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Abstract: The PRISMA satellite is equipped with an advanced hyperspectral Earth observation
technology capable of improving the accuracy of quantitative estimation of bio-geophysical variables
in various Earth Science Applications and in particular for soil science. The purpose of this research
was to evaluate the ability of the PRISMA hyperspectral imager to estimate topsoil properties
(i.e., organic carbon, clay, sand, silt), in comparison with current satellite multispectral sensors. To
investigate this expectation, a test was carried out using topsoil data collected in Italy following two
approaches. Firstly, PRISMA, Sentinel-2 and Landsat 8 spectral simulated datasets were obtained
from the spectral resampling of a laboratory soil library. Subsequently, bare soil reflectance data
were obtained from two experimental areas in Italy, using real satellites images, at dates close to
each other. The estimation models of soil properties were calibrated employing both Partial Least
Square Regression and Cubist Regression algorithms. The results of the study revealed that the best
accuracies in retrieving topsoil properties were obtained by PRISMA data, using both laboratory and
real datasets. Indeed, the resampled spectra of the hyperspectral imager provided the best Ratio
of Performance to Inter-Quartile distance (RPIQ) for clay (4.87), sand (3.80), and organic carbon
(2.59) estimation, for the spectral soil library datasets. For the bare soil reflectance obtained from
real satellite imagery, a higher level of prediction accuracy was obtained from PRISMA data, with
RPIQ ± SE values of 2.32 ± 0.07 for clay, 3.85 ± 0.19 for silt, and 3.51 ± 0.16 for soil organic carbon.
The results for the PRISMA hyperspectral satellite imagery with the Cubist Regression provided
the best performance in the prediction of silt, sand, clay and SOC. The same variables were better
estimated using PLSR models in the case of the resampled hyperspectral data. The statistical accuracy
in the retrieval of SOC from real and resampled PRISMA data revealed the potential of the actual
hyperspectral satellite. The results supported the expected good ability of the PRISMA imager to
estimate topsoil properties.

Keywords: hyperspectral; multispectral; PRISMA; soil properties; bare soil; SOC; soil texture;
Sentinel-2; Landsat 8; PLSR; Cubist

1. Introduction

There is an acknowledged requirement for up-to-date, spatially precise and inexpen-
sive soil-mapping methods to monitor the soil properties of both agronomic and environ-
mental interest and their related processes [1,2]. The spatial and temporal monitoring of soil
properties is also highly significant, from both environmental and economic perspectives.

The physical link between soil components and the electromagnetic spectrum has
allowed the for development of promising soil spectroscopy techniques for the estimation
of soil properties in the laboratory, as well as progressively from airborne and satellite
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platforms. Satellite hyperspectral images offer an important advantage for monitoring
soil properties from the field to the regional scale. The relationships between the soil
reflectance spectrum in the optical range and soil mineralogy, chemical composition [3],
soil organic matter content [4], soil water content [5], and soil particle size distribution [6]
have led to the development of promising data-driven or physical-based methods of
estimating soil properties [7]. This is due to the interaction of soil components with visible
and infrared radiation that show specific absorption features in this spectral range [8–10].
For example, clay minerals have typical spectral features in a shortwave infrared region
(SWIR) between 2170 and 2360 nm. Soil organic carbon (SOC) considerably influences the
shape and nature of soil reflectance spectra [11]. It has specific spectral features [12] in the
visible region with a wide absorption characteristic reported at around 664 nm [13], and in
the SWIR region, principally due to the two principal organic compounds that influence
the reflectance of lignin (between 1600 and 1800 nm and around 2100 nm) and cellulose
(around 2100 nm) [13–15]. Moreover, the biochemical components of soil organic matter [2]
have effects on the reflectance in the visible (400–700 nm) and NIR-SWIR (700–2500 nm)
intervals [2,16] of the spectrum.

Spectral chemometrics models are particularly suitable for the precise quantification
of soil properties [17]. These approaches make use of the whole spectrum to assess soil
parameters, leading to an optimal selection of the bands and spectral range. The most
widely used calibration techniques for developing these models are those relying on the
Partial Least Squares Regression (PLSR) [2,8,18–21], which has been exceptionally valuable
for developing models that comprise a significant number of predictor variables while
considering the relationship between spectra and soil characteristics [22]. In order to handle
big and spatially varied spectral libraries to estimate soil characteristics over a reduced
area, numerous approaches, based mainly on the intensification of the estimation capacity
of local samples, were considered [23–25]. Cubist Regression and random forest have
been progressively utilized to model and predict soil variables at both local and regional
scales [22,26].

Numerous soil spectroscopy studies have been carried out in the laboratory
and proved effective in the estimation of soil properties, with a significant level of
accuracy [9,27–30]. Spectral chemometrics for the prediction of soil properties was demon-
strated to be relevant and accurate in the simultaneous prediction of several soil variables
in the laboratory [31–33]. The results of [34] provided good SOC content predictions with
PLSR models. The authors of [30] concluded that accurate and globally stable PLSR models
for predicting soil variables can be developed from spectra acquired in the laboratory.
While this approach provides an estimation of soil properties at specific sampling points,
geo-statistical or interpolation techniques are essential to produce continuous spatial data,
i.e., maps; therefore, the prediction accuracy tend to decrease in larger areas.

The strength of the relationships between spectral features and soil properties de-
creases from laboratory to satellite imaging spectroscopy [35]. This is mainly due to the
combination of weather conditions and atmospheric attenuation, soil conditions, the scale,
and the spectral resolution of the sensors. As new challenges arise in the quantification of
soil properties, there is a continuing effort to meet these challenges and advance model pre-
cision [1]. Many recent scientific papers demonstrated the ability of, and the encouraging
results obtained for, soil properties’ prediction and mapping from Sentinel-2 and Landsat 8
optical data [31–34].

The extensive Sentinel-2 and Landsat 8 time series also strengthen the possibility of
detecting bare-soil areas in croplands and, accordingly, tracking soil properties across big
districts. The respective short and moderate revisit times of the two satellite constellations
increase the likelihood of obtaining cloud-free images and a high number of bare soil
fields. This is particularly important in the soil imaging spectroscopy context, due to the
narrow time window in which it is possible to observe bare soil in croplands. The use of
multispectral imagery in small study areas, and considering only bare soils, proved to be
successful. However, the quantitative prediction of soil parameters through the bare soil
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images attained from multispectral remote sensors was not optimized by a deficient spectral
resolution [32,33], principally due to the lack of narrow bands in the SWIR region (i.e., the
spectral interval influenced by the soil chromophores). This is of great importance for the
prediction, for example, of clay, which can be estimated by exploiting well-distinguished
spectral features between 2200 and 2400 nm that are related to the O-H stretch and metal-
OH bends of the clay lattice of the most clay minerals in soil (e.g., kaolinite, montmorillonite
and illite) [36]. These specific spectral features can only be detected by a hyperspectral
sensor with an adequate spectral resolution in this region.

In this regard, hyperspectral remote sensing is a suitable technology to produce
spatially precise topsoil mapping [15,37]. With the current and forthcoming availability of
hyperspectral satellite sensors with an adequate signal to noise ratio (SNR), such as with
the launch of PRecursore IperSpettrale della Missione Applicativa (PRISMA) [2,8] and the
upcoming launch of EnMAP [1], the mapping of soil variables over large extents using
imaging spectroscopy can be achieved. These sensors can regularly upgrade soil maps in
bare-soil zones, a task that can only be obtained from existing low spectral resolution sensors
at present [38]. Furthermore, several bands in the SWIR spectral interval of the forthcoming
satellite hyperspectral imagers will presumably permit a more accurate prediction of soil
parameters in comparison to current multispectral sensors.

There is an increasing number of papers concerning the estimation of soil variables
exploiting resampled and/or simulated satellite hyperspectral data using statistical mod-
els [8,11,39]. Gomez et al. [11], while comparing prediction models of SOC using hyper-
spectral proximal and remote sensing data, revealed that the SOC map predicted using
PLSR models showed a similarity with field observations, demonstrating the potential
of combining hyperspectral remote sensing datasets and chemometrics models. Novel
approaches to soil information retrieval have been proposed in the literature, based on
simulated data from satellite hyperspectral sensors, which have already been launched or
are to be launched soon. Castaldi et al. [21] showed that using simulated PRISMA datasets
with an a priori recognition of the soil humidity classes can lead to a reduction in the
error in clay estimation. Steinberg et al. [40] showed that simulated EnMAP hyperspectral
satellite data allows for the prediction of iron oxide, clay, and SOC in topsoil with a minor
reduction in soil estimate accuracy compared to the airborne scale, while still retaining,
with PLSR, a satisfactory prediction accuracy. Castaldi et al. [20] investigated the abilities
of seven multispectral and simulated hyperspectral satellite datasets to predict soil vari-
ables from PLSR models. Their results showed that, in the absence and with the addition
of noise, the performances of hyperspectral data, presented by Ratio of Performance to
Inter-Quartile (RPIQ) range, were significantly better compared to those of multispectral
imagers for topsoil clay, sand, silt and SOC estimation. The authors of [2] obtained a
reasonable SOC prediction accuracy from a local PLSR approach applied to simulated
EnMAP satellite imagery.

Even though previous studies explored the abilities of actual PRISMA data in non-
photosynthetic vegetation monitoring [41] and land-use monitoring [42], the ability of the
PRISMA hyperspectral sensor in the soil domain has not been reported to date.

The objective of this study is to assess the potential of the PRISMA hyperspectral data
for the prediction of topsoil properties over agricultural bare soil areas, in comparison with
Sentinel-2 and Landsat 8 multispectral data. We selected two experimental agricultural
areas in Italy and compared different processing approaches using both the soil spectral
measurements elaborated in the laboratory and extracted from satellite imagers at the field
level. For actual remote-sensing data, bare soil fields were identified based on pre-defined
spectral indexes thresholds. Subsequently, the usefulness of spectra extracted from single
date images was assessed.

2. Materials and Methods

The flowchart of the methodology is illustrated in Figure 1 and hereafter, the following
steps are described. These include: (A) soil sample collection and analysis (Section 2.2),
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(B) spectral laboratory measurements (Section 2.3); (C) pre-processing of the hyperspectral
(Section 2.3.1) and multispectral (Section 2.3.2) remote sensing satellite data and (C) the
prediction of soil properties based on bare soil spectra from both laboratory resampled data
(Section 2.4.1) and collected satellite data (Section 2.4.2).

Figure 1. Flowchart of the proposed methodology.

2.1. Study Area

Two agricultural test sites were selected for the estimation of topsoil properties in
Central and Southern Italy.

For Central Italy, the area under investigation is located within the Maccarese S.p.A.
farm (latitude 41◦52′18” N, longitude 12◦14′05” E, altitude 8 m a.s.l.) near Rome (Figure 2a).
The study area underwent reclamation works in the early 1920s, which led to considerable
changes to the landscape of the coastal marshland. The soil of this area is classified, accord-
ing to a recent regional soil map [43], mainly as Dystric Arenosols (dunes and rear dune and
recent alluvial and aeolian deposits) and Eutric Endochromic Luvisols (coastal plain reclaimed
on fluvio-marsh sediments and recent fill), using the WRB FAO soil classification [43]. The
Maccarese farm area is characterized by groups of beach ridges corresponding to eight
homogeneous complexes that can be followed in both the Northern and in Southern part of
the delta of the river Tevere and coastline dynamics. In particular, the soil parent materials
of the Northeastern part of the studied site are alluvial deposits of the Arrone river. The
main soil texture is sandy clay loam, which becomes more clayey towards the Northeast of
the site; consequently, no carbonate topsoil is present in the area, while, on dunes, shell
remnants can be present. The principal crops grown in the area are maize, followed by
durum wheat, winter wheat, fava bean and forage crops.

The investigated area in Southern Italy is Pignola (Figure 2b) in the Basilicata Region
(Latitude 40◦33′45′′ N, Longitude 15◦45′40′′ E). The sampled area altitudes vary from 720 to
760 m a.s.l. According to the Regional pedagogical map [44], which follows the WRB FAO
soil classification, the Pignola soils correspond to Eutri-Vertic Cambisols (fluvio-lacustrine
deposits of a local basin). The site is generally characterized by a moderately differentiated
profile due to the partial removal of carbonates and browning of the horizons with free
drainage. The main crop classes consist of arable land, pastures, and coppice woodland.
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Figure 2. Study areas: (a) Maccarese: Central Italy and (b) Pignola: Southern Italy.

2.2. Field and Soil Sampling

Field campaigns were performed in both sites: for Maccarese on 11 November 2019,
28 January 2020 and 17 February 2020; for Pignola on 20 January 2020. The same protocol
was followed, collecting soil samples located according to an Elementary Sample Unit
(ESU) scheme set up to fit the PRISMA spatial resolution (Tables 1 and 2), i.e., according
to 30 by 30 m quadrats. Each ESU contained 10 sampling points, positioned 15 m apart.
On each point, three soil samples were collected within a 1 m radius, with an Ejkelkamp
auger in the 0–10 cm depth layer. To optimize the sampling strategy on the PRISMA pixel
size, the samples collected in the 10 ESU points were subsequently processed in the lab
with two different sets of analyses. Soil samples from points 1 to 5 and samples from 6 to
9 were kept separate at the time of the laboratory analysis, thus obtaining two average soil
properties values per ESU. The data of the points from 6 to 10 could be used as a 15 by
15 m sub-ESU, suitable for higher resolution sensors, e.g., compatible with the Sentinel-2
spatial scale, and to evaluate the variability within the ESU. We collected soil samples from
a total of 61 ESU (43 from Maccarese and 18 from Pignola). Soil samples were analyzed to
determine clay, silt, and sand content, using the pipette method, according to the USDA
textural thresholds, and SOC content using the Walkley–Black method.

Table 1. Descriptive statistics (Min: Minimum; Max: Maximum; Mean; Std: standard deviation) of the
measured soil properties at the two sampling sites for the 30 by 30 m ESU and for the 15 by 15 m sub-ESU.

Maccarese Pignola

ESU
(PRISMA, Landsat 8)

Sub-ESU
(Sentinel-2)

ESU
(PRISMA, Landsat 8)

Sub-ESU
(Sentinel-2)

Clay (%) Min 4.37 4.50 23.88 22.3
Max 75.93 77.32 53.98 53.48

Mean 37.56 37.33 33.99 33.78
Std 21.10 21.13 7.28 7.20
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Table 1. Cont.

Maccarese Pignola

Silt (%) Min 1.05 0.70 30.85 30.77
Max 28.89 29.26 46.82 48.45

Mean 15.21 15.39 38.26 38.32
Std 8.20 8.48 4.70 5.23

Sand (%) Min 3.51 4.47 14.78 14.28
Max 93.04 93.47 36.07 39.68

Mean 47.23 47.27 27.75 27.9
Std 26.88 26.86 6.53 7.05

SOC (%) Min 0.18 0.22 0.96 0.96
Max 2.09 2.08 1.80 1.83

Mean 0.95 0.95 1.44 1.44
Std 0.41 0.40 0.23 0.25

Table 2. Prisma satellite’s main characteristics.

VNIR SWIR PAN

Spectral range 400–1010 nm 920–2500 nm 400–750
Spectral resolution 12 nm 12 nm

Spectral bands 66 171 1

SNR >200:1 on 400–1000 nm
>600:1 @ 650 nm

>200:1 in 1000–1750 nm
>400:1 @ 1550 nm

>100:1 in 1950–2350 nm
>200:1 @ 2100 nm

>240:1

MTF @ Nyquist Frequency > 0.3 @ Nyquist Frequency > 0.3 @ Nyquist Frequency > 0.2
Swath width 30 km; 2.77◦

Spatial resolution 30 m 30 m 5 m
Telescope aperture 210 mm (diameter)

Orbital altitude 620 km

Table 1 shows the descriptive statistics of soil properties in the ESU and sub-ESU of
the two experimental locations.

2.3. Laboratory Dataset

After air-drying, crushing, mixing, and sieving at 2 mm, a subsample of dry sieved
soil was extracted from all soil samples that were originally collected in the field. The sub-
samples were placed in labeled small aluminum bowls, previously painted in black, on the
interior. Reflectance measurements were performed across the 350–2500 nm range, using an
Analytical Spectral Device (ASD, SN:6255) Field Spec Fr Pro spectroradiometer (ASD Inc.,
Denver, CO, USA), with a spectral resolution of 3 nm in the Vis-NIR range (350–1050 nm)
and of 10 nm in the SWIR range (1050–2500 nm). The ASD was equipped with a contact
probe containing a high-intensity quartz-halogen lamp (50 W) (Figure 3). Radiance across
the 350–2500 nm spectral range was measured and converted to reflectance using a cali-
brated white Spectralon (Labsphere, Inc., North Sutton, NH, USA) reference panel. The
protocol used for the measurements accurately followed the approach detailed in [1,28].

To prepare and control the experimental conditions, the ASD was turned on at least
60 minutes before the readings started, to warm up the spectrometers and the lamps. The
room was kept dark during the readings to avoid any interference with the instrument. To
prepare the soil sample readings, the following operations were performed: (i) mixing and
flattening the soil within a bowl with a glass surface, (ii) bringing the samples to the ASD
contact probe (CP) using an elevator, while the CP was held firmly in place, (iii) putting the
soil in contact with the CP and perform the reading, and (iv) repeating the first three steps a
total of 5 times per soil sample. Figure 3 illustrates the main phases of these operations. To
correctly process the measurements, a check was performed every five sample readings to
assess whether the white Spectralon panel had returned to 100%. If not, the white reference
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was reacquired to set it back to 100% to correct the detector’s drift. The soil standard
samples of Lucky Bay and Wylie Bay [28] were also reacquired to standardize the ASD
readings according to the standard protocol [28], to minimize the systematic effect of the
measurements. The standardization followed the protocol set-up of Ben Dor et al. [28].
The five spectral replicates for each soil sample were averaged, and each spectrum was
associated with the sample ID and its physical and chemical properties, constituting the
laboratory dataset.

Figure 3. Images from the laboratory spectroscopy experiment. (a) Painted trays with the soil samples;
(b) Positioning of the sample below the sensor; (c) Close-up of the moment of contact between the
ASD contact probe and the soil sample.

2.3.1. PRISMA Hyperspectral Data

The “PRecursore IperSpettrale della Missione Applicativa” (PRISMA), put in orbit
from 2019 by the Italian Space Agency (ASI), is a technology demonstrator satellite mission
finalized to develop user-driven [45] pre-operational products, taking advantage of the
combination of a hyperspectral sensor and a panchromatic imagery. PRISMA mission is
fully funded by ASI, while the payload was developed by the Italian Leonardo company.
The main mission characteristics are described in the work of [46,47] and are briefly listed
in Table 2.

PRISMA payload is a push-broom design based on a prism-based concept, acquiring
234 spectral bands in the 400–2500 nm spectral range. The first spectrometer provides
66 bands in the Vis-NIR spectral range, while the second spectrometer operates in the SWIR.
The sun synchronous orbit obtains a swath of 30 km images with a Ground Sampling
Distance (GSD) of 30 m, while PAN provides a co-registered image at 5 m/pixel. The
revisit time is 29 days (from nadir), while shorter revisit times, of up to 7 days, could be
managed by the available re-look capability. Mission lifetime is 5 years. The use of a prism
as diffraction elements determines a non-uniform bandwidth across the Focal Plane Array
(FPA). Moreover, as the center wavelength (CW) could change due to FPAs temperature
each image is correlated by ancillary information indicating the proper CW and FWHM.
Images are provided by ASI (https://prisma.asi.it/, accessed on 22 December 2021) in
the Hierarchical Data Format–Earth Observing System (HDF-EOS5) format at different
processing levels: L1 TOA radiance units, L2C ground reflectance without geometric
correction, and L2D, corresponding to geocoded ground reflectance. Details of the ASI
standard processing are available in the PRISMA Products Specification Document (ASI,
PRISMA Products Specification Document Issue 2.1, accessed on 22 November 2021). The
L2D processing level was selected for all the images utilized for the scope of this work.

The results presented in this study are based on the L2D (geocoded version of the
level 2C “At-surface Reflectance Product”; [47,48]) data current version (i.e., 2.0.4) of
PRISMA products distributed to the registered users by ASI. The requested L2D images
(PRS_L2D_STD) were downloaded from the PRISMA mission catalog website (http://
prisma-i.it, accessed on 22 December 2021). The PRISMA images used for this study were

https://prisma.asi.it/
http://prisma-i.it
http://prisma-i.it
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collected on the two test sites between November 2019 and August 2021 (see Table 3) with
observer (roll±) angles varying from 4◦ to 18◦. The overall weather conditions were stable,
i.e., clear-sky conditions, during the days of acquisition (PRISMA image cloud coverage
between 0.01% and 7.14%) with a very low aerosol presence during the field surveys.

Table 3. Dates of the PRISMA, Sentinel-2 and Landsat 8 satellite data employed for the two test sites
of Maccarese and Pignola.

Study Area PRISMA Sentinel-2 Landsat 8

Maccarese Calibration 7 November 2019 7 November 2019 1 November 2019
8 February 2020 8 February 2020 5 February 2020
20 October 2020 20 October 2020 18 October 2020

Mapping 17 May 2021 15 May 2021 20 April 2018
Pignola Calibration 23 August 2021 22 August 2021 20 August 2021

The original HDF-EOS5 files were converted to Band Interleaved by Line (BIL) file
format using an in-house tool developed in the IDL/ENVI 8.7.2. (L3Harris Technologies,
Melbourne, FL, USA) by CNR IMAA (Italy) researchers. Before merging the two extracted
Vis-NIR and SWIR hyperspectral datasets into a single image file, it was necessary to
remove the overlapping reflectance bands in the 930–998 nm spectral range and remove
the bands with a low SNR or those affected by noise.

From the original 234 bands, we excluded: (a) bands where the SNR was low (bands
1–9, i.e., 402–464 nm; bands after band 222, i.e., 2414 nm); (b) the atmospheric water
absorption bands (bands 101–119 and 148–175, corresponding to the 1328–1523 nm and
1812–2044 nm spectral ranges, respectively); (c) bands in the overlapping zone (bands
59, 61, 63–70, i.e., 930–998 nm); and (d) bands with random spikes (band 44, i.e. 770 nm;
bands 85–89, i.e. 1152–1196 nm) for each image, based on a visual comparison with the soil
ground reflectance spectra, collected nearly simultaneously with the ASD FieldSpec Pro
spectroradiometer (ASD Inc., Denver, CO, USA). The resulting dataset, with 150 reflectance
bands, was used for all PRISMA images of this study.

Moreover, even though L2D PRISMA images are supplied and geocoded (in our
case with Datum: WGS-84 and Projection: UTM 33 N), there is a residual, non-constant
small shift (maximum 5 pixels) in all the images when compared to the ancillary digital
cartography and vectorized shape file of the fields of interest. Therefore, we resampled
all the images on the same grid of the field corners vectors, using a Nearest Neighbor
algorithm implemented in the THOR Change Detection tool in ENVI 5.5.2. (L3Harris
Technologies, USA). This was performed to co-register and align all the images (a) to set-up
the data stack layer for the subsequent multitemporal analysis and (b) to allow for the
accurate extraction of PRISMA spectra in correspondence to the ground-collected field
soil samples.

2.3.2. Sentinel-2 and Landsat 8 Multispectral Data

Sentinel-2 Multi-Spectral Instrument (S2/MSI) and Landsat 8 Operational Land Imager
(L8/OLI) data were obtained within the Google Earth Engine (GEE) environment for the
two study areas, at dates very close to the PRISMA acquisitions (Table 3). The images were
selected from the S2/MSI level 2A (COPERNICUS/S2_SR in GEE) and L8/OLI level 2,
collection 2, Tier 1 (LANDSAT/LC08/C02/T1_L2 in GEE) image collections. Sentinel-2
pixels affected by clouds and clouds’ shadows were masked using the ‘QA60’ bitmask band
for cirrus and opaque clouds, the ‘MSK_CLDPRB’ for clouds, and the ‘MSK_SNWPRB’ for
snow. The cloudy Landsat 8 pixels were removed using the Pixel Quality Assessment Band.
We selected B2 (central wavelength 490 nm), B3 (560 nm), B4 (665 nm), B5 (705 nm), B6
(740 nm), B7 (783 nm), B8 (842 nm), B8a (865 nm), B11 (1610 nm) and B12 (2190 nm) for
S2/MSI and B2 (483 nm), B3 (560 nm), B4 (660 nm), B5 (865 nm), B6 (1650 nm), B7 (2220 nm)
for L8/OLI.
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2.4. Soil Properties’ Estimation

Soil property estimation models were built, starting from SOC, clay, sand, and silt
content (dependent variables or outcomes) measured by chemical and physical analysis
of the samples collected in the Maccarese and Pignola and the spectral data acquired in
laboratory conditions or by satellite sensors (PRISMA, S2/MSI and L8/OLI), representing
the independent variables or predictors. All estimation models were calibrated by testing
two algorithms: Partial Least Square Regression (PLSR) [49] and Cubist [50]. The Cubist is a
rule-based regression algorithm that allows a specific linear regression model to be defined
for a subset of the calibration dataset. Therefore, the Cubist algorithm makes a partition at
each node, characterized by a condition (rule) involving the independent variables, i.e., the
soil spectral bands.

To reduce the noise of the actual PRISMA data and enhance the spectral features
related to soil properties, the following spectral pre-treatments were tested: Savitzy–Golay
filter (SG) [51], standard normal variate (SNV) [52] and continuum removal (CR) [36]. The
model parameter tuning was conducted set up using the caret package in R [53], testing
different numbers of components for PLSR and different combination of committees and
neighbors for Cubist models. The best model was determined according to the lowest
10-fold cross-validation Root Mean Square Error (RMSE, Equation (1))

RMSE =

√
∑n

i=1
(
ym − yp

)
n

(1)

where ym are the soil properties’ measured values and yp are the values predicted by the
models. Each observation (measured value) appears in only one of the 10 folds selected for
the cross-validation process. Thus, no overlap exists between groups, and the observations
were split according to a pseudorandom number generator that allows for the output of
the random fold-splitting to be reproduced to cross-validate all the predictive models.

To compare the estimation accuracy between soil properties and the other literature
results, the coefficient of determination (R2, Equation (2)), Ratio of Performance to Devia-
tion (RPD, Equation (3)) and Ratio of Performance to Inter-Quartile distance [54] (RPIQ,
Equation (4)) were computed

R2 = 1− RSS
TSS

(2)

RPD =
Std

RMSE
(3)

RPIQ =
IQ

RMSE
(4)

where RSS is the sum of squares of the residuals, TSS is the total sum of squares, and
Std and IQ are the standard deviation and the observed values, respectively. For each
combination of outcome and predictors (e.g., SOC estimation using S2/MSI data), only the
best model in terms of average 10-fold cross-validation Cubist and PLSR is reported in the
manuscript. Moreover, in order to better compare the prediction accuracy obtained by bare
soil satellite spectra, the standard error of the ten cross-validation folds is also provided for
RPIQ and RPD values.

2.4.1. Laboratory and Resampled Spectra

The spectral library acquired by ASD Fieldspec Pro spectroradiometer in our labora-
tory under controlled conditions according to the Internal Soil Standard (ISS) [28] protocol
was included in this work, as it might represent the best conditions for the estimation of
soil properties, especially due to the very short distance from the sensor (contact probe) to
the target object. Thus, the laboratory spectra were applied to evaluate the spectral resolu-
tion ability of the PRISMA, S2/MSI and L8/OLI sensors in ideal conditions, i.e., without
disturbing factors affecting the satellite signal [31].
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Four different spectral datasets were retrieved from the laboratory spectral library,
and as many estimations models as soil properties (SOC, clay, sand, and silt): (i) all the
spectral data provided by the ASD Fieldspec Pro spectroradiometer (hereinafter referred to
as LAB), (ii) ASD spectra resampled according the PRISMA bands, excluding noisy bands,
as described in Section 2.3.1 (hereinafter referred to as LAB PRISMA), (iii) ASD spectra
resampled according to the S2/MSI bands (hereinafter referred to as LAB S2), and (iv) ASD
spectra resampled according to the L8 bands (hereinafter referred to as LAB L8).

The resampling process was carried out with a Gaussian model, considering only the
central wavelength and the bandwidth of each satellite band, using the spectral resampling
function of the package hsdr in R [55]. This procedure provided a common method for all
the satellites since a spectral response function was unavailable for PRISMA.

2.4.2. Bare Soil Satellite Spectra

For each soil sample collected in the Maccarese and Pignola areas, we selected the
PRISMA image, among those listed as calibration in Table 3, that corresponded to the
bare-soil conditions for the sampling areas. The selection was carried out by avoiding
clouds, green and dry vegetation, thanks to the (a) agricultural management information,
mainly provided by direct observations in the field, (b) visual check of the satellite images,
(c) computation of the NDVI using a threshold of 0.35 to remove green vegetation pixels,
and (d) the burn index 2 (NBR2; Equation (5)) to detect and remove non-photosynthetic
vegetation (NPV) for S2/MSI and L8/OLI images

NBR2 =
ρSWIR1 − ρSWIR2

ρSWIR1 + ρSWIR2
(5)

where ρSWIR1 is the reflectance value of B11 for S2/MSI (B11) and B6 for L8/OLI in-
strument, while ρSWIR2 corresponds to B12 for S2 and B7 for L8. Instead, we used the
normalized cellulose absorption index (nCAI; Equation (6)) (nCAI < 0.03) for the PRIMA
hyperspectral data. Compared to NBR2, this narrow band index is better suited to exploit-
ing the of hyperspectral data’s ability to identify spectral features related to dry matter and
cellulose [2,56,57] and, therefore, to detect NPV in the field.

nCAI =
0.5 ∗ (ρ2000 + ρ2200)− ρ2100

0.5 ∗ (ρ2000 + ρ2200) + ρ2100
(6)

The bare-soil spectra were extracted according to the selected dates at different sam-
pling point locations. For this study, we used the S2/MSI and L8/OLI images with the
closest acquisition dates to the PRISMA dataset (Table 3).

2.4.3. Spatial Assessment of Topsoil Maps

An assessment of the correspondence of estimated maps of SOC, clay, sand, and silt,
with the pattern of spatial soil variability, was performed for an agricultural field within
the Maccarese area (referred to as “Field B071” in Figure 2a), for which ground data on
soil’s apparent electrical resistivity were available. The best models previously obtained for
each soil property and satellite sensor were applied to independent satellite images, i.e., not
those used for the calibration of the models (Table 3). For this purpose, we selected satellite
images acquired in mid-spring 2021 for S2/MSI (15 May) and PRISMA (17 May), while,
for L8/OLI, no cloud-free images were acquired in the same time window; consequently,
we selected an image acquired at the same time of the year (mid-spring) in 2018, showing
similar field conditions.

Each soil properties predictions map was spatially compared with the map obtained
from a geoelectrical survey carried out on the field of the Maccarese farm area, since some
soil properties, such as clay and SOC, are related to electrical resistivity/conductivity [58–61].
The geological survey acquired an apparent electrical resistivity (Ω m) of the 0–0.5 m topsoil
layer at the meter resolution, using an Automatic Resistivity Profiling (ARP) multi-electrode
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continuous profiler, pulled by a quad. More specific information on the geoelectrical survey
is provided by Casa et al. [62]. Resistivity maps were obtained by spatial interpolation of
the ARP measurements using block kriging with block dimensions corresponding to the
resolutions of PRISMA and Landsat (30 m) and Sentinel-2 (10 m). The satellite-derived
maps of predictions were used as underlying grids for the interpolation. Figure 4 shows
the ARP map obtained at Sentinel-2 resolution.

,
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Figure 4. Electrical resistivity map (10 m resolution) of the experimental field B071 of Maccarese,
spatially interpolated using block kriging.

The spatial correlation between the resistivity maps and the maps of satellite-predicted
soil properties was assessed using the Dutilleul t-test for the spatial processes [63,64] of
the SpatialPack package implemented in R [65]. This test allows for an evaluation of
the consistency of satellite-predicted maps, with the spatial patterns highlighted by the
geophysical survey.

3. Results
3.1. Soil Properties Estimation Using Laboratory and Resampled Spectra

The accuracy of the models resampled using laboratory spectra (LAB) was very high
for clay (RPIQ: 4.46), sand (RPIQ: 3.79) and silt (RPIQ: 5.00), and lower for SOC (RPIQ: 2.59;
RPD: 1.81; R2: 0.75) (Table 4). The PLSR technique, in the case of the laboratory spectra,
provided the best models for the retrieval of the four soil properties.

The spectra resampled according to the PRISMA bands (LAB PRISMA dataset) pro-
vided accurate estimation performances for the four soil properties. The best estimation
accuracies were obtained for clay (RPIQ: 4.87; RPD: 4.12; R2: 0.92), sand (RPIQ: 3.80;
RPD: 3.58; R2: 0.93) and SOC (RPIQ: 2.59; RPD: 1.81; R2: 0.77). The estimation accuracy of
the three above-mentioned soil properties for LAB PRISMA data was the highest compared
with the other laboratory datasets. The only exception was observed for silt estimation,
with laboratory data that showed slightly higher results (RPIQ: 5.00; RPD: 3.36; RMSE: 3.84)
than those achieved using PRISMA-simulated data (RPIQ: 4.88; RPD: 3.29; RMSE: 3.93).
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Table 4. Estimation accuracy of the best-performing prediction models of soil properties derived
from laboratory resampled spectra. RMSE: Root Mean Square Error; R2: coefficient of determination;
RPD: Ratio of Performance to Deviation; RPIQ: Ratio of Performance to Inter-Quartile distance.

Variable Resampling Type Model RMSE (%) RPIQ RPD R2

Clay

LAB PRISMA PLSR 4.37 4.87 4.12 0.92
LAB S2 Cubist 5.34 3.99 3.37 0.87
LAB L8 Cubist 6.48 3.29 2.78 0.80

LAB PLSR 4.77 4.46 3.78 0.90

Silt

LAB PRISMA PLSR 3.93 4.88 3.29 0.90
LAB S2 Cubist 4.21 4.56 3.08 0.92
LAB L8 Cubist 5.41 3.54 2.39 0.86

LAB PLSR 3.84 5.00 3.36 0.92

Sand

LAB PRISMA PLSR 6.79 3.80 3.58 0.93
LAB S2 Cubist 7.76 3.32 3.13 0.92
LAB L8 Cubist 9.54 2.70 2.55 0.85

LAB PLSR 6.80 3.79 3.58 0.93

Organic
Carbon

LAB PRISMA PLSR 0.23 2.59 1.81 0.77
LAB S2 PLSR 0.27 2.21 1.54 0.74
LAB L8 Cubist 0.35 1.70 1.22 0.50

LAB PLSR 0.23 2.59 1.81 0.75

By resampling the laboratory spectra according to the multispectral Sentinel-2 (LAB
S2) and Landsat 8 (LAB L8) bands, the accuracy decreased for all the soil properties and
particularly for sand in the case of LAB S2 (RMSE: 7.76; RPIQ: 3.32) and SOC in the
case of LAB L8 (RMSE: 0.35; RPIQ: 1.70; RPD: 1.22; R2: 0.50). The models resampled
to the Sentinel-2 data showed a good estimation accuracy for silt (RPIQ: 4.56; RPD: 3.08;
R2: 0.92). The same property estimated using the LAB L8 data also provided a good degree
of accuracy (RPIQ: 3.54; RPD: 2.39; R2: 0.86). Otherwise, LAB S2 data showed the best
performances among multispectral datasets for all variables. For the LAB S2 and LAB L8
multispectral data, the best prediction accuracies were obtained using the Cubist method,
except for SOC, where the PLSR provided the best results for the LAB S2.

3.2. Soil Properties Estimation Using Bare Soil Satellite Spectra

As expected, the estimation accuracy with real satellite data decreased for all the
soil properties as compared to the laboratory resampled spectra (Table 5). The worsening
was particularly apparent for clay. However, the SOC model from PRISMA presented
even better results than those obtained from LAB PRISMA data (RPIQ ± SE: 3.51 ± 0.16;
RPD ± SE: 2.43 ± 0.11 for PRISMA and RPIQ: 2.59; RPD: 1.81 for LAB PRISMA).

Table 5. Estimation accuracy of the best-performing prediction models for soil properties derived
from Figure 2 and Landsat 8) spectra of bare soil. RMSE: Root Mean Square Error; R2: coefficient of
determination; RPD: Ratio of Performance to Deviation; RPIQ: Ratio of Performance to Inter-Quartile
distance; SE: standard error.

Variable Satellite Model RMSE (%) RPIQ ± SE RPD ± SE R2

Clay
PRISMA Cubist 9.50 2.32 ± 0.07 1.88 ± 0.06 0.73

Sentinel-2 Cubist 9.63 2.14 ± 0.17 1.87 ± 0.14 0.63
Landsat 8 Cubist 10.58 2.01 ± 0.08 1.71 ± 0.07 0.61

Silt
PRISMA Cubist 4.99 3.85 ± 0.19 2.57 ± 0.12 0.85

Sentinel-2 PLSR 6.08 2.93 ± 0.10 2.15 ± 0.07 0.75
Landsat 8 PLSR 8.59 2.24 ± 0.16 1.50 ± 0.11 0.68

Sand
PRISMA Cubist 12.01 2.15 ± 0.05 2.01 ± 0.04 0.77

Sentinel-2 PLSR 11.84 2.21 ± 0.10 2.05 ± 0.09 0.79
Landsat 8 PLSR 15.72 1.64 ± 0.04 1.55 ± 0.04 0.58
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Table 5. Cont.

Variable Satellite Model RMSE (%) RPIQ ± SE RPD ± SE R2

Organic
Carbon

PRISMA Cubist 0.17 3.51 ± 0.16 2.43 ± 0.11 0.85
Sentinel-2 PLSR 0.28 1.85 ± 0.20 1.52 ± 0.16 0.68
Landsat 8 Cubist 0.30 1.98 ± 0.12 1.40 ± 0.08 0.60

The estimation of soil variables using hyperspectral PRISMA imagery provided the
best results for soil texture and SOC estimation (Figure 5). The accuracy of the models
using hyperspectral imagery was high for SOC (RPIQ ± SE: 3.51 ± 0.16; RPD ± SE: 2.43;
RMSE: 0.17) and silt (RPIQ ± SE: 3.85 ± 0.19; RPD ± SE: 2.57± 0.12; RMSE: 4.99), and
lower for clay (RPIQ ± SE: 2.32 ± 0.07; RPD ± SE: 1.88 ± 0.06; R2: 0.73).

Figure 5. (a) Clay, (b) sand, (c) silt and (d) SOC best model predictions for L8/OLI (red circles),
PRISMA (blue triangles) and S2/MSI (green squares).

The difference in statistical accuracy between hyperspectral and multispectral datasets
became more apparent when using real satellite data, as compared with resampled labo-
ratory data. The statistical accuracy obtained using the multispectral imagery was lower
compared with those obtained using the hyperspectral image for all soil variables, except
for sand, where the Sentinel-2 estimation model provided a slightly higher prediction
accuracy (RPIQ ± SE: 2.21 ± 0.10; R2: 0.79) in comparison with PRISMA (RPIQ ± SE:
2.15 ± 0.05; R2: 0.77). The soil property models obtained using the Landsat 8 image pro-
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vided a sufficient degree of accuracy (RPIQ ± SE: 2.01 ± 0.08; RPD ± SE: 1.71 ± 0.07 in
the case of clay); however, all the L8/OLI statistics were worse than those obtained by
S2/MSI data.

The RPD values obtained from hyperspectral and multispectral resampled data
(Figure 6) for clay (RPD: 4.12 for LAB PRISMA and 3.37 for LAB S2) and sand (RPD: 3.58 for
LAB PRISMA and 3.13 for LAB S2) estimation were significantly higher than those obtained
with real spectra (case of clay: RPD is equal to 1.94 for PRISMA and 1.87 for Sentinel-2;
case of sand: RPD is equal to 2.01 for PRISMA and 2.05 for Sentinel-2). Conversely, the
estimation accuracy of SOC for the hyperspectral imager (RPD: 2.43) was statistically higher
compared with the other laboratory (RPD: 1.81), resampled (LAB PRISMA RPD: 1.81) and
real (Sentinel-2 RPD: 1.52) datasets.

Figure 6. Ratio of the Performance to Deviation (RPD) results for the laboratory (LAB), resampled
and real hyperspectral and multispectral dataset mapping of the four soil properties (SOC, clay, sand,
and silt).

In the absence of noise, and considering only the spectral characteristics, the perfor-
mance of resampled hyperspectral data was significantly better than those of the resampled
multispectral datasets. The PRISMA hyperspectral satellite data display a very similar
behavior with respect to the laboratory spectral data when estimating all soil texture and
SOC content variables (case of sand and SOC: RPD is equal to 3.58 and 1.81 for both LAB
and LAB PRISMA, respectively).

For the SOC, clay and silt soil variables, the RPD confirmed the better estimation
accuracy of the hyperspectral imager compared to the multispectral imagers. An exception
was observed for sand estimation with Sentinel-2 data, which showed slightly higher
results (RPD: 2.05) than those achieved using PRISMA (RPD: 2.01).

In more detail, we tested the application of the PLSR and Cubist Regression to labora-
tory resampled and real multispectral and hyperspectral satellite data to quantify the soil
texture and SOC content. The results of the use of PRISMA hyperspectral satellite imagery
with the Cubist Regression model provided the best-performing models for the prediction
of clay, silt, sand and SOC. The variables silt, sand and SOC were better estimated using
PLSR models in the case of the multispectral data. In this case, PLSR models performed
better than those obtained using the Cubist Regression algorithm, which nevertheless
produced the best soil texture and SOC maps when using resampled multispectral data.
The PLSR algorithm provided the best predictor for use as an algorithm for soil texture
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and SOC content mapping over the study area using both the hyperspectral LAB and the
resampled (PRISMA) datasets.

The best validated models using the different approaches (Cubist Regression and
PLSR) were applied to the independent mapping images (Table 3) to draw soil texture and
SOC maps (Figure 7).

1 
 

 
Figure 7. (a,d,g,j) PRISMA, (b,e,h,k) Sentinel-2 and (c,f,i,l) Landsat 8 soil texture and SOC maps
retrieved from the best models applied to the 17/5/2021, 15/5/2021 and 20/4/2018 satellite
imagery, respectively.

Table 6 presents an analysis of the spatial correlation between the resistivity map
and the estimated soil properties. Dutilleul’s correlation between the ARP map and the
estimated four soil properties from the hyperspectral sensor presented values of 0.58 for
sand, −0.51 for silt, and −0.67 for clay. Clay and sand satellite-predicted maps presented a
higher spatial correlation with the electrical resistivity when derived from PRISMA (Table 6)
compared to those derived from S2/MSI. However, using L8/OLI, the spatial relationship
was slightly higher for the case of sand-mapping results with a Dutilleul’s correlation of
0.65. The highest predicted sand contents, as well as medium predicted values at the center
of the field (Figure 7d,f), highlighted a similar pattern for Landsat 8 and PRISMA platforms.
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Considering our results, the SOC map derived using the S2/MSI shows the highest spatial
correlation, while a moderate correlation was obtained for SOC mapped from PRISMA
data. Both multispectral (S2/MSI) and hyperspectral (PRISMA) sensor-derived SOC maps
showed high spatial relationships with the geophysical survey results. Comparing the
spatial distribution maps of SOC derived from both spaceborne sensors, data showed a
similar pattern (Figure 7j,k).

Table 6. Analysis of spatial correlation between the resistivity data and the estimated soil properties.
*** p < 0.001; ** p < 0.01; * p < 0.05; n.s. = not significant.

Soil Property Sensor Dutilleul’s Correlation Significance

Clay
L8/OLI 0.35 *
PRISMA −0.67 ***
S2/MSI −0.20 n.s.

Sand
L8/OLI 0.65 ***
PRISMA 0.58 **
S2/MSI 0.01 n.s.

Silt
L8/OLI −0.07 n.s.
PRISMA −0.51 **
S2/MSI 0.35 **

SOC
L8/OLI −0.04 n.s.
PRISMA −0.43 **
S2/MSI −0.67 ***

4. Discussion

The results obtained in this study are a first attempt to assess the level of accuracy
of the newly launched hyperspectral imager PRISMA for the estimation and mapping
of bare-soil properties. For this purpose, PRISMA, S2/MSI and L8/OLI actual bare-soil
spectra acquired in agricultural areas were used to build clay, silt, sand and SOC estimation
models, and the three sensors were compared in terms of model prediction accuracy.

Topsoil clay content can generally be monitored by its mineralogical abundance and
granulometry, and a high spectral resolution can be essential for detecting its specific
wavelengths in the SWIR spectral region [29]. In this regard, the characteristic absorption
features linked to the clay lattice are diverse, according to the composition of clay minerals
in the soil, e.g., the main absorption features of kaolinite and montmorillonite are centered at
1400, 1900, and 2200 nm [66], while illite has two bands centered near 2300 and 2400 nm [20].
Therefore, as expected, as the S2/MSI and L8/OLI have both only two wide bands in the
SWIR, their clay prediction accuracy is lower than that observed with laboratory resampled
and real PRISMA imagery data (Tables 4 and 5). In their research, Fongaro et al. [67]
confirmed that spectral sensors with reduced bands, such as IKONOS, have low outcomes
for clay estimate, as shown by the lower R2 values. Castaldi [31] confirmed that neither
S2/MSI nor L8/OLI could precisely predict the clay content, because of the low spectral
resolution and large bandwidth (between 85 and 187 nm) of their SWIR bands, which
prevent the exploitation of the narrow spectral features related to clay. The higher spectral
resolution of PRISMA imagery could thus offer improvements in the assessment and
mapping of clay content as compared to multispectral sensors. However, the improvement
shown by PRISMA in this work, in terms of clay estimation, is more remarkable for
resampled data (Table 4) than for actual satellite data (Table 5; Figure 6). This could be due
to the lower SNR of the hyperspectral sensors in comparison to broad-band multispectral
sensors. This SNR lowering is mainly due to energy accumulation in the narrow spectral
bands of the hyperspectral sensors [20].

Figure 8 shows the percentage of times where each PRISMA band was used in a
condition and/or a linear model of the Cubist algorithm for the estimation of soil properties.
The clay prediction model used only visible and SWIR bands (Figure 8a), and wavelengths
between 2100 and 2200 nm were largely used for both models and conditions, as expected,
for the presence of the clay mineral spectral features in this spectral region.
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Figure 8. The percentage of times where each PRISMA band was used in condition and linear models
obtained by calibrating the Cubist models for clay (a), sand (b), silt (c) and SOC (d) content.

Table 4 showed how LAB PRISMA spectra also provided the best results for sand
and silt estimation, very close to those provided by LAB spectra. However, for clay, when
moving from laboratory to actual satellite data, the differences between PRISMA and the
two multispectral sensors became smaller (Table 5). For actual PRISMA data models, sand
and silt showed an increased involvement of the spectral bands as compared to clay, for
both Cubist conditions and models (Figure 8b,c). However, the visible region is crucial for
all three soil texture properties. This is mainly due to the existing correlation between hue
of soil and clay and sand percentage [20]. Generally, under equal moisture conditions and
parental material, soil brightness (high reflectance values) is related to high sand percentage,
while a dark hue (low reflectance values) can be related to high clay content. Fongaro
et al. [67] used the Cubist model to test the bands’ importance for mapping soil attributes
and highlighted the important contribution of the visible bands to sand estimation, as sand
content is strongly related to the high albedo of quartz. In this regard, the study of [30]
found a strong increase in reflectance in the NIR band of the Landsat 5 sensor for sandy
soil, and this outcome is confirmed by Figure 8b, which shows how the NIR region for the
PRISMA sensor is important for both Cubist conditions and models.

The SOC also affects the soil spectra in the visible range in the same direction of
clay content, and Figure 8d clearly confirms the importance of the visible region for SOC
estimation. In this regard, Reference [68] detected strong correlations between organic
matter and reflectance, measured at 450, 590 and 664 nm. Shi et al. [18] explored the
possibility of using hyperspectral remote sensing imagery to rapidly produce an SOC map
at the regional scale, observing high variance importance projection (VIP) values in their
PLSR model in the visible region between 400 and 600 nm. However, in Figure 8d, NIR
and SWIR regions are also of great importance for the prediction; this is mainly due to the
presence of overtones related to lignin between 1600 and 1800 nm and cellulose at around
2100 nm [68,69]. Moreover, other organic compounds of the organic matter, such as amide
and aliphatic groups, can affect the spectral response at around 2300 nm.
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The high importance of the SWIR bands in the prediction models, especially for SOC
and clay, confirmed the good quality of the PRISMA sensor in this spectral region. This is
an important improvement over the previous satellite hyperspectral sensors, particularly
Hyperion, which showed strong limitations for clay content estimation due to their very
low signal to noise ratio (SNR) in the SWIR, and especially at around 2200 nm, where the
clay mineral features are located [20]. In our results, the best SOC estimation accuracy was
obtained using PRISMA satellite imagery. PRISMA images showed the highest potential
in terms of SOC prediction ability, even better than laboratory tests. This is probably a
consequence of the conditions in which the image was acquired, where the pattern of
soil moisture in the field may have played a role in the prediction of the SOC. In fact,
spectral data collected under laboratory conditions were only computed under dry sample
conditions. Casa et al. [39] showed that the presence of the spatial variability of soil
moisture, at the time of remote sensing image acquisition, could improve the estimation
of soil properties as compared to uniform dry soil conditions. While, for clay and sand,
the difference in accuracy between PRISMA and the other sensors is not too evident, the
hyperspectral sensor provided a strongly improved estimation accuracy for SOC (RPIQ:
3.51 ± 0.16) as compared to S2/MSI (RPIQ: 1.8 ± 0.20) and L8/OLI (1.98 ± 0.12). It should
be noted that this difference is even more evident for high SOC values (>1.5%), which
Sentinel-2 and the Landsat 8 model underestimated (Figure 5d).

Concerning the spatial distribution of the obtained soil maps, the analysis of spa-
tial correlation between the resistivity data and the estimated soil properties showed a
significant correlation with the geophysical survey for all the PRISMA maps, although
the Landsat 8 and Sentinel-2 outperformed PRISMA for sand and SOC correlations, re-
spectively (Table 6). Sentinel-2 SOC maps (Figure 7k) has a good inverse correlation with
resistivity, probably due to the higher spatial resolution (10/20 m) in comparison with
PRISMA and Landsat 8. However, the SOC patterns shown in Figure 7k are very similar
to those obtained by PRISMA at a spatial resolution of 30 m (Figure 7j). Consequently,
the spatial resolution of the PRISMA sensor does not seem to be a limiting factor for the
estimation of soil properties for agricultural areas, especially where the spatial variability
of soil properties does not occur within a very short range.

The high spectral resolution in the SWIR region of the PRISMA sensor allowed for
the estimation of topsoil properties from bare soil images within the studied agricultural
area; however, an investigation of the accuracy at other sites should be conducted. Future
work will include different test areas in different soil regions to test the ability of PRISMA
hyperspectral data to retrieve soil texture, SOC and other topsoil properties under different
conditions (e.g., climate, soil types and soil moisture). The application of the PRISMA
hyperspectral satellite to broad-scale mapping would be of great importance, considering
other environmental covariates for a more robust modelling [70].

5. Conclusions

This research considers the ability of the hyperspectral sensor PRISMA in comparison
with Sentinel-2 and Landsat 8 to predict and map soil texture and SOC content in two
agricultural areas in Italy.

We obtained high prediction accuracies using simulated hyperspectral PRISMA datasets
(RPIQ: 4.87 and 3.80 for clay and sand, respectively). The results were very similar
to those of the full spectra (LAB) datasets, while a slight worsening was observed in
terms of accuracy using spectra extracted from the real hyperspectral and multispectral
spaceborne sensors.

A comparison between a resistivity map on a field of the study area and the soil texture
and SOC maps retrieved from the best models applied to the PRISMA imagery revealed that
the predicted maps are consistent with the patterns of variation in soil properties that were
observed in the field, as confirmed by the high spatial correlation coefficients, especially
for the case of clay and silt. Consequently, the medium spatial resolution of the PRISMA
images (30 m) is not a limiting factor for mapping soil properties in the investigated area.
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Our results indicate that PRISMA satellite hyperspectral data improved, in relative
terms, the accuracy of soil variables’ estimation from bare-soil imagery, as compared
to existing multispectral sensors with few and broad bands in the SWIR region. The
higher spectral resolution of the hyperspectral imagery can exploit the well-defined narrow
absorption spectral features characteristically linked to the functional sets in the Vis-NIR
and SWIR spectral ranges associated with clay minerals and most important compounds,
which constitute the organic matter in the soil. We conclude that hyperspectral data from
the available PRISMA and the forthcoming satellite missions (e.g., EnMAP and CHIME)
can advance the mapping and monitoring of soil texture and SOC as compared to the
currently available imagers.
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