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Abstract: Deep learning has attracted increasing attention across a number of disciplines in recent
years. In the field of remote sensing, ship detection based on deep learning for synthetic aperture
radar (SAR) imagery is replacing traditional methods as a mainstream research method. The multiple
scales of ship objects make the detection of ship targets a challenging task in SAR images. This paper
proposes a new methodology for better detection of multi-scale ship objects in SAR images, which is
based on YOLOv5 with a small model size (YOLOv5s), namely the multi-scale ship detection network
(MSSDNet). We construct two modules in MSSDNet: the CSPMRes2 (Cross Stage Partial network
with Modified Res2Net) module for improving feature representation capability and the FC-FPN
(Feature Pyramid Network with Fusion Coefficients) module for fusing feature maps adaptively.
Firstly, the CSPMRes2 module introduces modified Res2Net (MRes2) with a coordinate attention
module (CAM) for multi-scale features extraction in scale dimension, then the CSPMRes2 module
will be used as a basic module in the depth dimension of the MSSDNet backbone. Thus, our backbone
of MSSDNet has the capabilities of features extraction in both depth and scale dimensions. In the
FC-FPN module, we set a learnable fusion coefficient for each feature map participating in fusion,
which helps the FC-FPN module choose the best features to fuse for multi-scale objects detection
tasks. After the feature fusion, we pass the output through the CSPMRes2 module for better feature
representation. The performance evaluation for this study is conducted using an RTX2080Ti GPU,
and two different datasets: SSDD and SARShip are used. These experiments on SSDD and SARShip
datasets confirm that MSSDNet leads to superior multi-scale ship detection compared with the
state-of-the-art methods. Moreover, in comparisons of network model size and inference time, our
MSSDNet also has huge advantages with related methods.

Keywords: adaptive feature fusion; synthetic aperture radar (SAR); multi-scale ships detection;
YOLOv5

1. Introduction

In remote sensing, Synthetic Aperture Radar (SAR), which is an active microwave
imaging radar that can observe the surface of the earth day and night [1,2], plays a signif-
icant role in marine traffic monitoring. In recent years, many countries have developed
their own spaceborne technology, such as Germany’s TerraSAR-X, China’s Gaofen-3 and
Canada’s RADARSAT-2. Such efforts make object detection of SAR images an increasingly
attractive topic.

Deep learning-based object detection for natural images has witnessed a growing num-
ber of publications [3–10], in many of which dividing object detection into one-stage and
two-stage is a common way. The one-stage object detection algorithms treat object detection
as a regression problem and obtain bounding box coordinates and class probabilities from
image pixels. The typical algorithms are the You Only Look Once (YOLO) series [11–14],
Single Shot MultiBox Detector (SSD) [6], and RetinaNet [9], etc. The two-stage object
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detection algorithms firstly generate region proposals as the potential bounding boxes and
construct a classifier to classify these bounding boxes. After that, the bounding boxes will
be refined through post-processing, and finally, duplicate detections will be eliminated. The
typical two-stage algorithms are Fast RCNN [7], Faster RCNN [8] and Mask RCNN [10], etc.
In general, the two-stage object detection algorithms are more accurate than the one-stage
ones, but the one-stage methods are faster and simpler to train.

Inspired by deep learning’s great power in object detection, researchers have intro-
duced deep learning into image processing in remote sensing [15–18]. Image processing in
SAR is one of the most important fields in remote sensing. Ship detection with multi-scale
features [19–22] has gotten more and more attention in recent years. Liu et al. [23] con-
structed a ship proposal generator to solve the multi-scale problem of ships in SAR images,
which can get the highest recall and quality of proposals. The serious missed detection
problem of small-scale ships in SAR images had a terrible influence on the performance
of object detection, Kang et al. [22] solved this problem by constructing a context-based
convolutional neural network with multi-layer fusion, in which a high-resolution region
proposal network (RPN) was used to generate high-quality region proposals, and an object
detection network with contextual features can obtain useful contextual information. Fu
et al. [24] balanced semantically the multiple features across different levels by proposing
an attention-guided balanced pyramid, which can focus on small ships in complex scenes
efficiently. Cui et al. [25] adopted an attention mechanism to focus on multi-scale ships, in
which a dense attention pyramid network was proposed, namely DAPN. The convolutional
block attention module in DAPN used channel attention and spatial attention to extract
resolution and semantic information and highlight salient features. Additionally, in the
study of [26–30], different methods were proposed to detect multi-scale ships in SAR im-
ages and had achieved satisfying detection results. Although the ship detection algorithms
mentioned above had a significant improvement in detection performance, their multi-scale
features fusion only fused the feature maps directly. In this way, the fused feature layers
are restricted by each other, which is not appropriate for ships of different sizes. Releasing
the constraint of feature fusion directly is beneficial to improve the detection performance
of multi-scale objects.

This paper describes the design and implementation of a multi-scale ship detection
network to achieve an excellent detection performance in SAR images. We firstly construct
a CSPMRes2 (Cross Stage Partial network with Modified Res2Net) module for better feature
extraction of ships. CSPMRes2 not only has the capability of multi-scale features extraction,
but can also model inter-channel relationships and capture long-range dependencies with
precise positional information of the feature map. In addition, aiming to directly overcome
the shortcoming of feature fusion directly, the fusion proportion of feature maps is con-
sidered. Then we construct a feature pyramid network architecture for multi-scale ships
detection, namely the FC-FPN (Feature Pyramid Network with Fusion Coefficients). The
fusion coefficients in our FC-FPN are set for each feature map participating in fusion and are
learned from the training phase of the ship detection network. After fusing feature maps,
we pass the output through the CSPMRes2 module to equip FC-FPN with powerful features
extraction capability. On the other hand, we also take the model size of the ship’s detection
network into account, then adopt YOLOv5 with a small model size (denoted as YOLOv5s)
as the ship objects detection framework. Finally, we construct the MSSDNet by applying
the CSPMRes2 module and FC-FPN module into YOLOv5s. Benefitted from the design of
MSSDNet, the results of experiments on SSDD [20] and SARShip [31] datasets illustrate
that our MSSDNet has a significant improvement in detection performance with smaller
model size and faster inference time. The contributions of this work are summarized below.

1. We construct the MSSDNet with a small model size while having better speed and
accuracy compared with the YOLOv5s baseline and other methods.

2. A CSPMRes2 module is proposed to extract the multi-scale discriminative features,
which not only possess features extraction capability of ‘scale’ dimension but can also
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capture the relationships of inter-channels and obtain salient information with precise
spatial location information.

3. We construct an FC-FPN module that a learnable fusion coefficient set for each
feature map participating in fusion to fuse feature maps adaptively, and we conduct the
experiments of fusion coefficient to explore how the fusion coefficients affect the detection
of ships.

The rest of this paper is arranged as follows: Section 2 describes the proposed network.
Section 3 makes an analysis of the result of experiments and a comparison between the
proposed network and other algorithms. Section 4 discusses some phenomena according
to the experimental results. Finally, Section 5 gives conclusions about this paper.

2. The Proposed Method

The sample matching method in the working pipeline of MSSDNet, which is based
on the shape between anchor boxes and ground truth, is different from the general ones
based on the Intersection over Union (IoU) between the ground truth and anchor boxes.
The sample matching method is shown in Figure 1, where wg and hg represent the width
of ground truth, respectively, and wi and hi represent the width of the three anchor boxes,
respectively. A SAR image firstly is resized to a fixed spatial resolution, and then will be
divided into S× S grid cells. Each grid cell will set anchor boxes with different aspect ratios.
If the width and height of the object match anchor boxes within an allowed range, then the
anchor boxes will be responsible for detecting that object, while other anchor boxes will
be the background. One object is allowed to have multiple anchor boxes. After sample
matching, the bounding box can be obtained by predicting the offset of anchors and objects.
The prediction of a bounding box has 6 components: class, x, y, w, h, confidence. The class
represents which category it belongs to, the x, y coordinates represent the center offset of
the bounding box relative to ground truth, the w and h are the width and height of the
bounding box, the x, y, w, h are normalized to 0 and 1 according to the image size. The
confidence score represents the probability that a bounding box contains an object. If there
is no object in the bounding box, the confidence score should be zero. Furthermore, IoU
between the ground truth and the predicted box indicates how close the predicted box is to
the ground truth. The closer between the predicted box and ground truth, the more likely
the predicted box contains an object. Thus, we make the confidence score of the predicted
box equal to the IoU between the ground truth and the predicted box.
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Figure 1. The sample matching of MSSDNet. The dark green box is ground truth, light green boxes
are anchor boxes. The width and height of the anchor boxes are compared with the ground truth to
decide if the anchor box is a background or positive anchor box.

The overview of the proposed MSSDNet is illustrated in Figure 2. Compared with the
original YOLOv5s, we reconstruct the backbone of YOLOv5s by introducing our CSPMRes2
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module and replacing the FPN of YOLOv5s with the FC-FPN module. The CSPMRes2
module is responsible for extracting features better, and FC-FPN fuses the feature maps
adaptively. In the phase of testing, we use the COCO metric as the evaluation standard.
We will describe the key modules of MSSDNet in detail.
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Figure 2. The overview of MSSDNet. Compared to YOLOv5s, we mainly improve the feature
extraction capability of the backbone by using the CSPMRes2 module, and we also make FC-FPN
replace the original FPN version for feature fusion adaptively.

2.1. CSPMRes2 Module

In order to increase the receptive field range of feature maps, several MRes2 submod-
ules are introduced into the CSPMRes2 module as the feature extraction of scale dimension,
as shown in Figure 3. In the figure, the red block represents the MRes2 module, the pink
block represents the convolution module, and other blocks with different colors represent
different feature maps. The input of the CSPMRes2 module is split into two branches
through channel x = [x0′, x0′′]. Between x0′ and x0′′, the former will go through MRes2
submodules; the latter is linked to the end of the CSPMRes2 module. The outputs of MRes2
submodules, [x0′, x1, . . . , xk], will undergo a general convolution module to generate an
output, xT , then the x0′′ and xT will be concatenated together, after a general convolution
module as the output of CSPMRes2 module. The equations of forward propagation and
weight update of the CSPMRes2 module are shown in Equations (1) and (2), respectively.
In the equations, g is gradient information, w is weights, and η is the learning rate.

xk = wk ∗ [x0′, x1, . . . , xk−1]
xT = wT ∗ [x0′, x1, . . . , xk]

xU = wU ∗ [x0′′, xT ]
(1)

w′k = fk(wk, {g0′, g1, . . . , gk−1})
w′T = fT(wT , {g0′, g1, . . . , gk})

w′U = fU(wU , {g0′′, gT})
(2)

fk = wk − η ∗ {g0′, g1, . . . , gk−1}
fT = wT − η ∗ {g0′, g1, . . . , gk}

fU = wU − η ∗ {g0′′, gT}
(3)

We can see that the gradients of MRes2 submodules are integrated separately, and the
bypassed x0′′ is also integrated separately. CSPMRes2 module not only possesses character-
istics of feature reuse but also reduces the number of duplicate gradient information [32].
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Figure 3. The CSPMRes2 module with MRes2 submodule. The input feature map is split into two
parts: one goes through the MRes2 submodule, and another is bypassed to the end of the CSMRes2
module.

In the MRes2 module, as shown in Figure 4, the input will go through n 1 × 1
convolutions, respectively, to change the channels of feature maps, after which, we obtain
n feature subsets, denoted as pi, where i = {1, 2, . . . n}. Each pi has the same number of
channels and spatial resolution, where the number of channels is 1/n of the input channels.
Except for the feature subset p1, each pi will go through a convolution with kernel size
3 × 3, denoted as Ki. Moreover, except for the feature subset p1 and p2, each pi will undergo
a coordinate attention module (CAM) [33], denoted as Ci. We denote the output of Ci by ti
and the output of Ki by yi.Thus, the ti and yi can be written as:

ti = Ci(yi−1 + pi) 3 ≤ i ≤ n (4)

yi =


pi i = 1
Ki(pi) i = 2
ti 3 ≤ i ≤ n

(5)
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Combine Equation (4) and (5), then we get:

yi =


pi i = 1
Ki(pi) i = 2
Ci(yi−1 + pi) 3 ≤ i ≤ n

(6)

For optimized fuse information at the dimension of ‘scale’, we concatenate all the yi,
denoted by y, i.e., y = [y1, y2, . . . , yn], then pass y through a 1 × 1 convolution. Finally, in
order to capture relationships of inter-channels and obtain salient information with precise
spatial location information, after making the feature map go through a 1 × 1 convolution,
we pass it through a CAM as the final output of the MRes2 module.

The strategy of separation and combination makes the convolutions process features
efficient. The CSPMRes2 module not only has multi-scale feature extraction capability [34]
but also reduces a lot of duplicate gradient information.

2.2. FC-FPN Module

The architecture of the proposed FC-FPN is shown in Figure 5. A learnable fusion
coefficient for each feature map participating in the fusion is set for getting adaptive feature
fusion between different feature maps. For better extraction of multi-scale features, we
make the output of adaptive feature fusion go through a CSPMRes2 module.
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in feature fusion.

Assuming that f1 and f2 represent feature maps participating in feature fusion, α and
β are the fusion coefficients of f1 and f2, respectively. We can get an output of features
fusion as shown in Equation (7):

f = α · f1 + β · f2 (7)

The coefficient α and β can respectively adjust the contribution of f1 and f2. It can get
the best features fusion result by making the α and β learnable. Furthermore, α and β are
limited within a fixed range to ensure the stability of network training. In this paper, this
optimal learning range is obtained by conducting the experiments of fusion coefficients on
the SSDD dataset.

2.3. Architecture of MSSDNet

The detailed architecture of MSSDNet is illustrated in Figure 6, which is the application
of the CSPMRes2 module and FC-FPN module in YOLOv5s. We can see the numbers and
locations of the CSPMRes2 module and FC-FPN module. In the backbone of MSSDNet, the
output of the CSPMRes2 module is the input of FC-FPN and adopts three feature maps with
different scales to detect multi-scale ships in SAR images. In order to improve the features
representation capability of FC-FPN, we use a CSPMRes2 module after each feature fusion
operation.
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3. Results

Two datasets: SSDD and SARShip are used to verify the effectiveness of the proposed
method. Our method also makes a comparison with the other deep learning-based object
detection algorithms: BorderDet [35], DeFCN [36], GFocalV2 [37], OTA [38], YOLOF [39]
and PAA [40]. We conduct all experiments by using a PC with Intel® CoreTM i7-9800X
CPU @3.80GHz ×16 and 32 GB of memory, and NVIDIA GeForce RTX 2080Ti GPU with
12GB of memory. The operating system is a 64-bit Ubuntu 18.04.5 LTS.

3.1. Experiment Settings

Since MSSDNet is constructed based on YOLOv5s, we use the experimental result
of YOLOv5s as our baseline. The initial learning rate is set to 0.01, the optimizer is SGD,
anchor aspect ratios are from the k-means algorithm, and the thresholds of NMS are set
to 0.5. We set the size of the images to 512 × 512 for SSDD, and 256 × 256 for SARShip.
Although the image size setting of SSDD and SARShip is different, there is no impact on
the MSSDNet, which is because the size of network layers will change as the size of images
change. To enhance the diversity of the training dataset, flip horizontal, and mosaic data
augmentations are adopted in the phase of training. In addition, our model is trained from
scratch, instead of using a pre-trained model.

3.2. Experiment Datasets
3.2.1. SSDD Dataset

There are 1160 images with a total of 2540 ships in the SSDD dataset. The average
number of ships per image is 2.19. The dataset has a similar procedure to process bounding
boxes and label annotations with PASCAL VOC [41]. We divide the training set and the
testing set with the proportion of 8:2, and Figure 7 shows the visualization of the ship
distribution. The center and width/height of ships are normalized to 0 and 1. The labels of
each image of SSDD are stored in a file with the suffix xml, which will be converted into
the file with the suffix txt required by MSSDNet.
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of objects width and height.

3.2.2. SARShip Dataset

The SARShip dataset contains 39,729 images, which contains a total of 50,885 ships.
The image’s size is 256 × 256. The dataset comes from the Gaofen-3 satellite and Eurasian
Sentinel-1 satellite. Image resolutions range from 1.7 m to 25 m, and the polarization
modes include HH, HV, VH, and VV. The dataset scenes include ports, inshore, islands,
and offshore. The ships include oil tankers, bulk carriers, large container ships, and fishing
vessels. The dataset is divided into the training set and the testing set with the proportion
of 8:2. Figure 8 visualizes the distribution of ships, and the center and the width/height of
ships are normalized to 0 and 1. The labels of each image in SARShip datasets are stored in
a file with the suffix txt, which satisfies the label format required by MSSDNet.
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In order to visualize the number of different size ships in the dataset, we make a
statistic in terms of the definitions of COCO metrics [42] (as shown in Table 1) for different
size ships, and display them in a histogram, as shown in Figure 9. Figure 9a shows that
there are 1530 small ships, 934 medium ships, and 76 large ships in the SSDD dataset.
Figure 9b shows that there are 28,802 small ships, 21,919 medium ships, and 164 large ships
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in the SARShip dataset. In both the SSDD dataset and the SARShip dataset, the majority
are the small and medium ships, while the large ships are very few.

Table 1. The meanings of COCO Metrics.

Metric Meaning

AP IoU = 0.50:0.05:0.95
AP50 IoU = 0.50
AP75 IoU = 0.75
APS area < 322

APM 322 < area < 962

APL area > 962
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3.3. Experiments on SSDD

According to the settings of experiments and evaluation standards, we conducted our
experiments on SSDD, and the results are shown in Table 2. The MSSDNet has improved
most of the COCO metrics compared with the YOLOv5s baseline. Especially, the values
of AP75, APS, APM, and APL metrics have significant improvement of 1.6%, 1.3%, 1.0%,
and 1.4%, respectively. MSSDNet also has an improvement of 0.9% in the AP metric
compared with YOLOv5s. The values of COCO metrics have demonstrated that MSSDNet
can improve the multi-scale ships detection performance efficiently compared with the
YOLOv5s baseline.

Table 2. The experimental result of MSSDNet on SSDD.

Methods AP (%) AP50 (%) AP75 (%) APS (%) APM (%) APL (%)

YOLOv5s 60.2 95.4 69.3 54.1 69.0 69.0
MSSDNet 61.1 95.6 70.9 55.4 70.0 70.4

As shown in Table 3, we performed the experiments on SSDD for some latest object
detection methods. It can be seen that MSSDNet gets the best AP result of 61.1% compared
with the other methods. In the methods of participation in comparison, OTA, and YOLOF
have the greater results. OTA works better on medium ships but has poor performance in
small and large ships compared with MSSDNet. YOLOF exceeds MSSDNet by 2.3% in the
APL metric, but the values of APS and APM, AP75 metrics are far below MSSDNet, which
means MSSDNet can obtain more precise object location information than YOLOF. The
experimental results on SSDD have demonstrated the MSSDNet can efficiently handle the
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detection of different size ships in SAR images, and its detection performance surpasses
other great methods.

Table 3. The results of different methods on SSDD.

Methods AP (%) AP50 (%) AP75 (%) APS (%) APM (%) APL (%)

BorderDet 57.5 93.2 65.3 51.6 66.2 64.8
DeFCN 55.5 91.9 62.2 50.7 66.1 50.4

GFocalV2 56.2 92.1 64.1 51.5 65.9 61.1
OTA 59.1 93.3 69.0 52.5 70.1 63.4

YOLOF 59.2 94.5 65.8 53.0 68.8 72.7
PAA 56.0 91.6 64.0 51.1 65.7 53.1

YOLOv5s 60.2 95.4 69.3 54.1 69.0 69.0
MSSDNet 61.1 95.6 70.9 55.4 70.0 70.4

Figure 10 presents the results of methods of participation in comparison. The green
boxes indicate the ground truths, the red boxes represent the predicted boxes, the yellow
boxes represent missed detections, and the blue boxes represent false detections. In order
to make the displayed detection results more representative, we select six detection images
with complex backgrounds. It can be seen that BorderDet, DeFCN, and GFocalV2 have
the worst performance in the number of missed detections. Except for the algorithms
mentioned above, other algorithms also have some missed detections. OTA and PAA
have the worst performance in false detections, and BorderDet and YOLOF have less
false detections than OTA and PAA. Experimental results indicate that all the mentioned
methods will get worse results in near shore, especially when the ships are arranged densely.
Among all the algorithms, our MSSDNet has the best performance with no false detections
and less missed detections, which demonstrates that the overall performance of MSSDNet
is better than the other methods.
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Figure 10. Experimental results in the SSDD dataset. (a1–a6): ground truth images; from (b1–b6)
to (i1–i6): predicted results of BorderDet, DeFCN, GFocalV2, OTA, YOLOF, PAA, YOLOv5s, and
MSSDNet, respectively. The green boxes are the ground truths, the red boxes are the predicted boxes,
the yellow boxes represent missed detections, and the blue boxes represent the false detections.

3.4. Experiments on SARShip

The results of the proposed method on SARSship are shown in Table 4. The table
shows that MSSDNet exceeds the YOLOv5s baseline in all COCO metrics. Especially the
values of APS, APM, and APL prove that MSSDNet can improve the detection performance
of ships with different scales at the same time. The AP75 metric is higher than the YOLOv5s
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baseline, which indicates that MSSDNet can get more precise ships location information.
The AP value of MSSDNet has an improvement of 1.5%, which shows the excellent overall
performance compared with the YOLOv5s baseline.

Table 4. The experimental result of MSSDNet on SARShip.

Methods AP (%) AP50 (%) AP75 (%) APS (%) APM (%) APL (%)

YOLOv5s 58.6 94.6 65.4 52.8 65.6 59.4
MSSDNet 60.1 95.1 68.2 54.6 66.6 62.2

Table 5 compares the detection performance of MSSDNet and other methods on the
SARShip dataset. In the AP metric, MSSDNet has the best result of 60.1%, surpassing all the
other methods in the table, which indicates that MSSDNet has better overall performance.
In both APM and APL metrics, MSSDNet does not achieve the satisfying results compared
with OTA, but still surpasses most other methods. The values of the AP75 and APS metrics
have shown that MSSDNet still can get more precise ships location information and have
great detection performance of small ships compared with other methods. YOLOF can
still work well on large ships but has worse results in other metrics. OTA has outstanding
performance in APM and APL, but in AP75 and APS metrics, it has poorer detection
performance than MSSDNet. It can be seen that MSSDNet has a relatively balanced
performance on the COCO metrics compared with other methods, which can effectively
focus on multiple metrics instead of focusing on a specific metric, e.g., OTA and YOLOF
focus on APL metrics so that other metrics have poor performance.

Table 5. The results of different methods on SARShip.

Methods AP (%) AP50 (%) AP75 (%) APS (%) APM (%) APL (%)

BorderDet 56.7 93.8 62.3 49.6 65.3 57.3
DeFCN 54.5 93.5 58.1 49.8 61.0 47.8

GFocalV2 59.3 94.7 67.0 52.3 67.8 57.0
OTA 59.3 94.7 65.7 51.5 68.4 73.9

YOLOF 53.3 93.9 55.0 46.3 62.0 73.1
PAA 44.4 88.3 38.6 38.9 51.1 30.6

YOLOv5s 58.6 94.6 65.4 52.8 65.6 59.4
MSSDNet 60.1 95.1 68.2 54.6 66.6 62.2

Figure 11 presents the experimental results of other latest object detection methods on
the SARShip dataset. The green boxes indicate the ground truths, the red boxes represent
the predicted results, the yellow boxes represent missed detections, and the blue boxes
represent false detections. In order to make the displayed detection results more repre-
sentative, we selected six detection images with complex backgrounds. From the results
of Figure 11, it is difficult to recognize the ships in near shore; DeFCN, YOLOF, and PAA
have the worst performance in missed detections, while OTA, PAA, and YOLOv5s have
more false detections. Although our MSSDNet has two missed detections and four false
detections, the overall performance of MSSDNet is still much better than the compared
methods, which has demonstrated the superiority of MSSDNet.



Remote Sens. 2022, 14, 755 13 of 18Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 19 
 

 

 
 
 

Ground Truth 

      
 (a1) (a2) (a3) (a4) （a5） (a6) 
 
 

BorderDet 

      
 (b1) (b2) (b3) (b4) (b5) (b6) 
 
 

DeFCN 

      
 (c1) (c2) (c3) (c4) (c5) (c6) 
 
 

GFocalV2 

      
 (d1) (d2) (d3) (d4) (d5) (d6) 
 
 

OTA 

      
 (e1) (e2) (e3) (e4) (e5) (e6) 
 
 

YOLOF 

      
 (f1) (f2) (f3) (f4) (f5) (f6) 
 
 

PAA 

      
 (g1) (g2) (g3) (g4) (g5) (g6) 

Figure 11. Cont.



Remote Sens. 2022, 14, 755 14 of 18Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 19 
 

 

 
YOLOv5s 

      
   (h1) (h2) (h3) (h4) 
 
 

MSSDNet 

      
 (i1) (i2) (i3) (i4) (i5) (i6) 

Figure 11. Experimental results in SARShip dataset. (a1–a6): ground truth images; from (b1–b6) to 
(i1–i6): predicted results of BorderDet, DeFCN, GFocalV2, OTA, YOLOF, PAA, YOLOv5s, and 
MSSDNet, respectively. The green boxes are the ground truths, the red boxes are the predicted 
boxes, the yellow boxes represent missed detections, and the blue boxes represent the false detec-
tions. 

3.5. Ablation Experiments 
In the ablation experiments, we adopt YOLOv5s as the baseline, and the SSDD da-

taset is used to verify the performance of the MSSDNet. We use the CSPMRes2 module 
and FC-FPN for the ablation study. Table 6 shows the results of the ablation study. The 
result shows that although the detection performance of MSSDNet with the CSPMRes2 
module has been reduced in the detection of medium-size ships, it improves the detection 
performance of large ships compared with YOLOv5s. The result of MSSDNet with FC-
FPN shows that the FC-FPN module can improve the detection performance of large ships 
in case of almost no loss in other COCO metrics compared to YOLOv5s. We can see that 
MSSDNet with only the FC-FPN module and MSSDNet with only the CSPMRes2 module 
have no improvement in small ships detection. 

In the paper, CSPMRes2 is a module with multi-scale feature extraction capability, 
which is one of the basic modules in the backbone of MSSDNet and can increase the re-
ceptive field of feature maps. FC-FPN is a module with fusion coefficients, which is the 
detection head of MSSDNet and can focus on ships with different sizes at the same time. 
We can see from Table 6 that using CSPMRes2 alone has a significant improvement in APL 
compared with YOLOv5s, which is because CSPMRes2 can increase the receptive field of 
feature maps, and that is beneficial to the detection of a large ship. Table 6 also shows that 
using FC-FPN alone can improve the detection of medium and large ships compared with 
YOLOv5s, which is because FC-FPN with fusion coefficients can balance the detections of 
different size ships. Whether using CSPMRes2 alone or FC-FPN alone, the AP75 and APS 
have no improvements compared with YOLOv5s. However, the combination of 
CSPMRes2 and FC-FPN have an improvement of 1.6% in AP75 and 1.3% APS, respectively. 
The above phenomenon shows that only the FC-FPN detection head of MSSDNet can ef-
fectively use the features generated by CSPMRes2, and the combination of the detection 
head of YOLOv5s and CSPMRes2 in the backbone only improves the detection of large 
ships. Since FC-FPN has the capability to balance the detection of different size ships, 
when improving the detection of small ships, the detection of medium and large ships 
will be balanced. That is the main reason that the AP50, APL, and APM of MSSDNet with 
CSPMRes2 and FC-FPN are lower than MSSDNet with a single module. MSSDet with 
CSPMRes2 and FC-FPN can balance overall performance instead of improving significant 
performance in certain metrics. The result of MSSDNet with the CSPMRes2 module and 
FC-FPN module shows that the combination of the CSPMRes2 module and FC-FPN re-
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3.5. Ablation Experiments

In the ablation experiments, we adopt YOLOv5s as the baseline, and the SSDD dataset
is used to verify the performance of the MSSDNet. We use the CSPMRes2 module and FC-
FPN for the ablation study. Table 6 shows the results of the ablation study. The result shows
that although the detection performance of MSSDNet with the CSPMRes2 module has been
reduced in the detection of medium-size ships, it improves the detection performance of
large ships compared with YOLOv5s. The result of MSSDNet with FC-FPN shows that the
FC-FPN module can improve the detection performance of large ships in case of almost no
loss in other COCO metrics compared to YOLOv5s. We can see that MSSDNet with only
the FC-FPN module and MSSDNet with only the CSPMRes2 module have no improvement
in small ships detection.

Table 6. Ablation experiments on SSDD.

Methods CSPMRes2 FC-FPN AP (%) AP50 (%) AP75 (%) APS (%) APM (%) APL (%)

YOLOv5s 60.2 95.4 69.3 54.1 69.0 69.0

MSSDNet

√
60.2 95.5 68.1 54.5 68.6 70.6√
60.7 96.8 68.0 54.1 70.5 70.0√ √
61.1 95.6 70.9 55.4 70.0 70.4

In the paper, CSPMRes2 is a module with multi-scale feature extraction capability,
which is one of the basic modules in the backbone of MSSDNet and can increase the
receptive field of feature maps. FC-FPN is a module with fusion coefficients, which is the
detection head of MSSDNet and can focus on ships with different sizes at the same time.
We can see from Table 6 that using CSPMRes2 alone has a significant improvement in APL
compared with YOLOv5s, which is because CSPMRes2 can increase the receptive field of
feature maps, and that is beneficial to the detection of a large ship. Table 6 also shows that
using FC-FPN alone can improve the detection of medium and large ships compared with
YOLOv5s, which is because FC-FPN with fusion coefficients can balance the detections of
different size ships. Whether using CSPMRes2 alone or FC-FPN alone, the AP75 and APS
have no improvements compared with YOLOv5s. However, the combination of CSPMRes2
and FC-FPN have an improvement of 1.6% in AP75 and 1.3% APS, respectively. The above
phenomenon shows that only the FC-FPN detection head of MSSDNet can effectively
use the features generated by CSPMRes2, and the combination of the detection head of
YOLOv5s and CSPMRes2 in the backbone only improves the detection of large ships. Since
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FC-FPN has the capability to balance the detection of different size ships, when improving
the detection of small ships, the detection of medium and large ships will be balanced.
That is the main reason that the AP50, APL, and APM of MSSDNet with CSPMRes2 and
FC-FPN are lower than MSSDNet with a single module. MSSDet with CSPMRes2 and
FC-FPN can balance overall performance instead of improving significant performance in
certain metrics. The result of MSSDNet with the CSPMRes2 module and FC-FPN module
shows that the combination of the CSPMRes2 module and FC-FPN respectively improve
the AP75 by 1.6%, APS by 1.3%, APM by 1.0%, and APL by 1.4% compared with the
YOLOv5s baseline. The ablation experimental results fully prove that the combination of
the CSPMRes2 module and FC-FPN module can improve the detection performance of
ships in SAR images, and get more accurate ships location information.

In order to explore how the different fusion coefficient ranges affect the detection
performance of MSSDNet, we set a series range of values for fusion coefficients and
conduct the experiments on SSDD. Figure 12 shows the experimental results, the value of
horizontal coordinate represents the upper bound of the fusion coefficient range, e.g., the
value 2 of horizontal coordinate represents that the range of fusion coefficient is between 0
and 2. We can see that MSSDNet can get the best detection performance when the range of
fusion coefficient is limited to 0 and 2, and detection performance will degrade while the
upper bound of the range is lower or higher than 2.
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3.6. Comparison of Networks Model Size

We also compare the parameters of MSSDNet with the other methods. It can be seen
from Table 7 that although MSSDNet increases 11.4MB parameters on the basis of YOLOv5s
baseline, MSSDNet still has a great advantage of parameters compared with other methods,
which means that MSSDNet has fewer parameters while having good performance, which
is extremely competitive with other methods.
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Table 7. Comparison of networks performance.

Methods
AP (%) Inference Time

(Milliseconds/Image) Model Size
(MB)

SARShip SSDD SARShip SSDD

BorderDet 56.7 57.5 43.1 38.7 264.1
DeFCN 54.5 55.5 31.9 29.7 260.9

GFocalV2 59.3 56.2 61.0 62.9 427.3
OTA 59.3 59.1 32.8 29.0 256.2

YOLOF 53.3 59.2 43.5 76.4 368.5
PAA 44.4 56.0 46.0 87.9 1063.2

YOLOv5s 58.6 60.2 1.6 22.3 14.4
MSSDNet 60.1 61.1 3.1 24.2 25.8

3.7. Comparison of Inference Time

We compare the inference time of MSSDNet with the other methods. In the test of
inference time, the input size of all methods is 512× 512 on the SSDD dataset, and 256 × 256
on the SARShip dataset. Table 7 shows that the inference time of MSSDNet is only lower
than the YOLOv5s baseline. This is because MSSDNet increases some computations on the
basis of the YOLOv5s baseline for better accuracy. In addition, CSPMRe2Net is 10.3 times
faster than the third inference time of DeFCN on the SARShip dataset and 1.2 times faster
than the third inference time of OTA on the SSDD dataset. MSSDNet has shown the
advantage of inference time compared with other methods.

4. Discussion

The experimental results on SSDD and SARShip datasets have demonstrated the
superiority of MSSDNet, and the ablation study of CSPMRes2 and FC-FPN modules proves
that the combination of adaptive feature fusion and multi-scale feature extraction can make
a significant improvement on ship detection performance. However, what needs to be
noticed is that the learning range of fusion coefficients has an excessive dependence on the
training data. In addition, from the results of Figures 10 and 11, we can see that increase
in background complexity and ships density have impacts on detection results. In the
future, we will consider eliminating the data reliance for fusion coefficients and solving
background complexity problems by constructing a ship detection network with stronger
characterization capability. On the other hand, the SAR images are taken from a bird’s-eye
view, which means that there is no overlap between ships, thus we will make attempts on
detection methods with oriented annotations.

5. Conclusions

In this paper, the MSSDNet is proposed to detect ships of different sizes in SAR images.
The CSPMRes2 module and FC-FPN module are the vital components of MSSDNet, where
the CSPMRes2 module is responsible for improving the feature extraction capability of
the network, and the FC-FPN module in MSSDNet balances the detection of ships with
multi-scale features in SAR images. The ablation study in this paper has confirmed the
effectiveness of the two modules; MSSDNet based on the CSPMRes2 module and FC-FPN
module can improve the precision of multi-scale ships detection. In addition, it can generate
more precise predicted boxes. According to the experimental results on SSDD and SARShip
datasets, MSSDNet has achieved higher overall detection performance than other methods.
Because the CSPMes2 module just increases a few parameters, the MSSDNet based on the
CSPMRes2 module does not increase too many parameters. Benefitting from the small
amount of network parameters, in the comparisons of network model size and inference
time, both the model size and inference time are lower than other methods, which is of
great importance for the field of aviation, aerospace, and the military.
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