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Abstract: Missing data problem frequently occurs during data acquisition in ground-penetrating
radar (GPR) and recovery of the missing entries prior to any processing is vital in GPR imaging.
Existing missing data recovery methods are based on low-rank matrix completion or the recently
proposed deep generative networks. However, the former approaches suffer from producing satisfy-
ing results under severe missing data cases and the latter require a large amount of data for training.
This study proposes two methods based on deep networks for the missing data recovery. The first
method uses pyramid-context encoder network (PEN-Net) architecture which consists of three parts:
attention transfer network, guided Pyramid-context encoder, and a multi-scale decoder. Although
the method needs training, it requires considerably less data compared to the existing U-Net based
method. The second method, deep image prior (DIP), is a regularization based data recovery method
which uses an untrained network as a prior. This method does not need any training, network
weights are initialized randomly and updated during the iterations to minimize the cost function.
Different experiments are reported for both pixel and column-wise missing cases in simulated and
real data. The simulated data results show that the proposed methods have a noticeably better
performance than conventional methods for the challenging pixel-wise case around 17–27% and
moderate level column-wise missing case around 15%. Besides, they can also deal with extreme
column-wise missing data cases where the conventional methods fail completely. Real data results
further verify the superiority of the proposed methods.

Keywords: ground-penetrating radar; matrix completion; deep image prior; deep learning; data
recovery

1. Introduction

Ground-penetrating radar (GPR) is a non-destructive measurement method that allows
the detection of objects lying beneath the surface. GPR can detect any material, based
on the material’s electrical or magnetic responses. As long as the magnetic response of a
material and its surroundings has a relative permittivity, the collected data contains enough
information to distinguish the material from its surrounding environments. A critical
advantage of GPR is that its detection capabilities are not limited to a set of certain material
types, e.g., it can also detect non-metal materials. In fact, any material which has a different
permittivity than its surrounding environment has the potential to be detected via GPR [1].

Aside from its advantages, GPR-based detection also presents various challenges.
GPR data collection is especially highly vulnerable to situations such as difficult access
to some regions, extremely damaged or corrupted A-scans, data with clutter that makes
objects less visible, failures during data acquisition or some instrumental problems. As a
result of these situations, partial information loss is a very common problem in capturing
GPR measurements. Moreover, missing data leads to poor performance of clutter removal,
decreased imaging capability [2,3] and poor interpretation, identification, and analysis
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of GPR data. Various data recovery methods are introduced in the literature for natural
images and seismic data. In general, these methods are based on interpolation [4], matrix
completion [5] or more recently on deep networks [6].

In the literature, many techniques are developed for low-rank based matrix com-
pletion, such as convex relaxation-based algorithm [7], gradient-based algorithm [8], and
alternating minimization-based algorithm [9]. Among these matrix completion methods, ac-
celerated proximal gradient (APG) [10], low rank matrix fitting (LmaFit) [11], Optspace [8]
and nuclear norm minimization (NNM) [12] are applied to seismic data reconstruction
problem. Wang et al. [13] compared the different versions of NNM and LmaFit algo-
rithms and NNM outperformed the LmaFit method on both synthetic and real seismic
data. Yang et al. [14] compared LmaFit with the APG method in their study and LmaFit
showed superior performance with respect to APG method when the original signal has
complicated structure. For other cases, they proposed that APG can be a better choice.
Xue [15] compared the LmaFit and Optspace algorithms in 3D seismic data reconstruction
and LmaFit outperforms Optspace method in his/her study for both simulated and real
datasets. However, the author suggested that for the extreme cases Optspace catches up
and sometimes can exceed the performance of Lmafit.

The methods for matrix completion summarized above perform well in seismic data
reconstruction problems and they produce relatively satisfactory results. However, there
are other popular matrix completion methods in image processing domain and they have
been recently applied to the GPR missing data problem in the work of [16]. In this study,
Go Decomposition (GoDec) [17] and non-negative matrix factorization methods are used
for GPR problem and including the best performing above mentioned methods. GoDec is
able to process low-rank matrix representations and accelerate the calculations by using
bilateral random projections (BRP) and presents efficient recovery results. In [18], the NMC
is introduced by using an algorithm based on the classic alternating direction augmented
Lagrangian method. One of the main drawbacks of the method is its high computational
complexity, since it includes SVD operations in each iteration. In [16], it was shown that
NMC and NNM methods have superior performance for missing data recovery on GPR
images compared to other conventional methods for both simulated and real datasets.

It should be noted that the methods that are mentioned so far handle missing data
recovery as a matrix completion problem. In addition to these methods, also patch-based
missing data recovery methods are proposed in the literature [19–22]. Early studies in
the literature with patch-based method principally focused on texture synthesis [19,23].
In [24], the authors applied texture synthesis for padding missing regions on an image.
In most applications, data recovery in the missing region is handled by sampling data
from surrounding regions. The metric that is used to perform this filling operation was
based on distance information between data points, such as Euclidean or scale invariant
feature transform (SIFT) distance. In [25], the filling operation is handled by completing
lines coming thorough to the missing region. Also in [20,26,27] alternative approaches are
proposed to improve the performance of filling operation by presenting a better filling order.
Patch-Match is proposed to find similar patches more quickly [21]. In general, patch-based
methods can be considered successful for inpainting with similar contexts. However, this
approach can not capture image semantics, thus it performs poorly on images with complex
patterns and may not be applicable to GPR images.

In recent years, deep learning-based methods have been also introduced to the litera-
ture for missing data recovery [28–32]. Deep-learning-based methods are commonly set up
with two sub-networks: Completion and auxiliary discriminative networks. The comple-
tion network focuses on image semantics and constructs the missing points in the image
by using these semantics. The discriminative network performs improvements over the
image to propose conceivable images by using generative adversarial training [33]. In the
literature, these sub-networks are regarded as content generation and texture refinement,
respectively. Texture refinement can be explained as matching the features of the simulated
neural patches with patches that are collected from a known spot of the image. With
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this combination, contextual information and high-frequency details of the image can be
captured [34]. Application of convolutional neural networks (CNNs) with context encoders
was a striking breakthrough for missing data recovery problems. One of the first examples
of the usage of the context encoders is given in [34] where the authors use a context encoder
to perform missing data recovery by manipulating information on the surrounding area. In
order to obtain satisfying image quality on generated images, loss information is utilized.
In [35], the authors used transformation invariant image feature loss to provide more
conceivable images, while in [36] feature-oriented inpainting framework is proposed by
using loss information. In [29], a global adversarial loss is used to preserve the texture
consistency between the original and the synthesized images. Also in [37], the authors
exploited semantic parsing loss in order to optimize facial structures of face images. For
images with more complex patterns, synthesized images become more obscure. Because
of that reason, after the generation of the content, the texture optimization step is added
to the complete procedure. Finally, with the extension of the procedure into a two-step
process, [28], a neural patch synthesis application is proposed, and the content and texture
of the image are optimized collectively. However, texture optimization includes iterative
steps and this creates computationally expensive calculations. In order to optimize process
time for this step, a trainable framework is proposed to optimize textures and inpainting
application is facilitated into a straight-forward pipeline [38,39]. As an alternative in [40], a
special shift-connection layer is proposed by passing into the U-Net architecture to perform
inpainting of regions with detailed textures.

In the literature, application of the deep learning-based missing data recovery prob-
lems on GPR data is not encountered as much. To our knowledge [41] is the only paper in
this domain. In [41], the authors propose a simplified version of U-Net architecture that is
specialized on GPR data. In this paper, by removing some layers of a U-Net architecture, the
authors present a faster approach and present comparisons between a U-Net architecture
and their proposed method. On the other hand, in this paper, experiments are held with
almost 27,000 images in total. Since collecting such high amounts of data is not feasible,
this approach becomes inapplicable for most of the field studies. Hence, two different
approaches are presented to circumvent the limited data problem encountered in GPR stud-
ies. The first one uses pyramid-context encoder network (PEN-Net) architecture already
proposed for inpainting in natural images. Although PEN-Net presents promising results
for high missing data rates for simulated datasets with adequate amount of images [42],
the method fails when a training set is not available.

As a second approach, by incorporating deep image prior (DIP) [30], we extend the
deep learning based approach of [42] to the single image data recovery case which is com-
mon for field studies. DIP method formulates the data recovery as an optimization problem
with an already trained deep network structure used as prior through the optimization
steps and it provides a solution for a highly corrupted single image.

The rest of this paper is organized as follows. In Section 2, related work for missing
data recovery is reviewed. Section 3 introduces the proposed approaches. In Section 4,
conducted studies are explained in detail and visual and quantitative results are presented.
The paper is concluded in Section 5.

2. Missing Data Recovery in GPR

X ∈ Rm×n is the original GPR data matrix and M ∈ Rm×n is the GPR data matrix
with missing entries. m and n denote the dimensions, namely depth and antenna locations.
Recovery of the missing samples in GPR data matrix can be formulated as [16]

[
PΩ(M)

]
i,j =

{
Mi,j(i, j) ∈ Ω
0, otherwise

(1)

where Ω denotes the known entries, and PΩ represents a sampling operator in the observed
region Ω. Some examples for pixel-wise and column-wise case are given in Figure 1.
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Figure 1. (a) Raw GPR image, (b) sample GPR image with pixel-wise missing entries, (c) sample GPR
image with column-wise missing entries.

If the GPR data matrix M is low rank and its singular vectors are spread enough, the
missing entries can be recovered by solving the following optimization problem

min
Z

rank(Z) s.t. ‖PΩ(Z−M)‖F ≤ δ (2)

Z is the unknown variable matrix, ‖·‖F denotes the Frobenius norm of the GPR data
matrix, δ is a tolerance parameter that limits the error. Since the optimization problem in
(2) is NP-hard, it should be relaxed to a convex optimization problem as

min
Z
‖Z‖∗ s.t. ‖PΩ(Z−M)‖F ≤ δ (3)

where ‖·‖∗ denotes the nuclear norm. General optimization function in (3) can be solved
by available matrix completion methods [17,43].

M can be directly used in the matrix completion methods for the pixel-wise case.
However, the pre-transformation is required as given in [16] for the column-wise case to
recover the input GPR data matrix with missing data since at least one observation for each
row and column is necessary according to matrix completion theory [7]. More details about
pre-transformation step can be found in [16]. General specifications of the conventional
matrix completion methods used for the comparison are summarized in Table 1.

Table 1. Specifications of conventional matrix completion algorithms evaluated in this paper.

Category Method Main Techniques Reference

Rank minimization GoDec Bilateral random
projections [17]

Matrix factorization NMC Alternating [18]
Matrix factorization LmaFit Alternating [11]

Rank minimization NNM Singular value
decomposition [12]

3. Proposed Data Recovery Methods

Recently proposed U-NET based GPR recovery method needs a huge amount of
data which reduces the applicability of the method for field studies or even for laboratory
measurements [41]. Thus, two different approaches are proposed where the first one uses
an architecture composed of attention transfer network, guided Pyramid-context encoder,
and a multi-scale decoder. It requires an adequate amount of data for training. The second
method is a completely new perspective which uses deep network architecture not for
filling the missing entries, but as a prior in the formulated optimization problem. The
resulting method does not need any training, the deep network uses weights fixed in the
initialization. The following subsections describe the proposed methods.
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3.1. Data Recovery by Generative Models

Deep generative models for image inpainting usually encode an image into a latent
feature, fill missing regions at the feature-level, and decode the feature back into an image.
PEN-Net consists of three main parts. The first part, Pyramid-context Encoder, is con-
structed with U-Net architecture [44]. Specifically, missing regions on an image are encoded
with masks, which are constructed from learned semantic features. While encoding latent
features with the semantics of an image, missing regions are filled with a low-level feature
map which is constructed by transferring rich details from a high-level feature map. This
improvement is provided by embedding Attention Transfer Network (ATN) to each layer
of the encoder since an ATN can memorize the similarity between patches that are located
inside and outside of a missing region. Between these patches, an ATN learns textures
with high-level features, and this information is used for padding missing regions [38].
The purpose of this is to use the learned similarity as a map to build a feature transfer for
missing regions, assuming that similar pixel semantics would lead to similar textures [45].

An illustration of PEN-Net architecture is given in Figure 2. Faithful to the notations
and definitions given in [45], f (·, ·) are defined as ATN operation, φ as a feature map from
deeper to shallow levels for L number of layers. Then, ATN applications can be formulated
as follows.

ψL−1 = f (φL−1, φL),

ψL−2 = f (φL−2, ψL−1),
...

ψ1 = f (φ1, ψ2) = f (φ1, f (φ2, · · · f (φL−1, φL))).

(4)

Figure 2. Block diagram of the PEN-Net architecture.

For missing areas in the image, filling operations are performed (as in [38–40]) by
simply transferring related features from outside regions to inside of the missing regions.
The application of this step is based on learning high-level feature maps.

θ∗ = argmin
θ

E( fθ(X; M)), (5)

where
X∗ = fθ∗(y). (6)

In the second part of the model, a multi-scale decoder is considered. Here, high-level
textures are fed to the decoder directly from the pyramid-context encoder, and low-level
features are fed from ATNs as depicted in Figure 2. A combination of low-level features
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and high-level texture information provides building objects that are even missing in the
masked region [45].

ϕL−1 = g(ψL−1 ⊕ g(φL)),

ϕL−2 = g(ψL−2 ⊕ g(ϕL−1)),
...

ϕ1 = g(ψ1 ⊕ g(ϕ2))

(7)

In the last part, a Patch-Generative Adversarial Networks (Patch-GAN) is integrated
as the discriminator [46]. Similar to conventional GANs, Patch-GAN is used to create
similar images such that the discriminator can not distinguish a real image from a fake
image that the generator has created, but it works on patch level.The discriminator is run
over the image and created patches are merged to form the image. Since patch sizes are
much smaller compared to the whole image, patch-GAN has fewer parameters, thus it is
faster.

The algorithm regarding missing data recovery with PEN-Net on GPR data is given in
Algorithm 1. At first, specially designed masks, Ui ∈ Rm×n are applied to input GPR data,
Mi ∈ Rm×n corrupted GPR data matrices are obtained. These data are assigned to TrainSet.
Afterwards the complete TrainSet is forwarded to the model. At the end of the specified
epoch, learned weights are obtained.

Algorithm 1: PEN-Net training algorithm on GPR Images.
Input: GPR image with missing data
Output: Learned Weights
Initialize Mi, Ui, i ∈ {1, . . . , 70}, TrainSet = [], epoch = 0, batch = 0 ;
while i ≤ 70 do

Mi = Xi �Ui;
Append Mi to TrainSet;
Increment i;

end
while epoch ≤ 10,000 do

Take a batch from the TrainSet ;
while batch do

Reconstruct features with ATN application;
Refine predictions based on the attention score;

end
Increase epoch ;

end

3.2. Proposed DIP-Based Missing Data Recovery

In DIP method, it is intended to examine the image before learning any of the pa-
rameters, which are obtained with a certain generator network structure. This is handled
by optimizing the neural network in terms of parameter set, for an image X = fθ(y),
where image is x ∈ R1×H×W , code vector is represented as y ∈ RC′×H′×W ′ , and network
parameters are represented as θ. Here, H and H′ are used for height, W and W ′ for width
and C′ for code tensor.

In DIP, inverse tasks are examined such as denoising or inpainting, in order to show
power of parametrization. Inverse applications can be explained as energy minimization
problems, as follows (Figure 3)

X∗ = min
X

E(X, M) + R(X), (8)
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where E(X; X0) represents data term of the missing data recovery task, x0 represents
corrupted image and R(X) term represents regularization term.

Figure 3. Block diagram of DIP Model.

In these applications, regularization term is helpful for grasping the generic prior
of images. However, most of the times regularization term is hard to identify. Simply, a
regularizer can be a Total Variation (TV), which is the measure of the complexity of an
image with respect to its spatial variation. In DIP application, this term is re-defined as the
implicit image prior, which is created by the neural network as follows

Here, θ∗ is the minimizer factor and gradient descent can be used as an optimizer to
obtain θ∗. For a given parameter set θ∗, recovered image can be represented as X∗ = fθ∗(y).
Taking into consideration (5) in terms of (8), the regularizer R(x) = 0 for all images that can
be generated by a deep convolutional network with a certain architecture. Considering
that the network is not pre-trained with any data in this approach, image priors can be
generated explicitly.

Images with missing data can be expressed as Hadamard’s product of a mask with an
image. Assuming that the mask is composed with binary values such as m ∈ {0, 1}H×W ,
then the data term of the masked image can be written as follows

E(X; M) = ‖(X−M)� u‖2, (9)

where (x− x0) represents corrupted image and � represents Hadamard’s product. In (9),
missing pixel values are not involved and if the optimization would be performed over
pixel values of the image, energy value would remain steady. Because of this reason a data
prior is required and it is calculated by optimizing the data term with respect to (5). The
recipe for the DIP method is presented in Algorithm 2.
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Algorithm 2: DIP algorithm on GPR Data
Input: GPR image with missing data, M
Output: Recovered GPR image
Initialize y as uniform noise where X = fθ(y)
while iteration ≤ 1e4 do

Obtain optimized parameter set as given in (5);
Obtain new image prior with optimized parameter set as given in (8);
Increment iteration;

end

SkipNet is used, since skip connection provided adequate flexibility to capture image
semantics. SkipNet, is consisted of convolutional networks and based on a given input,
specific layers are inserted or discarded. In this model gating modules that are positioned
each layer make binary decisions based on the activation from previous layer.

Binary decisions of gating modules are used to specify which layer will be run or
discarded, as in Figure 4. Simply, output of the gated layer or layers can be calculated
faithful to the notations in [47] as follows

xi+1 = Gi(xi)Fi(Xi) + (1− Gi(xi))xi, (10)

where xi is the input, Fi(xi) is the output of the ith layer or layers and Gi(xi) ∈ {0, 1} is the
gating function of the ith layer.

Remark: An ideal image is expected to be without noise or corruption. So for a neural
network, image priors are used as references to perform a task such as denoising, missing
data recovery or super-resolution. For this purpose, image priors can be generated by
two approaches. In the first approach, a neural network can be trained with a dataset
that is consisting of complete and corrupted images for missing data recovery application.
Throughout the training, the model produces complete images at the output and it can be
said that the model learns the prior from the dataset. Priors obtained with this method
are called as learned priors. The drawback of this method is that a large dataset that
includes both corrupted and complete images is necessary. In the second method, priors
are generated from the corrupted image itself and the priors that are obtained with this
method are named as explicit/handcrafted priors. In the scenarios where limited samples
or a single sample exist, handcrafted priors have more advantages than learned priors,
since handcrafted priors do not require a data set for training.

Figure 4. SkipNet Architecture that is embedded into DIP model.

4. Experimental Results

In the experimental part, 2 different type of missing data cases (pixel-wise and column-
wise) are compared for varying missing rates by using both conventional and deep learning-
based methods in terms of visual and quantitative analysis. Both simulated and real
datasets are used to test the limitation of the methods. In the simulated dataset, there
are several GPR images, thus together with the conventional methods as GoDec, NMC,
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LmaFit, and NNM both PEN-Net and DIP models can be performed since PEN-Net needs
training. However, the real datasets are limited and PEN-Net is not suitable since it requires
training. For the real datasets, we only performed DIP model and the best performer of the
conventional methods, NNM, for the sake of simplicity.

The quantative analysis is conducted through peak signal-to-noise ratio (PSNR) metric
which can be given as

PSNR (dB) = 10log

(
1

(MSE)

)
(11)

Mean square error (MSE) can be formulated as

MSE =
( 1

m× n

m

∑
i=1

n

∑
j=1

(
X(i, j)− Xr(i, j)

)2
)

(12)

where i and j denotes the index terms. X and Xr are the original raw GPR image, and the
reconstructed GPR image after applying matrix completion, respectively.

4.1. Implementation

In our study, pipeline is implemented and executed on our workstation running a
64-bit Windows 10 Intel Core i7-8700K CPU with a 3.70-GHz clock, 64 GB RAM, and an
NVIDIA GeForce RTX2080 Ti Super GPU. Python3 is used as programming language with
PyTorch deep learning framework. For PEN-NET, hyper-parameters are selected as follows;
for optimization, Adam optimizer is selected, the learning rate is set to 1 × 10−4, the batch
size is kept as 16, and the number of iterations are set to 5 × 104. All image sizes are kept
original as 256 × 183. PEN-Net architecture is adapted from publicly available repository
(https://github.com/researchmm/PEN-Net-for-Inpainting, 14 December 2021). For DIP,
SkipNet with dept = 4, which was the best performing choice in our trial, is selected.
For padding and optimizer, zero padding and Adam optimizer are selected. Number of
iteration is set as 10,000, learning rate is set to 0.01. Number of the parameters in the model
is calculated as 1,060,739, as depicted in Figure 5.

4.2. Simulation Dataset Results

In this study, GPR images used for missing data recovery task are generated by the
gprMax simulation software [48]. In the simulation setup, the buried object is a single
aluminum target with the dielectric constant (F/m) as 3.1 and conductivity (S/m) as
2.3 × 107, thus target signature can be clearly observed as a hyperbolic structure. Also
surface and soil types are considered as flat and dry sand soil, where the dielectric constant
(F/m) is 3.0 and conductivity (S/m) is 0.001 for the soil. Designed simulation setup and
sample generated image are depicted in Figure 6. As seen in Figure 6, aluminum disk
is used with dimensions 2.5 cm × 2 cm in radius and height. It is buried at 2 cm depth.
The discretization of the model is selected as ∆x = ∆y = ∆z = 1 mm and the simulation
domain is defined as 1000× 120× 400 mm. Antennas are placed 5 cm above the ground,
and moved 1 cm in each simulation to obtain A-scan along horizontal direction. In each
scenario, antennas are moved 80 times to obtain the GPR image thus there are 80 A-scans
and each A-scan contains 256 samples. Therefore, scanned distance is 80 cm, and it starts
from 10 cm to 90 cm. The final obtained simulated GPR image has size 256× 80 and it is in
gray scale. As an antenna type, commercial Geophysical Survey Systems, Inc. (Nashua,
NH, USA), 1.5-GHz antenna (Model 5100) is used.

https://github.com/researchmm/PEN-Net-for-Inpainting
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Figure 5. Deep Image Prior Model Graph.

Figure 6. Experimental setup of the simulated data.

In order to present a comprehensive examination for missing data recovery, missing
data scenarios are considered in 2 groups. In the first group, images with missing entries
are generated by randomly selecting the pixels at different missing rates. In the second
group, a similar approach is applied as missing column-wise pixels (randomly selected A-
scans are removed). All matrix completion/data recovery methods use pixel-wise missing
case although it is not feasible for practical measurements. Column-wise case is most
encountered in field studies where at some measurement locations the complete response
is missing. It is also possible to have some missing time samples in the A-scan response,
this case can be thought as pixel-wise missing case.
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4.2.1. Pixel-Wise Missing Data Case

In pixel-wise missing data scenario, randomly selected pixels are corrupted with levels
of 30%, 50% and 80%, as depicted in Figures 7a, 8a, and 9a. Results are evaluated in both
quantitative and visual aspects.

Figure 7. 30% pixel-wise missing data case for simulated data: (a) GPR image with missing entries,
(b) original GPR image, recovered images by (c) GoDec, (d) NMC, (e) Lmafit, (f) NNM, (g) PEN-Net,
(h) DIP.

Figure 8. 50% pixel-wise missing data case for simulated data: (a) GPR image with missing entries,
(b) original GPR image, recovered images by (c) GoDec, (d) NMC, (e) Lmafit, (f) NNM, (g) PEN-Net,
(h) DIP.
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Figure 9. 80% pixel-wise missing data case for simulated data: (a) GPR image with missing entries,
(b) original GPR image, recovered images by (c) GoDec, (d) NMC, (e) Lmafit, (f) NNM, (g) PEN-Net,
(h) DIP.

The simplest scenario is selected as 30% missing rate for the pixel-wise case. The GPR
image with missing pixels is shown in Figure 7a and the original GPR image is shown
in Figure 7b. Even in this simplest scenario, the target signature is partially corrupted
by the missing pixels compared to the original GPR image. Conventional methods and
proposed methods are applied to the missing data to recover the original GPR image
and the results are shown in Figure 7c–h. In the obtained visual results, it is hard to
discern a difference between algorithms, however the visual results of DIP method seem
more appealing compared to others. Since this scenario is the simplest one and the best
performing algorithms from conventional methods are compared with the deep learning
based methods, visual results are not helpful in terms of selecting the best method.

The scenario in Figure 8a is the moderate one and its original version is given in the
Figure 8b. Again the visual results are similar to each other as given in Figure 8c–h. This
phenomenon is also reasoned by the simulated data itself. Since the data is generated by
simulation software, there is not much variation in the background and it is hard to catch
visual differences by the result of the algorithms.

The missing scenario in Figure 9a is the challenging one even for the simulated data
and its original version is given in the Figure 9b. As seen in the missing GPR image, the
target can not be seen visually. When the results of conventional methods are visited, it is
observed that NMC and LmaFit do not produce satisfactory results as seen from Figure 9d,e
and there is a heavy distortion on the target signature however LmaFit is slightly better
than the NMC in visual sense. The target signature in the NMC result has lost its hyperbolic
structure thus it is the worst results among them all. The best results for the conventional
methods are obtained by GoDec and NNM as given in Figure 9c,f where NNM is slightly
better than GoDec since there is only small distortion in the target signature. PEN-Net and
DIP perform well enough for this challenging data as given in Figure 9g,h and the latter
one is better since it keeps the target signal strength.

For quantitative analysis, obtained results for pixel-wise missing data cases are given
in Table 2 for each missing rate. As expected, the performances of the algorithms are
decreasing with respect to increasing missing rates and there is a dramatic decrease for
80% missing rate which is the most challenging scenario. When the quantitative results are



Remote Sens. 2022, 14, 754 13 of 26

analyzed, the first noticeable method is DIP which outperforms other methods for all the
considered missing rates. Its closest follower is PEN-Net method, however, DIP is better
than PEN-Net between 13–27% in terms of PSNR score. Both deep learning based methods
show relatively higher performance compared to conventional methods. Only NNM and
GoDec have slightly better performances than PEN-Net for the 80% missing rate. For the
remaining ones, proposed methods present considerably higher performances and DIP
takes the first place.

Table 2. PNSR comparison of data recovery methods for pixel-wise missing data.

Missing Rate (%) GoDec NMC LmaFit NNM PEN-Net DIP

30 63.21 67.67 90.82 92.21 104.31 117.82
50 61.98 62.13 72.93 69.47 73.26 93.22
80 47.25 42.02 43.60 48.34 45.79 57.77

It can be concluded that from simple to challenging pixel-wise missing rates, the
proposed methods perform far better than conventional methods and DIP algorithm
heavily outperforms the other algorithms.

In Figure 10, Different curvatures for different levels of missing data are observed.
With the higher corruption on the image, loss function converges to the highest error value
and requires a higher number of iterations to converge to a steady value. The highest
convergence is observed on the softest case, 10% pixel-wise missing data. In the long run,
error value converges to a lower value. Hence, for the proposed method, direct relationship
between the decreasing trend in PSNR values can be represented with the loss curves.

Figure 10. Loss curves for pixel-wise missing data recovery.

4.2.2. Column-Wise Missing Data Case

In the column-wise missing data scenario, randomly selected columns are corrupted
from the image with levels of 30%, 50% and 80%, as given in Figures 11a, 12a, and 13a.
Recovered images are examined in visual and quantitative aspects.

As in the pixel-wise missing case, the simplest scenario is started from 30% missing
rate for column-wise missing data and this is presented in Figure 11a. The original raw
GPR image is given in Figure 11b. As seen in the column-wise missing image, the target
signature can be partially observed. The visual results are quite similar since this is the
simplest scenario as seen from Figure 11c–h. All the methods have successfully recovered
the missing GPR image entries. Thus it is hard to choose the best performing algorithm
from visual results.
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Figure 11. 30% column-wise missing data case for simulated data: (a) GPR image with missing
entries, (b) original GPR image, recovered images by (c) GoDec, (d) NMC, (e) Lmafit, (f) NNM,
(g) PEN-Net, (h) DIP.

Figure 12. 50% column-wise missing data case for simulated data: (a) GPR image with missing
entries, (b) original GPR image, recovered images by (c) GoDec, (d) NMC, (e) Lmafit, (f) NNM,
(g) PEN-Net, (h) DIP.
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Figure 13. 80% column-wise missing data case for simulated data: (a) GPR image with missing
entries, (b) original GPR image, recovered images by (c) GoDec, (d) NMC, (e) Lmafit, (f) NNM,
(g) PEN-Net, (h) DIP.

The missing scenario in Figure 12a is the moderate one, however the target seems
highly corrupted by the missing A-scans compared to the given original raw GPR image
in Figure 12b. When the visual results of the algorithms are analyzed, it is observed that
conventional methods have performed similarly as given in Figure 12c–f, however all of
them cause some undesired distortion on the target signature. The proposed methods
preserve the hyperbolic structure of the target signature as presented in Figure 12g,h and
the DIP method has a slightly better performance in visual sense.

The missing scenario in Figure 13a is the challenging one and the target is not seen from
the missing GPR image compared to the given original raw GPR image in Figure 13b. Since,
the missing number of columns is so high, some of them concatenate to each other and it
becomes block-wise missing data instead of a column-wise. The results of conventional
methods are presented in Figure 13c–f. As seen in the results, some of the missing columns
are still available and this is reasoned by the block-wise missing data regions. According
to matrix completion theory, the conventional methods need at least one observation for
each row and column after pre-transformation. However the block-wise missing data
regions violate this theory thus the region can not be recovered by these algorithms. The
proposed methods do not need pre-transformation step and they successfully recover the
missing GPR image even in the block-wise missing regions as seen from Figure 13g,h. Both
PEN-Net and DIP algorithms present similar visual performance even in this extreme case
while conventional methods fail to recover the missing GPR image entries.

In Figure 14, different curvatures are observed for different levels of missing data.
With the higher corruption on the image, loss function converges to the highest error value.
Also, it requires dramatically longer iterations to converge to a steady value. The highest
convergence is observed on the softest case, 30% column-wise missing data. In the long
run, error value converges to a lower values. However, since column-wise missing data is
a more challenging recovery case, loss curves of the 50% and 80% overlap and converges to
their minimum levels after 15,000 iterations. Also, decreasing trend in PSNR values are
interrelated with the loss curves.

The quantitative results for the column-wise missing case are presented in Table 3. As
seen from the table, the best results are obtained by the DIP method. PEN-Net outperforms
the conventional methods except the first case. For the conventional methods, the best
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results are obtained by NMC and NNM follows it. The GoDec has the worst performance
and LmaFit is slightly better than GoDec algorithm. However, all the conventional methods
fail for the 80% missing rate. Overall, the best result is obtained by the DIP algorithm and
it is 2–6% better than its closest follower.

Table 3. PNSR comparison of data recovery methods for column-wise missing data.

Missing Rate (%) GoDec NMC LmaFit NNM PEN-Net DIP

30 46.83 59.61 50.38 54.43 53.50 63.43
50 49.51 50.43 49.53 49.30 54.68 57.63
80 – – – – 30.55 31.19

Figure 14. Loss curves for column-wise missing data recovery.

4.3. Real Data Results

In this study, two challenging real data sets are used to further validate the effective-
ness of the algorithms. As in the simulated case both visual and quantitative results are
presented. Besides, For the challenging cases, the target parts are cropped and focused to
further analyze the NNM and DIP performances.

4.3.1. Real Data-I

The first real GPR data from Vrije Universiteit Brussel is used for testing the algorithms
for missing data cases. Its experimental design is shown in Figure 15 and the measured
real data is given in Figure 16b. In this scenario, PMA-3, PMA-1, stone and copper strip
targets are located at 5 cm depth where the PMA-3 and the PMA-1 refer to the plastic case
antipersonnel landmines. The soil type is dry clay soil and it is mixed with small rocks,
and there are irregularities on the surface with a maximum of 10 cm. An antenna is placed
5 cm above the highest point of the surface. An area of 50 cm × 196 cm was scanned with
a scanning step of 1 cm in each direction. The final obtained real data has size 512× 197
and it is in gray scale. For the real data, there are irregularities in the background of the
obtained raw GPR image and it makes the missing data recovery problem more challenging
compared to the simulated data. Since, the background of the simulated data does not
present many variations, the performances of the algorithms are higher with respect to the
real data. Since we assume that a single B-scan is available as in most of the field studies,
PEN-NET architecture trained for simulated data highly remains behind all the methods.
Thus its results are not included in this section. The DIP algorithm does not need the
training step hence it can be used for single image data recovery. Among the conventional
methods, NNM algorithm is selected for comparison due to its high performance and
parameter free feature.

The first pixel-wise missing case is relatively simple and it is selected as 30% as given
in the first row of Figure 16a. The real GPR data is shown in Figure 16b. Since, this scenario
contains 4 different targets, some of them are barely seen visually even in the original raw
GPR data. The recovery results of NNM and DIP algorithms are shown in Figure 16c,d.
This scenario is the simple one and best performing algorithms are selected for the real
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GPR data case thus both algorithms produce satisfactory results in the visual sense. It is
hard to distinguish any differences between these results.

In the second pixel-wise missing case, a challenging case is selected to test the limits
of the algorithms and it is presented in the second row of Figure 16a and its original GPR
image is given in Figure 16b. The obtained results are shown in the Figure 16c,d where
both of them produce satisfactory results. However, when the results are analyzed in detail,
it can be observed that the target signatures are better preserved by DIP method.

For the quantitative analysis part, NNM and DIP have a similar performance for the
simplest missing case (30%) which are 59.51 dB, and 60.89 dB in terms of PSNR. The results
shows that DIP method has slightly better performance than the conventional method
NNM. For the challenging missing case, NNM is obtained 45.80 dB and DIP is obtained
51.1 dB which shows that DIP algorithm is approximately 12% better than NNM algorithm
for the extreme case. Thus, it can be deduced that when the missing rate is increased for
the pixel-wise case, the performance gap between NNM and DIP increases proving the
superiority of DIP for high missing rates.

Generally, the background of the GPR image is simple and does not present many
variations. For this purpose, an area around the target is cropped and visual results are
shown in Figure 17a–d. It can be observed that NNM has some artifacts from missing
informations however DIP results are smooth. The quantitative results are given in Table 4.
As seen from the table, the proposed DIP method show much better performance than NNM
for the hyperbolic target shape recovery with respect to overall GPR results comparison.

Figure 15. Experimental setup of the real data-I.

Table 4. PNSR comparison of data recovery methods for pixel-wise missing case for real data-I.

Missing Rate (%) NNM DIP NNMzoomed DIPzoomed

30 59.51 60.89 – –
80 45.80 51.12 34.24 47.36
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Figure 16. First row 30% and second row 80% pixel-wise missing data case for real data-I: (a) GPR
image with missing entries, (b) original GPR image, recovered images by (c) NNM, (d) DIP.

Figure 17. 80% pixel-wise missing data case for the zoomed target (third one) of real data-I: (a) GPR im-
age with missing entries, recovered images by (b) original GPR image, (c) NNMzoomed, (d) DIPzoomed.

The first column-wise missing case is again the simple scenario and it is presented in
the first row of Figure 18a where its original GPR image is given in Figure 18b. Since this is
the simplest one, both NNM and DIP algorithms present satisfactory results as given in
Figure 18c,d. In this missing case, the missing number of columns are comparatively less
than the number of obtained A-scans, thus there is no block-wise phenomenon happening
in this missing column-wise case. Thus, NNM can successfully recover the GPR image.
However, when the recovered results are zoomed, it can be observed that DIP is slightly
better in this simple case.
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Figure 18. First row 30% and second row 80% column-wise missing data case for real data-I: (a) GPR
image with missing entree, (b) original GPR image, recovered images by (c) NNM, (d) DIP.

The second column-wise case is the challenging one as given in the second row of
Figure 18a where its original GPR image is presented in Figure 18b. During the missing
data case construction, the columns are randomly removed and as seen in Figure 18a,
and some columns are concatenated. As a result, some of the areas are missing in blocks
pointing out a situation which can occur in real life experiments. This phenomenon can
corrupt the target partially or completely thus this extreme case is a good example to test
the performances of the algorithms. The recovery results for this challenging scenario
is presented in Figure 18c,d. As seen in the results, NNM can not handle the extreme
scenario as expected. The block-wise regions affect the performance of NNM. However,
DIP algorithm can successfully recover the missing data entries. Even the target signatures
still keep their structures.

The quantitative results of the column-wise missing cases are parallel with the visual
results as show in Table 4. For the simplest scenario, PSNR values given by NNM and DIP
algorithms are 52.79 dB, and 58.99 dB, respectively. As seen from the results, DIP algorithm
is approximately 12% better than the NNM algorithm. The performance gap becomes
more distinct for high missing data rate. PSNR values of NNM and DIP algorithms are
8.06 dB, and 33.64 dB, respectively. Actually, NNM algorithm fails to recover the missing
GPR image for extreme case. As in the visual results, DIP algorithm outperforms the best
performing conventional method for the column-wise missing cases.

The zoomed results for the target (third one) is shown in Figure 19a–d. For this case,
NNM fails to recover the GPR image as can be seen from the Figure 19c. However, DIP
method can recover the hyperbolic target well enough. This can be also observed from the
quantitative results in Table 5. The gap between performance for this case is very distinctive
since the NNM method did not recover the missing GPR image.

Table 5. PNSR comparison of data recovery methods for column-wise missing case for real data-I.

Missing Rate (%) NNM DIP NNMzoomed DIPzoomed

30 52.79 58.99 – –
80 8.06 33.64 12.05 32.28
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Figure 19. 80% column-wise missing data case for the zoomed target (third one) of real data-I:
(a) GPR image with missing entries, (b) original GPR image, recovered images by (c) NNMzoomed,
(d) DIPzoomed.

4.3.2. Real Data-II

The experimental design of the second real scenario is given in Figure 20 and the
raw data result is presented in Figure 21b. Field test measurements are obtained from
demining operations conducted in Germany under the project of the International Test
and Evaluation Program for Humanitarian Demining (ITEP) in 2009. In this particular
operation, a commercial GPR antenna (SIR-3000 with 1.5-GHz antennas, GSSI) was used
and it was located just over the ground. The antenna was moved over the centre of the
landmines with a broadside in perpendicular orientation. Five rendered-safe landmines
(PPM-2) which had the diameter of roughly 13 cm were buried in the same directions with
different positions such as 0.6, 1.4, 2.2, 3.0, and 3.8 m. The burial depths of the objects was
25, 20, 15, 10 and 5 cm, respectively. The soil type was magnetic sand in order to replicate
soil with high magnetic susceptibility. The texture is rough sand with a small amount of
fine gravel. The final obtained real data has size 2049× 401 and it is in gray scale.

Figure 20. Experimental setup of real data-II.
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The first pixel-wise missing case is simple as in the real data-I. As seen from the first
row of the Figure 21a, the target can be observed visually. Since this is the simplest scenario,
both NNM and DIP algorithms performed well enough. As given in the Figure 21c,d, the
results are visually similar to the original real data-II as presented in Figure 21b. It is hard
to discern performance difference from the visual results for this missing case.

Figure 21. First row 30% pixel-wise and second row 80% missing data case for real data-II: (a) GPR
image with missing entries, (b) original GPR image, recovered images by (c) NNM, (d) DIP.

The second pixel wise missing case is challenging compared to the first case. As seen
from the second row of Figure 21a, the targets are mot visible. When the visual results
in Figure 21c are zoomed, it can be observed that the target signatures are attenuated
compared to the results in Figure 21d. However, the visual results are still satisfying
compared to the original real data-II in Figure 21b. In this extreme case, It can be deduced
that DIP algorithm has a better performance compared to the NNM algorithm.

The quantitative results agree with visual results. For the simplest pixel-wise missing
case, PSNR scores for NNM and DIP are 35.99 dB and 39.57 dB, respectively. DIP algorithm
is almost 10% better than the best performing conventional matrix completion algorithm
NNM. For the extreme pixel-wise missing case, PSNR value for NNM algorithm is 30.41 dB
while 33.04 dB for DIP. The DIP algorithm is again 11% better than NNM algorithm which
proves that making pixel-wise missing cases more difficult do not worsen performance, on
the contrary, it improves.

For further analysis, the third target which has hyperbolic shape is zoomed and it
is shown in Figure 22a–d. NNM result in Figure 22c seems blurry and the target signal
strength was attenuated however DIP method keeps the target signature. This can be also
seen from the quantitative results in Table 6. The gap between the PSNR scores is more
obvious for the zoomed version.

Table 6. PNSR comparison of data recovery methods for pixel-wise missing case for real data-II.

Missing Rate (%) NNM DIP NNMzoomed DIPzoomed

30 35.99 39.57 – –
80 30.41 33.04 27.61 37.24
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Figure 22. 80% pixel-wise missing data case for the zoomed target (third one) of real data-II: (a)
GPR image with missing entries, (b) original GPR image, recovered images by (c) NNMzoomed,
(d) DIPzoomed.

For the column-wise missing case, the simplest scenario is same with the real data-
I. As given in the first row of the Figure 23a, the targets can be observed visually by
comparing the original real data-II in Figure 23b. When the visual results are checked,
it can be observed that both methods can perform well enough for the simplest column-
wise missing scenario as expected. However, the target signatures are preserved by DIP
algorithm compared to the NNM as presented in the Figure 23c,d.

Figure 23. First row 30% and second row 50% column-wise missing data case for real data-II: (a) GPR
image with missing entries, recovered images by (b) original GPR image, recovered images by
(c) NNM, (d) DIP.

The extreme column-wise missing case is shown in the second row of the Figure 23a
and the targets are barely visible. Especially, the first and last two targets are completely
corrupted by the missing columns compared to the original real data-II in Figure 23b.
The visual results are presented in Figure 23c,d. NNM algorithm can not recover the
missing columns as expected due to the high number of missing columns, the columns
are concatenated into blocks and NMC fails at this part. However, DIP algorithm can
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successfully recover the missing GPR image even in the extreme case. The presented visual
result in Figure 23d shows the efficiency of the recovery.

The column-wise missing case is more important than the pixel-wise missing case
since the first one is more frequently encountered during field measurements. When
the simplest column-wise missing case is checked, NNM algorithm gives 33.33 dB and
DIP algorithm 36.37 dB as PSNR score. Again, DIP is better than NNM almost 10% in
quantitative sense. For the extreme column-wise missing case, NNM has 10.06 dB and
DIP algorithm has 39.60 dB PSNR score. For this case, NNM fails to recover GPR image
however DIP recovers even better than the simplest case which shows the superiority of
the DIP over conventional matrix completion methods.

The zoomed version for the column-wise missing case is presented in Figure 24a–d.
As seen from Figure 24d, DIP preserves hyperbolic shape of the target unlike NNM. This
can be also observed from the quantitative results in Table 7. DIP score is almost two times
better than the NNM score.

The two methods are tested on the real data-II for 30% column-wise missing case on
Intel core i7 6700HQ @ 2.6GHz, 8GB DDR4-2133, Nvidia GTX950M, on a Windows 10 64-bit
environment. NNM and DIP running times are 2.48 and 280 s, respectively. We should
remark that for 80% column-wise missing case, NNM fails while DIP recovers successfully
the missing samples.

Figure 24. 80% column-wise missing data case for the zoomed third target of real data-II: (a) GPR im-
age with missing entries, (b) original GPR image, recovered images by (c) NNMzoomed, (d) DIPzoomed.

Table 7. PNSR comparison of data recovery methods for column-wise missing case for real data-II.

Missing Rate (%) NNM DIP NNMzoomed DIPzoomed

30 33.33 36.37 – –
80 10.06 39.60 13.83 25.77

5. Conclusions

Two new methods which are based on deep networks have been proposed for data
recovery in GPR: PEN-Net and DIP methods. PEN-Net due to its architecture learns from
data through the training stage and needs only an adequate amount of data, while DIP
combines an optimization procedure with a deep network structure with fixed coefficients
used as a handcrafted prior. Similar to matrix completion based conventional methods, DIP
does not require any training thus a single corrupted image is enough. As expected, deep
learning method PEN-Net provides the fastest results (in the testing stage), DIP is more
time consuming even with respect to the conventional methods. However, the performance
of the conventional methods decrease drastically for high missing data rates where the
proposed methods provide satisfactory results. In the simulated data experiments, the
proposed methods outperform conventional methods for the challenging pixel-wise case
around 17–27% and moderate level column-wise missing case around 15%. In addition,
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for the high rate of column-wise missing data cases where the conventional methods
completely fail, they can still yield satisfactory results.

It can be concluded that the proposed methods can be good alternatives to matrix
completion for high missing data rates, especially in column-wise data missing case which
is more realistic in GPR. When an adequate number of measurements are available PEN-
Net model can be used, while if data acquisition is limited to a few samples, a case more
appropriate for real data measurements, and enough computational power exists, DIP
method can be preferred. Moreover the current deep learning research is focused on
explainable artificial intelligence (XAI) where the black box structures of the former studies
are replaced by model driven or interpretable networks which combine optimization and
generative networks [49,50]. DIP can be considered as a bridge between these two trends.
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