Mineral Empirical Formula Al% Fe% Ca% Mg%

Illite (K,H3O)(Al,Mg,Fe)2(Si,Al)
4O10[(OH)2,(H2O)] 9 1.4 1.9

Kaolinite Al2Si2O5(OH)4 20.9

Montmorillonite Na0.2Ca0.1Al2Si4O10
(OH)2(H2O)10 9.8 0.7

Hematite Fe2O3 69.9
Quartz SiO2
Calcite CaCO3 40

Feldspar (Na,Ca,K)(Al, Si)4O8 0 0 0 0
Potassium
Feldspar KAlSi3O8 9.7

Albite NaAlSi3O8 10.8 0.8
Anorthite CaAl2Si2O8 19 13.7
Gypsum CaSO4. 2H2O 23.3

Mica
Biotite K(Mg,Fe++)3[AlSi3O10(OH,F)2 6.2 6.4 14

Muscovite KAl2(Si3Al)O10(OH,F)2 20.3
Phlogopite KMg3(Si3Al)O10(F,OH)2 6.4 17.4
Lepidolite KLi2AlSi4O10F(OH) 7
Paragonite NaAl3Si3O10(OH)2 21.2

Glauconite (K,Na)(Fe+++,Al,Mg)2(Si,Al)
4O10(OH)2 1.9 19.6 2.3

Margarite CaAl2(Al2Si2)O10(OH)2 27.1 10.1
Clintonite Ca(Mg,Al)3(Al3Si)O10(OH)2 22.1 9.6 12.9
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