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Abstract: Land cover changes are the main factors driving the evolution of regional ecological quality.
These changes must be considered in the strategic formulation of regional or national ecological
policies. The forest-steppe ecotone in the Greater Khingan Mountains is an important ecological
barrier in northern China. To measure the effect of ecological protection in recent years, Landsat
images, object-oriented image segmentation, and convolutional neural networks were used to create
land cover datasets of the forest-steppe ecotone. The Carnegie–Ames–Stanford approach (CASA)
and the dimidiate pixel model were used to derive net primary productivity (NPP) and fractional
vegetation cover (FVC) to assess the ecological quality of this area. The results showed that only
grassland and urban land increased, whereas saline–alkali land and desert areas initially increased
and then decreased from 2010 to 2018, indicating that the desertification process was substantially
curbed. Total NPP increased by 26.3% (2000–2010) and 10.8% (2010–2018). However, NPP decreased
slightly in the center of the study area. FVC first decreased and then increased, and the increased
areas were concentrated in the forest-steppe ecotone, saline–alkali land, and desert zone in Xin Barag
Left Banner. These observations indicate that the ecological quality has gradually improved due to the
strict protection of forest and grassland resources and the suppression of desertification. Our results
provide potential insights for land use planning and the development of environmental protection
measures in the forest-steppe ecotone.

Keywords: land cover conversion; ecological quality; net primary productivity; fractional vegetation
cover; forest-steppe ecotone

1. Introduction

Land use/cover change (LUCC) is the main research direction of land change science
and landscape ecology [1–4]. It is of great significance to protect land resources and
improve the ecological environment [5]. Contemporary human activities are causing
profound impacts on terrestrial ecosystems and landscape patterns, primarily by altering
land use purposes, which reflects the manner and extent of human influence on the natural
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ecosystem [6]. Due to population growth and economic booms, the irrational exploitation of
natural resources has become a primary cause contributing to environmental deterioration
in both intensity and extent, including habitat loss and the degradation of ecosystem
functions [7]. Thus, a quantitative assessment of ecological quality in an effective and
timely manner helps identify the current regional status of sustainable development to
enable the implementation of countermeasures to protect the eco-environment [8].

Globally, the most significant land cover change is the expansion of farmland and
pastoral areas [9,10]. However, land cover change in China is more complex. Due to
accelerated economic development, the urbanization rate in China has increased from 17.9%
in 1978 to 49.7% in 2010, significantly increasing the expansion of urban areas [11]. In many
developing regions of China, poor farmers are also turning forest/grassland into farmland
to increase their income. In view of the negative impact of the unreasonable utilization
of cultivated land on the ecological environment, the Chinese government implemented
the Grain-for-Green policy in 1999 [12]. The forest-steppe ecotone of the Greater Khingan
Mountains is a transitional area of forest to grassland ecosystems in this region, and an
important ecological barrier. Conflict exists between the Grain-for-Green policy and the
significant demand for food production. However, few studies have developed a consistent
and accurate land cover change product spanning a long-term period in this particular
ecotone, preventing a quality assessment of the eco-environment because existing ecotone
studies have mostly focused on land degradation and environmental management in
short-term periods [13–15], such as ten years. Hence, it is difficult to propose substantive
suggestions for targeted ecological ecotone management based on existing findings. Thus,
it is significant to create a consistent and fine-scale mapping product describing land cover
and ecological quality change for a long-term period in the Greater Khingan Mountains.

A variety of land cover products with different spatial resolutions or spatial scales
based on satellite remote sensing have been developed, including the 1 km spatial resolution
IGBP DISCOVER 1996 product [16], the 1 km UMD Land Cover Classification 1992 [17], the
1 km resolution Global Land Cover 2000 [18], the 500 m MODIS land cover product [19], and
the 300 m ESA Glob Cover 2005 product [20]. Although these products have successfully
supported multiple scientific applications at national, continental, and global scales, they
are not suitable for regional and local applications due to their coarse resolutions or high
uncertainties in complex and fragmented landscapes. The 30 m resolution land cover
products, for example, the National Land Cover Database (NLCD) 2016 product [21] and
the Finer Resolution Observation and Monitoring of Global Land Cover (FROM-GLC) 2017
product [22], were developed to improve the utility of land cover products in scientific
applications at regional and local scales. However, these relatively fine-resolution products
are not conducive for use in a multitemporal dataset due to the computational complexity
of mapping using remote sensing data, preventing dynamic assessments of ecological
conditions and the environment at the regional scale [23].

The net primary productivity (NPP) of an ecosystem is an important component of the
surface carbon cycle [24,25]. It reflects the productivity of vegetation communities under
natural environmental conditions and the quality of terrestrial ecosystems. Fractional
vegetation cover (FVC) is a crucial parameter to measure vegetation density and to estimate
the photosynthetic area of vegetation communities, as well as an important indicator of
environmental change [26]. NPP and FVC are considered indicators of ecological quality
and are closely related to the local climate, soil, water resources, and land resources.
Therefore, producing a consistent and fine-resolution land cover change product lays a
solid foundation for assessing regional ecological quality.

Traditionally, ground-sampling surveys and fixed-point observations are used to
estimate NPP and FVC. These measurements are difficult to obtain in large areas or at
the regional scale due to cost and time constraints. Furthermore, the measurements do
not reflect the continuous surface properties of NPP and FVC due to the discrete and
limited number of samples. Thus, traditional ground-based observations may not be
practical for ecosystem modeling and evaluating ecological quality over large areas. As
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a result, remote-sensing-based modeling methods have become mainstream to estimate
NPP and FVC. Since 1990, numerous studies have been conducted to investigate NPP and
FVC using remote-sensing-based modeling. For example, the Carnegie–Ames–Stanford
approach (CASA) [27] and the C-FIX model [28] are two representative NPP models. The
CASA model requires fewer input parameters than other models, reducing the error due to
model simplification or a lack of parameters. The remote sensing data used by the CASA
have a wide coverage and high temporal frequency, enabling the dynamic monitoring
of regional and global NPP. Thus, the CASA model has been widely used in large-scale
NPP and global carbon cycle research. Cao et al. (2020) researched the impacts of land
conversion and management measures on NPP in semi-arid grasslands using the CASA
model [29]. Bao et al. (2020) investigated changes in terrestrial NPP and climate constraints
in Mongolia with the CASA model [30]. They developed a map of the relative contributions
of the climatic constraints to NPP in 1982–2011.

Commonly used models to estimate FVC include empirical, vegetation index, and
mixed pixel decomposition models. Empirical models strongly depend on the accuracy of
ground-measured data and generally have a relatively low generalization ability [31–33].
Vegetation index models describe the relationship between a vegetation index and vege-
tation cover; however, most vegetation indices are influenced by non-vegetation features,
such as soils. The mixed pixel decomposition model retrieves FVC by calculating the
proportion of the classes in the mixed pixel. The dimidiate pixel model is a mixed pixel
decomposition model that linearly decomposes the spectral signals of green vegetation and
bare soil in each pixel to extract the vegetation abundance vegetation cover. This method
minimizes the influence of background factors, including soil, and has been widely used
for extracting FVC, providing excellent results. Wang et al. (2020) used the dimidiate
pixel model to obtain FVC and the vegetation growth status in the Pisha sandstone area of
China [34]. Li et al. (2020) analyzed the FVC response to climatic factors in the 2000–2017
growing season in Sichuan Province, China, using the dimidiate pixel model [35]. They
found that the vegetation cover in Sichuan Province showed a slight degradation trend,
and the medium- to low-elevation woody plants were significantly degraded.

The objectives of this study were to (1) assess the LUCC and ecological quality in
the forest-steppe ecotone of the Greater Khingan Mountains using NPP and FVC, and (2)
formulate comprehensive management measures to promote the sustainable management
of landscapes in the forest-steppe ecotone. The research results are expected to provide
an important scientific basis and suggestions for land use planning and environmental
protection in the forest-steppe ecotone of the Greater Khingan Mountains.

2. Materials and Methods
2.1. Study Area

The study area was located in Hulunbuir city in the northeastern part of the Inner
Mongolia Autonomous Region (Figure 1). Hulunbuir prairie and Hulun Lake are located in
the western part of the study area, and the northwestern part borders Russia. The Greater
Khingan Range containing the Hulunbuir forest area is oriented from the northeast to the
southeast. The central part of the study area is the forest-steppe ecotone of the Greater
Khingan Mountains (47◦19’49” N–53◦20’01” N, 117◦31’28” E–122◦52’52” E), which contains
seven banners (district and county-level cities), including Xin Barag Left Banner, Evenki
Autonomous Banner, Hailar District, Prairie Chenbarhu Banner, Yakeshi City, Genhe City,
and Ergun City. The area is 696 km long (north to south) and 384 km wide (east to west)
(Figure 1). The average elevation of this area is 573 m, and the average annual precipitation
is 250–350 mm. The precipitation amount decreases from east to west. Hulunbuir is located
in the northern temperate climate zone with a distinctly continental climate, characterized
by long, cold winters, short warm summers, strong dry winds in spring, sharp drops in
autumn temperatures, and early frosts. Most precipitation falls in July and August.
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Figure 1. Location of the study area.

2.2. Data Sources and Preprocessing

The data sources included remote sensing image data, meteorological data, and field
survey data. Fifty Landsat 5 TM scenes acquired in 2000 and 2010, and Landsat 8 OLI scenes
acquired in 2018 were obtained from the USGS official website (https://glovis.usgs.gov/,
14 July 2019). The images were geometrically and atmospherically corrected by the USGS
EROS data center using the Landsat Ecosystem Disturbance Adaptive Processing System
(LEDAPS) in batch mode or the Landsat 8 Surface Reflectance Code (LaSRC) per customer
request when placing orders. The Landsat surface reflectance images with high geometric
and radiometric accuracies were downloaded from the USGS EROS Center Science Process-
ing Architecture (ESPA) (https://espa.cr.usgs.gov/, 16 July 2019) to develop the land cover
and FVC products. We verified the accuracies of these products using visual interpretations
of Google Earth images in the same period. Most images acquired in the growing season
had no or few clouds. The field survey data of the land cover type were used to train and
validate the land cover classification models, and forest sample plot inventory data were
used to validate the NPP modeling results.

MODIS (MOD13Q1, MOD17A2H) data acquired in 2000, 2010, and 2018 were obtained
from the MODIS website (https://search.earthdata.nasa.gov/, 26 August 2019). Normal-
ized difference vegetation index (NDVI) products derived from MODIS data were used
for the NPP estimations. The meteorological data used to calculate NPP included average
monthly temperature, total monthly solar radiation, and total monthly precipitation ob-
tained from 22 meteorological stations in and around the Greater Khingan Mountains. The
data were downloaded from the China Meteorological Data Network (http://data.cma.cn/,
28 August 2019).

2.3. Land Cover Classification Scheme

We used the National Land Classification System to determine seven land cover types
in the Greater Khingan Mountains: forest, grassland, farmland, wetland, urban land, desert,
and burned land [36]. Forest included coniferous forest, broad-leaved forest, and mixed

https://glovis.usgs.gov/
https://espa.cr.usgs.gov/
https://search.earthdata.nasa.gov/
http://data.cma.cn/
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forest. Grassland included pasture, meadow, and tussock areas. Farmland included paddy
fields and dry land. Wetland included lakes, reservoirs, rivers, shrub wetlands, arbor
wetlands, and herb wetlands. Urban land included construction land, transportation, and
mining areas. Desert areas included bare rock, Gobi Desert, bare soil, saline–alkali land,
and glaciers. Burned land referred to areas with recent wildfires.

2.4. Land Cover Classification

Unlike traditional machine learning algorithms, deep learning methods do not require
the manual extraction of regions of interest (ROIs) and need fewer preprocessing steps
before model construction, improving efficiency. Convolutional neural networks (CNNs)
have commonly been used in recent years due to their outstanding performance for image
recognition [37–39]. The AlexNet network model designed by Hinton and Krizhevsky is
not the first CNN model, but it has attracted much attention because it won first prize in
the Image Net Large Scale Visual Recognition Competition (ILSVRC) [40]. AlexNet is the
preferred network model due to its high robustness and continuous improvement and
optimization [41]. Thus, this study used the CNN model AlexNet trained on the ImageNet
dataset for land cover classifications. Its network structure is shown in Figure 2.

Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 29 
 

 

desert, and burned land [36]. Forest included coniferous forest, broad-leaved forest, and 

mixed forest. Grassland included pasture, meadow, and tussock areas. Farmland included 

paddy fields and dry land. Wetland included lakes, reservoirs, rivers, shrub wetlands, 

arbor wetlands, and herb wetlands. Urban land included construction land, transporta-

tion, and mining areas. Desert areas included bare rock, Gobi Desert, bare soil, saline–

alkali land, and glaciers. Burned land referred to areas with recent wildfires. 

2.4. Land Cover Classification 

Unlike traditional machine learning algorithms, deep learning methods do not re-

quire the manual extraction of regions of interest (ROIs) and need fewer preprocessing 

steps before model construction, improving efficiency. Convolutional neural networks 

(CNNs) have commonly been used in recent years due to their outstanding performance 

for image recognition [37–39]. The AlexNet network model designed by Hinton and 

Krizhevsky is not the first CNN model, but it has attracted much attention because it won 

first prize in the Image Net Large Scale Visual Recognition Competition (ILSVRC) [40]. 

AlexNet is the preferred network model due to its high robustness and continuous im-

provement and optimization [41]. Thus, this study used the CNN model AlexNet trained 

on the ImageNet dataset for land cover classifications. Its network structure is shown in 

Figure 2. 

 

Figure 2. AlexNet network structure. 

2.4.1. Preprocessing 

We used the multiscale segmentation method in the eCognition software to segment 

the images of the study area [42]. The scale parameter was 400, the shape index was 0.1, 

and the compactness was 0.5. Sample patches of different land cover types were selected 

as training samples from the segmented image for land cover classification. Then, the land 

cover image was resized to match the input size of the CNN model for pretraining. Sub-

sequently, the land cover image dataset was normalized to the same format. 

2.4.2. Model Training 

The network model had 8 weighted layers, including 5 convolutional layers and 3 

fully connected layers. The convolutional layer consisted of a rectified linear unit (ReLU) 

Figure 2. AlexNet network structure.

2.4.1. Preprocessing

We used the multiscale segmentation method in the eCognition software to segment
the images of the study area [42]. The scale parameter was 400, the shape index was 0.1,
and the compactness was 0.5. Sample patches of different land cover types were selected
as training samples from the segmented image for land cover classification. Then, the
land cover image was resized to match the input size of the CNN model for pretraining.
Subsequently, the land cover image dataset was normalized to the same format.

2.4.2. Model Training

The network model had 8 weighted layers, including 5 convolutional layers and 3
fully connected layers. The convolutional layer consisted of a rectified linear unit (ReLU)
layer, a normalization layer, and a max-pooling layer. The preprocessed image was used
as the input layer of the model. After the convolution kernel was applied to the image,
the network training speed was accelerated using the ReLU activation function in the
convolution layer. Max pooling was used, and a dropout function was utilized to disable
50% of the network nodes in the fully connected layer to prevent overfitting of the algorithm.
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Finally, the network parameters were fine-tuned, and the Softmax classifier was used to
classify the output of the connection layer [43].

2.4.3. Fine-Tuning AlexNet

The most commonly used fine-tuning step consists of updating the weights of a trained
model with a specific dataset with similar characteristics to ensure that the adjusted network
model is applicable to the dataset. We used Chen’s method (2019) for fine-tuning [43]. The
dataset was relatively small; therefore, training the classifier from the top of the network
would have contained too many characteristics, leading to classification errors [44]. Thus,
the classifier was trained starting from the activation function to achieve good results.

The AlexNet model was initially trained on ImageNet. The ImageNet dataset contains
approximately 1 × 106 natural images and 1000 categories (labels). However, the land cover
dataset in this study contained only 7 categories (labels). Thus, the land cover dataset in
this study was not sufficient to train the AlexNet network with a complex structure. Thus,
according to the weights of the AlexNet network trained by ImageNet, the classification
layer that originally output 1000 categories was adjusted to the 7 categories in Figure 3,
including forest, grassland, farmland, wetland, urban land, desert, and burned land.
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2.5. Estimation of NPP

NPP refers to the amount of organic matter accumulated by green plants per unit area
and unit time [45,46]. It represents the gross primary productivity, i.e., the organic carbon
fixed by photosynthesis minus plant respiration. NPP plays an important role in global
change and the carbon balance. The CASA model, which describes the NPP mechanism
based on plant physiology, is a popular NPP model [47], and has been widely used for
NPP simulation in different regions and at different scales [48]. NPP is expressed by two
factors in the CASA model: photosynthetically active radiation absorbed by plants and
light energy utilization efficiency. The equation is as follows:

NPP(x, t) = APAR(x, t)∗ε(x, t) (1)

where APAR(x, t) is the photosynthetically active radiation absorbed by an area (pixel) x
in month t (MJ · m−2 · month−1), and ε(x, t) is the light energy utilization rate of pixel x in
month t (gC · MJ−1).

The photosynthetically active radiation absorbed by plants depends on the total solar
radiation and the solar radiation absorbed by plants. It is expressed as follows:

APAR(x, t) = SOL(x, t) ∗ FPAR(x, t) ∗ 0.5 (2)

where SOL(x, t) represents the total solar radiation in pixel x in month t (MJ·m−2 ·month−1),
and the constant 0.5 indicates the ratio of effective solar radiation to total solar radiation.
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FPAR(x, t) is the absorption ratio of the vegetation layer to the incident photosynthetically
active radiation. It can be calculated as follows:

FPAR(x, t) = αFPARNDVI ∗ (1 − α)FPARSR (3)

where α is the adjustment coefficient between the two methods, FPARNDVI is the FPAR
estimated by NDVI, and FPARSR is the FPAR estimated by the simple ratio vegetation
index (SR).

Under ideal conditions, vegetation has the maximum light energy utilization rate.
Under realistic conditions, the maximum light energy utilization rate is primarily affected
by temperature and moisture, which can be expressed by the following equation:

ε(x, t) = Tε1(x, t) ∗ Tε2(x, t) ∗ Wε(x, t) ∗ εmax (4)

where Tε1(x, t) and Tε2(x, t) indicate the stress effect of low temperature and high tempera-
ture on light energy utilization efficiency, respectively. Wε(x, t) is the influence coefficient
of water stress, reflecting the influence of water conditions. εmax is the maximum light
energy utilization under ideal conditions (gC · MJ−1). In this study, the maximum light
energy utilization used the parameter values proposed by Zhu et al. (2006) [49].

2.6. Estimation of FVC

FVC is defined as the percentage of the vertically projected area of vegetation on the
ground to the total area [50,51]. It is a crucial parameter in climate, hydrology, and soil
research [52]. In this study, the dimidiate pixel model was used to extract the FVC in the
study area. The dimidiate pixel model assumes that a pixel is composed of vegetation and
non-vegetation [53]. The FVC is expressed as follows:

FVC = (S − Ssoil)/
(
Sveg − Ssoil

)
(5)

where S is the spectral response of the remote sensing data and Sveg and Ssoil are the spectral
responses for a pure vegetation pixel and a pure soil pixel, respectively.

The NDVI is the most commonly used indicator of vegetation growth and has fre-
quently been used in the dimidiate pixel model as the spectral response of remote sensing
data to calculate FVC. Thus, the FVC equation was revised as follows:

FVC = (NDVI−NDVIsoil)/
(
NDVIveg −NDVIsoil

)
(6)

where NDVIsoil represents the NDVI values of the nonvegetated or bare pixels, and
NDVIveg represents the NDVI values of vegetated pixels.

Theoretically, the value of NDVIsoil is close to 0, and the value of NDVIveg is close
to 1. NDVIsoil is the minimum value of the NDVI; therefore, it is expressed as NDVImin.
NDVIveg is the maximum value of NDVI and is expressed as NDVImax [23]. Remote sensing
images are typically affected by noise; thus, the minimum and maximum values of the
NDVI correspond to the confidence range that should be selected according to the specific
conditions. In this study, the NDVI values corresponding to the 1% and 99% percentiles in
the NDVI cumulative distribution were used as NDVImin and NDVImax, respectively, for
calculating FVC to minimize the influence of noise.

2.7. Verification Method

In this study, 1000 random sample points (Figure 4) were generated in ArcGIS 10.8
to validate the accuracy of the three-phase land cover classification maps. We visually
interpreted the land cover type of the 1000 points using temporally corresponding, high-
spatial-resolution Google Earth images. The results and the classification results generated
from the AlexNet model were used to create confusion matrices showing the overall accu-
racy, producer’s accuracy, user’s accuracy, and Kappa coefficient. For the FVC validation,
we chose 20 random verification windows (90 m × 90 m) (Figure 4) and compared the ex-
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tracted vegetation cover with the visually interpreted results of the high-resolution Google
Earth images. For the NPP validation, we randomly selected 200 points (Figure 4) and
performed a linear regression analysis between the CASA model results and MODIS NPP
product values. Figure 5 shows the workflow of the whole study.
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3. Results
3.1. Accuracy Assessment

The overall accuracies of the 2000, 2010, and 2018 land cover classification maps were
93.5%, 93.4%, and 90.4%, with Kappa coefficients of 0.9198, 0.9185, and 0.8816, respectively
(Tables A1–A3). Overall, the classification accuracies of the three maps were satisfactory
at the regional scale, and the classification results could be used to support subsequent
analyses. Similarly, based on the 20 validation windows, the accuracies of the FVC were
87.23% in 2000, 88.47% in 2010, and 91.74% in 2018 (Tables A4–A6). Finally, the determi-
nation coefficients of the linear regression between the NPP obtained from the model and
the MODIS NPP were 0.66 in 2000, 0.57 in 2010, and 0.60 in 2018 (Figures A1–A3). These
results indicated a relatively moderate agreement, confirming that NPP could be used as
an indicator to reflect the ecological quality of the study region.

3.2. Land Cover Changes
3.2.1. Land Cover Classification Maps

As shown in Figure 6, most forestland was located in the northern and eastern regions
of the study area, i.e., in the Ergun, Genhe, and Yakeshi regions. Most grassland was located
in the western and central parts of this region, including the Chenbarhu Banner, Evenki
Autonomous Banner, Xin Barag Left Banner, and southern Ergun region. Farmland mainly
lies in the transitional area between grassland and forest. It is closely related to human
activities in the towns and the surrounding river systems. Most farmland was in the central
part of the study area, including Hailar District, the central and western part of Yakeshi, the
southern part of Ergun, the eastern part of Chenbarhu Banner, the northern part of Evenki
Autonomous Banner, and the southeastern part of Xin Barag Left Banner. The remaining
small areas of farmland were scattered along the wetland in the southeastern and northern
parts of Yakeshi and along the central and western part of Ergun. Wetlands were found
in all administrative regions and concentrated in the main river basins in the forest and
grassland areas. The size of cities and towns in the study area was relatively small, and
they were scattered. Most were located in the surrounding counties, including the Hailar
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District, Chenbarhu Banner, Evenki Autonomous Banner, and Yakeshi regions. Some towns
were located southwest of the Ergun and Genhe regions. In addition, most roads were
found near towns. The roads were scattered throughout the study area, indicating a sparse
network. Roads are important for the economy in the forest-steppe ecotone. Desert areas
were primarily located in Xin Barag Left Banner and Chenbarhu Banner. Burned land was
present in the woodlands of Ergun and Genhe.
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Figure 6. Land cover change in the forest-steppe ecotone of the Greater Khingan Mountains from
2000 to 2018.

Table 1 displays the statistics of the mapped land cover types in 2000–2018. Forest,
grassland, and wetland accounted for more than 90% of the total area in all years. Specifi-
cally, the areal proportions of forestland, grassland, farmland, wetland, urban land, desert,
and burned land were 46.96%, 31.33%, 5.17%, 13.29%, 1.11%, 2.07%, and 0.07%, respectively,
in 2000. By 2018, the forest area had decreased by 0.14%, grassland had increased by 0.24%,
farmland had decreased by 0.19%, wetland had decreased by 0.1%, and urban land had
increased by 0.24%. Interestingly, desert areas first increased and then decreased, showing
a downward trend since 2010. Burned areas occupied a very small area and showed a
decreasing trend over time, indicating effective forest fire prevention and suppression.

Table 1. Changes in the area and proportion of land cover types from 2000 to 2018.

Types 2000 2010 2018
Area (hm2) Proportion Area (hm2) Proportion Area (hm2) Proportion

Forest 6,302,993.31 46.96% 6,289,026.12 46.85% 6,284,566.53 46.82%
Grassland 4,205,763.9 31.33% 4,233,760.38 31.54% 4,237,231.05 31.57%
Farmland 693,927.63 5.17% 671,471.73 5.00% 667,805.49 4.98%
Wetland 1,783,646.19 13.29% 1,770,893.19 13.19% 1,769,975.55 13.19%

Urban land 148,534.83 1.11% 170,261.55 1.27% 180,543.42 1.35%
Desert 278,190.27 2.07% 281,807.19 2.10% 280,257.48 2.09%

Burned land 9397.53 0.07% 5233.5 0.04% 2074.14 0.02%
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3.2.2. Analysis of Land Cover Conversions

Tables 2–4 show the land cover transition matrices between the two dates. Figures 7 and 8
show the specific land cover conversion maps. Figure 9 shows an exemplary area on the
comparison of the land cover change results and RGB ortho-mosaic images. From 2000 to
2018 (Table 2), 18856.17 hm2 of forestland was converted to grassland, mainly because areas
of burned forest were restored to grassland. Some forests (3215.07 hm2) were converted
to urban land because of forest road construction, and some forests (2057.13 hm2) were
converted to burned areas because of naturally occurring wildfires due to lightning strikes.
The vast majority of grassland was converted to urban land (17,870.31 hm2) and desert
(6067.89 hm2), accounting for 96.03% of the total conversion area of grassland. The primary
reasons for this were urban expansion, road construction, and grassland desertification.
Some farmland was converted to grassland (20,098.71 hm2) and forest (263.61 hm2), in-
dicating that the Grain-for-Green Project was successful. Some farmland was converted
to urban land (7041.87 hm2) because of urban expansion and road construction. Some
wetlands were converted to grassland (10,834.11 hm2) and desert (1913.31 hm2). Therefore,
wetland protection must be strengthened. Some wetlands were converted to urban land
(3090.06 hm2), mainly due to road construction. Desert areas were converted to forests
(172.08 hm2), grassland (5979.6 hm2), and wetland (1285.92 hm2) because the local au-
thorities adopted measures such as planting, aerial seeding, sand sealing conservation,
and the reasonable utilization of water in accordance with local conditions. Most burned
land was converted to forests (6356.88 hm2), indicating that good progress has been made
in vegetation restoration after wildfires. The order of the land cover types based on the
proportion of change was farmland > forest > grassland > wetland > urban land > desert >
burned land.

Table 2. Land cover transition matrix from 2000 to 2018 (hm2).

2000
2018

Forest Grassland Farmland Wetland Urban
Land

Desert Burned
Land Total 2018

Forest 18,856.17 0.00 1887.84 3215.07 46.26 2057.13 26,062.47
Grassland 279.63 711.18 0.00 17,870.31 6067.89 0.27 24,929.28
Farmland 263.61 20,098.71 993.69 7041.87 0.00 0.00 28,397.88
Wetland 558.90 10,834.11 1514.61 3090.06 1913.31 0.00 17,910.99

Urban land 4.59 22.50 0.63 4.95 14.49 0.00 47.16
Desert 172.08 5979.60 49.05 1285.92 837.00 0.00 8323.65

Burned land 6356.88 604.98 0.27 68.31 1.44 2348.91 9380.79
Total 2000 7635.69 56,396.07 2275.74 4240.71 32,055.75 10,390.86 2057.4 115,052.22

Table 3. Land cover transition matrix from 2000 to 2010 (hm2).

2000
2010

Forest Grassland Farmland Wetland Urban
Land

Desert Burned
Land

Forest 13,242.87 0.09 1882.62 1194.75 57.69 4342.23
Grassland 157.77 736.92 10.26 8569.35 7492.86 354.96
Farmland 265.86 20,171.43 1018.62 2816.82 0.00 0.00
Wetland 570.51 10,859.49 1458.90 778.32 1978.11 0.00

Urban land 15.30 2.70 0.00 0.09 24.66 0.00
Desert 36.72 6362.01 50.40 1814.67 795.51 0.00

Burned land 6324.39 118.08 0.27 68.40 1.44 2349.00
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Table 4. Land cover transition matrix from 2010 to 2018 (hm2).

2000
2018

Forest Grassland Farmland Wetland Urban
Land

Desert Burned
Land

Forest 1338.03 0.00 21.60 1273.95 0.00 2043.36
Grassland 0.00 325.89 0.00 2740.32 91.08 0.00
Farmland 0.00 0.00 0.00 4035.42 0.00 0.00
Wetland 0.00 0.00 63.18 928.17 0.00 0.00

Urban land 0.00 23.13 0.00 0.09 0.00 0.00
Desert 277.20 381.42 0.00 54.72 909.54 0.00

Burned land 46.17 5156.28 0.00 0.00 0.00 0.00
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Figure 7. Land cover conversion map from 2000 to 2010: 1 represents forest; 2 represents grassland;
3 represents farmland; 4 represents wetland; 5 represents urban land; 6 represents desert; 7 represents
burned land; 12 represents the change from forest to grassland; and 15 represents the change from
forest to urban land.

The land cover types that were converted to grassland from 2000 to 2018 included
forest (18,856.17 hm2), farmland (20,098.71 hm2), and wetland (10,834.11 hm2). A to-
tal 23,548.95 hm2 area of grassland changed to urban land. The increase in urban land
was mainly due to the transitions of grassland, farmland, and wetland (17,870.31 hm2,
7041.87 hm2, and 3090.06 hm2, respectively). The reasons for the large increase in construc-
tion land area (including roads) was population increase, rapid urbanization and increasing
tourism in recent years. Overall, the areas of desert increased slightly from 2000 to 2018,
indicating that desertification control achieved some positive results, but more work is
required. The order of the land cover types that increased in area was grassland > urban
land > desert > forest > wetland > farmland > burned land.
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A comparison of the land cover conversions between 2000–2010 and 2010–2018
(Tables 3 and 4) indicates that more land cover changes occurred in the early stage than in
the later stage. More forest areas were converted in 2010–2018 than in 2000–2010. The main
reason for this was that a comprehensive logging ban of natural forests was implemented
in the Greater Khingan Mountains on 1 April 2015. Thus, the previous development and
utilization of key state-owned forest areas changed to comprehensive protection. From
2010 to 2018, areas of desert changing into other land cover types were larger than areas
changing into desert areas, indicating the successful control of desertification.

3.3. FVC Change

As shown in Table 5, 26.78% of the study area exhibited a FVC change from 2000 to
2010. In general, most FVC changes from 2000 to 2010 consisted of decreases in the high-
cover areas and increases in the low-cover areas. This change was dominated by increases
in saline–alkali land and desert areas, indicating significant grassland desertification from
2000 to 2010.

Table 5. FVC transition matrix from 2000 to 2010 (hm2).

2000
2010 Very Low

Cover Low Cover Medium Cover High Cover Very High
Cover

Very low cover 211,768.80 12,550.00 5843.75 7125.00
Low cover 266,343.80 146,987.50 28,206.25 14,856.25

Medium cover 51,987.50 439,612.50 120,962.50 45,006.25
High cover 19,850.00 110,731.30 431,000.00 499,775.00

Very higher cover 56,225.00 48,900.00 240,943.80 837,293.80

As shown in Table 6, 30.8% of the study area exhibited an FVC change from 2010 to
2018. In general, most FVC change in the study area consisted of increases in the high-
cover areas and decreases in the low cover areas from 2010 to 2018. This change was
dominated by decreases in desert areas and increases in grassland areas, indicating that
grassland desertification was minimized significantly after treatments, and the ecological
environment had improved.

Table 6. FVC transition matrix from 2010 to 2018 (hm2).

2000
2010 Very Low

Cover Low Cover Medium Cover High Cover Very High
Cover

Very low cover 211,768.80 12,550.00 5843.75 7125.00
Low cover 266,343.80 146,987.50 28,206.25 14,856.25

Medium cover 51,987.50 439,612.50 120,962.50 45,006.25
High cover 19,850.00 110,731.30 431,000.00 499,775.00

Very higher cover 56,225.00 48,900.00 240,943.80 837,293.80

Figure 10 shows the FVC changes occurring from 2000 to 2010 and from 2010 to
2018. Areas with absolute values of FVC change greater than 0.4 were defined as areas of
significant change. Those with values of 0.2 to 0.4 were categorized as areas of relatively
slight change, and those with values less than 0.2 were considered areas of no change.

Overall, areas with low and very low vegetation cover increased, and areas with high
and very high vegetation cover decreased from 2000 to 2010. The FVC in the study area
showed a downward trend, and the areas of decrease were concentrated around the Hailar
District and the forest-steppe ecotone in southern Ergun. The results showed that the
forest-steppe ecotone exhibited serious ecological degradation from 2000 to 2010. From
2010 to 2018, the low- and very-low-cover areas decreased significantly, whereas the high-
and very-high-cover areas increased. The FVC showed an upward trend, and the areas
of increase were concentrated in the forest-steppe ecotone, saline–alkali land, and desert
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in Xin Barag Left Banner. The results showed that local control measures were relatively
successful, and the ecological policies showed a positive effect from 2010 to 2018.
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Figure 10. FVC change in the forest-steppe ecotone from 2000 to 2010 (left) and from 2010 to
2018 (right).

3.4. NPP Change

As shown in Table 7, the total, mean, and maximum annual NPP of the forest-steppe
ecotone in the Greater Khingan Mountains increased from 2000 to 2018, but the rate of
increase decreased. The total NPP increased by 26.3% from 2000 to 2010 and by 10.8% from
2010 to 2018.

Table 7. NPP derived from the CASA model from 2000 to 2018.

Year Total (gC) Mean (gC·m−2) Maximum (gC·m−2)

2000 215,545,376 401.58 689.37
2010 285,986,592 532.85 835.06
2018 320,556,992 597.44 1002.11

Figure 11 shows the spatiotemporal changes in NPP between 2000 and 2010 (left)
and between 2010 and 2018 (right). Areas where the difference in NPP between the two
dates exceeded the mean were regarded as areas of significant increase. Areas where the
difference in NPP was less than the mean and negative were defined as areas of slight
decrease. If the values were positive, the areas were defined as areas of normal increase.
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Figure 11. NPP change in the forest-steppe ecotone from 2000 to 2010 (left) and from 2010 to
2018 (right).

From 2000 to 2010, NPP increased substantially in the grassland areas. NPP in the forest
areas increased substantially only in Ergun, northern Genhe, and southern Yakeshi, and
NPP near the wetlands decreased slightly. From 2010 to 2018, NPP increased significantly
in the southern grassland area. NPP in the forest areas decreased slightly south of Yakeshi
and Ergun.

3.5. Spatiotemporal Change in Land Cover and Ecological Quality

By comparing the spatial distribution of land cover changes with FVC and NPP
changes, the impact of land cover changes on ecological quality can be found. Hailar
District, as the political, economic and cultural center of Hulunbuir City, due to the urban
population increase and development needs, experienced large urban expansion from 2000
to 2018, resulting in severe land cover changes. The changes were even more dramatic
from 2000 to 2010, as shown in Figure 12. The increase in urban land and desert leads to
significant decrease in FVC, also leads a lag effect on NPP. With the gradual implementation
of various ecological protection policies from 2010 to 2018, the Hailar District exhibited a
large area of FVC increase, whereas NPP slightly decreased where the urban land increased.
This shows that the impact of urban expansion on NPP is greater than that of ecological
restoration. Otherwise, the ecological quality was directly deteriorated in the increased
burned areas and desert, except for the burned land turned into desert, as shown in
Figure 13.
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Figure 12. Spatiotemporal change in land cover and ecological quality in Hailar District: 1 represents
forest; 2 represents grassland; 3 represents farmland; 4 represents wetland; 5 represents urban land;
6 represents desert; 7 represents burned land; “to 1” represents the change from other land cover
types to forest; and “to 2” represents the change from other land cover types to grassland.
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4. Discussion
4.1. Management and Policy Implications of Land Cover Change

Land is required for producing products, and LUCC affects regional ecological sta-
bility. However, land cover transformation often has positive or negative impacts on the
ecosystem and ecological environment directly or indirectly. When the contribution rate
of the land cover changes and improves the ecological environment rather than degrade



Remote Sens. 2022, 14, 725 19 of 29

the ecological environment, the ecological quality improves; otherwise, it declines [54].
In this work, land cover maps were created, and spatiotemporal changes in the NPP and
FVC in a 20-year period were analyzed to determine the ecological quality changes in the
forest-steppe ecozone of the Greater Khingan Mountains, northeast China. The results,
specifically the substantial changes in grassland, farmland, urban construction land, and
desert areas, provide data for the targeted formulation of management strategies and
political measures, which are detailed subsequently.

4.1.1. Strict Enforcement of Forest Fire Prevention and Suppression Regulations and Forest
Restoration Schemes in Burned Lands

The main reasons for the decrease in forest cover in the study area are forest fires
and farmland encroachment. The land cover transition matrix shows that 2057.13 hm2

of forestland changed to burned land, and 6356.88 hm2 of burned land was restored to
forestland from 2000 to 2018 (Table 2). During this period, forest fires mainly occurred in the
woodlands of Ergun and Genhe, which is the northern part of the forest-steppe ecotone in
the Greater Khingan Mountains. The annual NPP of the study area increased substantially
by 105,011,616 gC from 2000 to 2018 (Table 5). This finding shows that the vegetation
productivity and the overall quality of the ecosystems improved. Rihan et al. (2019) used a
random forest (RF) model to analyze the contribution rates of various influencing factors
and the probability of fire occurring on the Mongolian Plateau [55]. The results indicated
that the areas with the highest wildfire probabilities were concentrated in the northern,
eastern, and southern parts of the Mongolian Plateau. Due to favorable weather and
vegetation conditions, the northern Greater Khingan Mountains and the eastern region
have the highest probability of wildfire [56]. The occurrence and spread of wildfires are less
likely in desert areas due to a low fuel load; thus, the wildfire probability in these areas is
the lowest [57]. In this study, we propose several suggestions for the restoration of burned
areas in the forest-steppe ecotone of the Greater Khingan Mountains. Natural succession is
preferable in burned areas with poor site conditions, low soil temperatures, thin soil layers,
difficult access, and an inability to perform adequate management. Low-intensity fires can
promote natural regeneration. In moderately to severely burned areas with a large number
of remaining trees, natural regeneration is a good choice using seed trees or planting
seedlings. Burned trees should be removed to prevent plant diseases and minimize insect
pests and rodents. In severely burned areas with a majority of dead vegetation, replanting
and aerial seeding are the best choices according to the characteristics of the original forest
to accelerate forest succession and achieve ecological restoration.

4.1.2. Increasing the Amount of Cropland Conversion to Grassland

According to the land cover transition matrix, 20,098.71 hm2 of farmland was con-
verted to grassland, but only 711.18 hm2 of grassland was converted into farmland in
the forest-steppe ecotone of the Greater Khingan Mountains in the past 18 years (Table 2).
Most areas of farmland were converted to grassland from 2000 to 2010 (Table 3), whereas
only a small amount of farmland was converted from 2010 to 2018 (Table 4). This finding
shows that the rate of expansion of farmland has slowed in recent years, and the policy of
returning farmland to grassland has achieved good results. These results are consistent
with previous research. For example, Fang and Fan (2020) found that the main source
of grassland increase was cultivated land in the Hulunbuir grassland, and large areas of
wetland were converted into grassland in the Hailar District [58].

In addition, the FVC of grassland increased significantly, which was consistent with
the land cover classification results. The total grassland area increased continuously by
37,176.39 hm2 from 2000 to 2018 (Table 2), showing an increasing trend. However, some
deserts expanded in the grassland–desert ecotone, which should be further investigated.
For example, 7492.86 hm2 of grassland degraded into the grassland–desert ecotone in
southeastern Xin Barag Left Banner because of grazing and other factors from 2000 to
2010 (Table 3). Wang and Yang (2012) used MODIS data to develop a model for assessing
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the livestock carrying capacity and overgrazing, and found 10,730.4 × 103 sheep units
in Hulunbuir [57]. Overgrazing is a problem that must be addressed. Inner Mongolia
implemented the “Forage and Livestock Contracting” policy in 1983 to assign forage and
livestock to each herder [59]. The policy resulted in an increased livestock population and
intensified desertification. Several desertification control measures, such as banning grazing
and planting sand-stabilizing plants on grasslands, have been successively implemented
since 2000 [59]. The government formulated policies for “Further Strengthening the Rules
for the Implementation of Regulations on the Supervision and Administration of Grassland
in the Inner Mongolia Autonomous Region” in 2005 to strengthen grassland supervision
and management work [60,61]. Therefore, we should continue to promote policies of
returning grazing land to grassland in the forest-steppe ecotone of the Greater Khingan
Mountains, accelerate the transformation of grassland animal husbandry production, and
reduce damage to grasslands. Fortunately, our current study is highly applicable to evaluate
the effectiveness of the policies and measures and to inform land managers or decision-
makers in these areas about abrupt land changes.

4.1.3. Strengthening Desertification Control

The land cover transition matrix showed that desert areas increased by 2843.01 hm2

from 2000 to 2010 (Table 3). The main reasons for this include overgrazing, improper
reclamation, improper management, and unclear management authority. However, in
2010–2018, only 91.08 hm2 of grassland was converted into desert area (Table 4). In some
areas of Xin Barag Left Banner, 381.42 hm2 of desert areas was converted into grassland,
and 277.20 hm2 of desert areas was converted into woodland (Table 4), substantially im-
proving water conservation and the wind- and sand-stabilization capacity of the ecosystem.
This change was closely related to improvements in desertification management by the
government. For example, in 2013, the government of Xin Barag Left Banner established
a national project of protecting land to reduce desertification. As a result, grassland loss
and degradation in the forest-steppe ecotone were mitigated. Thus, we propose the follow-
ing suggestions. In areas of grassland degradation, desertification, and salinization, the
local government should take timely control measures to ensure sustainable development,
such as enclosures, afforestation, windbreaks, and sand-stabilization. In areas of severe
desertification, the government should optimize the industrial structure of the region
and encourage industrial transformation to reduce damage to grassland resources and to
prevent desertification.

4.1.4. Promoting a Modern Transportation System

Our results showed that approximately 1194.75 hm2 and 1273.95 hm2 of forestland
were used for forest road construction in 2000–2010 (Table 3) and 2010–2018 (Table 4),
respectively. Most of these changes occurred in Ergun and Yakeshi, and some occurred
in the Genhe region. Forest road construction mainly focused on improving the structure
and quality of the original trunk road surface and building a new trunk line for forest fire
monitoring, prevention, and tourism. In addition, many new roads were constructed in
grassland areas. Approximately 17,870.31 hm2 of grassland was used for urban expansion
and road construction from 2000 to 2018 (Table 2). Wang et al. (2013) analyzed land use
changes from 2000 to 2010 in the Hulunbuir grassland and found that urban land, mining
land, and residential land increased by more than 400 km2. Although road construction
can stimulate economic growth, it can adversely affect the ecological environment, reduce
the connectivity between grassland patches, and limit the activities of grassland animals.
Therefore, we should conduct scientific surveys and evaluate the ecosystem functions in
areas of planned roads to minimize the negative impacts of road construction on grassland
and forest areas.
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4.2. NPP and FVC Change

The annual average NPP was higher in the forest areas of the Greater Khingan Moun-
tains and lower in the grassland area (Figure 6). Our NPP results in the Hulunbuir area are
consistent with other NPP studies in Inner Mongolia [62,63]. For example, it was observed
that NPP in Inner Mongolia grasslands decreased from the northeast to the southwest [64].
Zhao et al. (2019) analyzed NPP and its spatiotemporal variations in Inner Mongolia
using linear trend analysis and found that NPP increased over time [65]. The interannual
variation trend and annual mean NPP in this study were consistent with the results of
these studies (Figure 6). Chen et al. (2012) used an improved light energy utilization model
and found that the NPP per unit area in the eastern forest-steppe ecotone of the Greater
Khingan Mountains showed a weak downward trend [66]. Land cover has a significant
impact on NPP, especially in the forest-steppe ecotone and Inner Mongolia. It was found
that the NPP of vegetation decreased in the forest-steppe ecotone [67]. Forest fires occurred
in the southern Ergun forest areas in 2010–2018. In this study, we obtained NPP using
the CASA model and found that the annual NPP decreased slightly in the forest-steppe
ecotone, i.e., in Yakeshi and southern Ergun (Figure 6).

The FVC in our study area decreased from the northeast to southwest (Figure 7). Other
studies also found that the FVC was higher in the forest areas of the Greater Khingan
Mountains and lower in the grasslands [68,69]. We observed a decreasing trend in FVC
from 2000 to 2010 and a slow upward trend from 2010 to 2018 (Figure 7). Particularly,
from 2000 to 2018, the vegetation conditions in some parts of the Hulunbuir grassland
improved, especially in the western part of Xin Barag Right Banner (Figure 7). Peng et al.
(2017) analyzed FVC in the Hulunbuir steppe (2000–2014) and found an overall decrease
in vegetation cover in the entire study area in the first 10 years and a slow increase in the
last 5 years [70]. Li et al. (2014) observed a decreasing trend with fluctuations in grassland
FVC (2000–2013) in the forest-steppe ecotone of the Greater Khingan Mountains [71]. These
findings were in agreements with our results, although the periods were not identical.
Precipitation is the key factor affecting the interannual variation in grassland vegetation
cover, and regional socioeconomic activities also affect grassland degradation in Hulunbuir.
In the early 1950s, only 29,100 people were directly engaged in grazing-related activities in
grasslands. By the end of 2016, this number had increased to 71,000. Due to a population
increase in pastoral areas, herdsmen mainly rely on increasing livestock production to
maintain their livelihood, leading to extensive overgrazing of grasslands in pastoral areas
and reducing the FVC and NPP of grasslands.

4.3. Limitations and Challenges

Compared with land cover change research, this study has the following limitations.
Seasonal snowpack substantially influences the regional water stress gradient and interan-
nual variation in NPP by affecting the soil moisture in the next growing season [72]. Due
to data unavailability, we did not examine the impacts of mining and urban sprawl on
the ecological environment [73,74]. We also did not differentiate land type conversions
on different slopes and did not consider the land type patterns in different terrains [75].
For example, climatic changes can cause major shifts in dune activity [76]. Liu et al. (2014)
analyzed the conversion between paddy fields and dryland in cultivated land [77]. In
this study, the classification of land cover in the river watersheds was relatively coarse,
requiring improvements in a follow-up study. In addition, the spatial heterogeneity of
the ecological environment in the study area requires more in-depth analysis to provide
more accurate suggestions for ecological environmental protection. This whole study
was time-consuming and labor-intensive; therefore, we are now integrating the workflow
and GEE platform to save resources and improve analytical efficiency to be more global
and widespread.
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5. Conclusions

In this study, we performed a comprehensive, spatially explicit evaluation of the
evolution in land cover and ecological quality by integrating deep learning and multisource
remote sensing based on modeling algorithms.

We found that from 2000 to 2018, forest areas decreased and grassland increased in
the study area. The main driving force was forest fires and the subsequent recovery to
grasslands. The increase in grassland was mainly attributed to the restoration of burned
land and the degradation of wetlands. Grassland degradation remains a significant problem
due to its conversion to urban land. Saline–alkali land and desert areas first increased and
then decreased; thus, grassland desertification improved. The farmland area decreased,
indicating good progress in returning farmland to forests and grasslands.

Additionally, the annual NPP in the study area showed an overall upward trend and
increased continuously from the southwest to northeast, with a substantial increase in the
northeastern forest areas and western grasslands. However, the rate of increase in NPP
in the wetland areas and the southern area of Ergun (forest-steppe ecotone) was slow or
negative. FVC decreased in the forest-steppe ecotone from 2000 to 2010 and increased
substantially from 2010 to 2018, especially in deserts and grasslands. Most changes in the
FVC type occurred between adjacent cover classes and primarily from low vegetation cover
to high vegetation cover areas. The main reasons for the improvements in the ecological
environment were the conversion of farmland to forest and grassland, the protection of
natural forests and desertification control policies.

Thus, from these results, we suggest that the restoration of burned areas, the promotion
of modern eco-friendly transportation systems, and the strengthening of desertification
control should be further promoted. The findings from our study can provide potential
insights for land use planning and the development of ecological protection actions in this
particular ecosystem, and the managerial or political implications behind the current work
are essential for the sustainable development of ecological interests.
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Appendix A

Table A1. Error matrix of land cover classification in 2000.

Classification Map

Reference Map
Forest Grassland Farmland Wetland Urban

Land Desert Burned
Land Total Producer

Accuracy

Forest 236 5 0 3 1 0 0 245 96.33%
Grassland 6 227 5 10 5 2 1 256 88.67%
Farmland 1 6 92 1 0 0 0 100 92.00%
Wetland 2 3 1 182 3 6 0 197 92.39%

Urban land 0 2 0 0 89 0 0 91 97.80%
Desert 0 2 0 0 0 90 0 92 97.83%

Burned land 0 0 0 0 0 0 19 19 100%
Total 245 245 98 196 98 98 20 1000

User accuracy 96.33% 92.65% 93.88% 92.86% 90.82% 91.84% 95.00%

Overall accuracy 93.50% Kappa coefficient 0.9198

Table A2. Error matrix of land cover classification in 2010.

Classification Map

Reference Map
Forest Grassland Farmland Wetland Urban

Land Desert Burned
Land Total Producer

Accuracy

Forest 234 4 3 3 2 0 1 247 94.74%
Grassland 5 229 5 7 6 5 0 257 89.10%
Farmland 1 4 87 1 0 0 0 93 93.55%
Wetland 5 2 3 184 2 0 0 196 93.88%

Urban land 0 1 0 0 88 0 0 89 98.88%
Desert 0 5 0 1 0 93 0 99 93.94%

Burned land 0 0 0 0 0 0 19 19 100%
Total 245 245 98 196 98 98 20 1000

User accuracy 95.51% 93.47% 88.78% 93.88% 89.80% 94.90% 95.00%
Overall accuracy 93.40% Kappa coefficient 0.9156

Table A3. Error matrix of land cover classification in 2018.

Classification Map

Reference Map
Forest Grassland Farmland Wetland Urban

Land Desert Burned
Land Total Producer

Accuracy

Forest 261 6 3 4 0 1 0 275 94.91%
Grassland 6 201 6 6 1 4 0 224 89.73%
Farmland 4 3 106 1 1 1 0 116 91.38%
Wetland 4 3 3 161 1 6 0 178 90.45%
Urban
land 1 2 0 0 71 0 2 76 93.42%

Desert 3 5 1 8 2 87 1 107 81.31%
Burned
land 1 0 1 0 4 1 17 24 70.83%

Total 280 220 120 180 80 100 20 1000
User
accu-
racy

93.21% 91.36% 88.33% 89.44% 88.75% 87.00% 85.00%

Overall accuracy 90.40% Kappa coefficient 0.8816
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Table A4. Verification results of FVC in 2000.

Window
Number

High-Resolution
Images

Study
Results

Window
Number

High-Resolution
Images

Study
Results

1 0.91 0.95 11 0.34 0.36
2 0.98 0.95 12 0.89 0.90
3 0.91 0.96 13 0.64 1.00
4 0.96 0.83 14 1.00 0.99
5 0.97 0.97 15 0.66 0.99
6 0.98 1.00 16 0.69 0.65
7 0.93 0.91 17 0.56 0.95
8 0.64 0.91 18 0.77 0.95
9 0.61 0.66 19 1.00 0.90

10 0.70 0.96 20 0.70 0.94
Mean accuracy 87.23%

Table A5. Verification results of FVC in 2010.

Window
Number

High-Resolution
Images

Study
Results

Window
Number

High-Resolution
Images

Study
Results

1 0.99 0.96 12 0.03 0.13
2 0.99 0.96 12 0.03 0.13
3 1.00 0.80 13 0.81 1.00
4 0.93 0.93 14 0.99 0.98
5 0.95 0.99 15 0.89 1.00
6 0.90 0.94 16 0.77 0.68
7 0.98 1.00 17 0.66 1.00
8 0.71 0.89 18 0.94 1.00
9 0.53 0.68 19 1.00 0.96

10 0.90 0.34 20 0.91 0.95
Mean accuracy 88.47%
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Table A6. Verification results of FVC in 2018.

Window
Number

High-Resolution
Images

Study
Results

Window
Number

High-Resolution
Images

Study
Results

1 0.90 0.92 11 0.50 0.53
2 0.94 0.98 12 0.50 0.47
3 0.69 0.77 13 0.87 0.99
4 0.97 0.93 14 1.00 1.00
5 0.96 0.80 15 0.96 1.00
6 0.82 1.00 16 0.87 0.81
7 0.98 0.99 17 0.87 0.97
8 0.74 0.89 18 0.96 0.92
9 0.64 0.76 19 1.00 0.62

10 1.00 1.00 20 0.93 0.98
Mean accuracy 91.74%
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