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Abstract: Tianwen-1 is the first Mars probe launched by China and the first mission in the world to
successfully complete the three steps of exploration (orbiting, landing, and roving) at the one time.
Based on the unverifiable descent images which cover the full range of the landing area, trajectory
recovery and fine terrain reconstruction are important parts of the planetary exploration process.
In this paper, a novel trajectory recovery and terrain reconstruction (TR-TR) algorithm employing
descent images is proposed for the dual-restrained conditions: restraints of the flat terrain resulting
in an unstable solution of the descent trajectory and of the parabolic descent trajectory causing
low accuracy of terrain reconstruction, respectively. A landing simulation experiment on a landing
field with Mars-like landform was carried out to test the robustness and feasibility of the algorithm.
The experiment result showed that the horizontal error of the recovered trajectory didn’t exceed
0.397 m, and the elevation error of the reconstructed terrain was no more than 0.462 m. The algorithm
successfully recovered the descent trajectory and generated high-resolution terrain products using
in-orbit data of Tianwen-1, which provided effective support for the mission planning of the Zhurong
rover. The analysis of the results indicated that the descent trajectory has parabolic properties. In
addition, the reconstructed terrain contains abundant information and the vertical root mean square
error (RMSE) of ground control points is smaller than 1.612 m. Terrain accuracy obtained by in-orbit
data is lower than that obtained by field experiment. The work in this paper has made important
contributions to the surveying and mapping of Tianwen-1 and has great application value.

Keywords: Tianwen-1; descent image; dual-restrained; trajectory recovery and terrain reconstruction
(TR-TR); plane induced parallax; degenerate plane

1. Introduction

Planetary exploration began in the 1950s, developed to launch various planetary
probes in the late 1980s, and entered a new era of planetary exploration with the help of
the computer and other technologies by the beginning of the 21st century [1]. Among
all the planets, the moon and Mars are the primary targets for exploration [2]. Although
China was a late starter in planetary exploration, the series of missions from Chang’e-1
to Chang’e-5 marked the success of the three-step mission of “around, down, and back”
in the lunar exploration project [3-5]. In addition to the lunar exploration project, Mars
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exploration and sample return are also part of China’s planetary exploration programs in
recent years [6].

Tianwen-1 is China’s first Mars probe to land successfully [7]. After the lander landed
on the surface of Mars (Utopia Plain), the Zhurong rover was planned to complete a series
of important tasks of patrol and scientific exploration [8]. A large number of images were
acquired by sensors carried on the Tianwen-1 orbiter before landing. The Digital Elevation
Model (DEM) and Digital Orthophoto Map (DOM) of the pre-selected landing area were
produced based on these images [9,10]. However, the resolution of these terrain products
is too low to identify small and easily overlooked ground objects (e.g., rocks, fine trenches,
uneven slates) which can be obstacles to the rover’s tour [11]. Therefore, the detailed
terrain information near the landing site is necessary for the path planning of the rover [12].
Fortunately, descent images have a higher resolution than orbiter images, which can be
used to obtain more detailed digital terrain products [13]. Accurate recovery of the landing
camera’s trajectory including position and pose is a prerequisite for generating accurate
terrain products based on descent images. In addition, it helps us understand and study the
influence of wind on the flight status of the lander [14]. Therefore, trajectory recovery and
landing area terrain reconstruction using descent images are the important components
of the Tianwen-1 mission, which would guarantee the achievement of scientific goals [15].
Moreover, this work is an essential part of near-surface planetary surveying and mapping.

Descent images have played an important role in the probe’s landing and subsequent
inspections in planetary exploration missions [16]. The Descent Image Motion Estimation
System (DIMES) in the Mars Exploration Rover (MER) mission used descent images
to obtain the horizontal velocity of the lander during the entry, descent, and landing
(EDL) [17,18]. Xiong et al. proposed to use inertial measurement unit (IMU) and laser
altimeter measurements to constrain the descent trajectory solution [19,20]. Random sample
consensus (RANSAC) [21] was used to estimate homography matrix (homography matrix
is a mapping between two planes [22]) and removes mismatching points (matching points
not corresponding to the same spatial point, where matching points means projections
of the same spatial point on different images) to recover the Chang’e-3 lander’s descent
trajectory and map the landing area [23]. Meng et al. improved Xiong et al.’s method [20]
by utilizing the homography matrix in reconstructing the terrain of the landing area [24,25].
Di et al. reconstructed the terrain of the landing area using descent images of Chang’e-3, but
no detailed algorithm is mentioned in the paper [15]. Xu et al. proposed an optimization
algorithm to improve the surface normal vector by combining the reflectivity model [26].
For the Chang’e-4 mission, Liu et al. made use of the collinear equation combined with
least squares to recover the lander trajectory [27], while Di et al. mapped the landing
area [28-31].

Descent trajectory recovery requires feature points of the descent images. Regarding
feature point extraction and matching, operators with scale, rotation, and affine invari-
ance include Scale-invariant feature transform (SIFT) [32], Speeded Up Robust Features
(SURF) [33] and Binary Robust Invariant Scalable Keypoints (BRISK) [34], among which
SIFT is found to be the most accurate descriptor for feature detector [35]. Brute-Force (BF)
Matcher and Fast Library for Approximate Nearest Neighbors (FLANN) based Matcher [36]
are often applied for feature point matching and combined with k-Nearest-Neighbor (KNN)
to filter bad matches [37]. RANSAC combined with a minimal pose solver is the most
commonly used method to eliminate mismatching points [21]. However, these methods
are not effective in eliminating mismatching points in the descent images of Tianwen-1.

Geometry model estimation based on matching points is an important step of trajectory
recovery. The scene of the Tianwen-1 descent images is predominantly but not entirely
planar, which is (quasi-) degenerate data for robust geometry model estimation. Rebert
et al. proposed a parallax beam algorithm to process the degenerate planar scene [38].
RANSAC for the (Quasi-) Degenerate data (QDEGSAC) algorithm solves the degenerate
plane problem by running the RANSAC algorithm multiple times to calculate the rank of
the data matrix [39]. Decker et al. detect degeneracy by continuously testing motion models
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with decreasing degrees of freedom [40]. The Degenerate RANSAC (DEGENSAC) perceives
the degeneracies within the RANSAC sample test [41]. Torr proposed the Geometric Robust
Information Criterion (GRIC) model selection approach which selects the model with the
lowest score [42]. However, the GRIC model selection approach would not obtain a right
model for a dominant plane scene.

In the terrain reconstruction step, the plane-sweep method is proposed to be applied
to generate dense point clouds for the specific baseline direction of descent images [43].
Xiong et al. realized depth map recovery with the plane-sweep method for unstructured
scenes in descent images [19]. Meng et al. modified the plane-sweep method by using the
Zero-normalized cross-correlation score (ZNCC) method instead of the Sum of Squared
Differences (SSD) to find the image correlation after warping, followed by combining best
seed first propagation (BSFP) strategy with neighborhood value propagation to accomplish
depth recovery [24,25].

The above methods have several critical disadvantages when applied to descent
images of Tianwen-1 due to the dual restraints: the first restraint of terrain conditions
on the trajectory recovery and the second restraint of descent trajectory on the terrain
reconstruction (Figure 1). For the first restraint, the previous methods (1) cannot extract
enough feature points in the textureless region (flat region with no obvious features)
of descent images, which reduces the accuracy of the recovered trajectory; (2) cannot
effectively remove the mismatching points caused by a large number of similarly shaped
dunes in the landing area which results in the failure of trajectory recovery; (3) sometimes
give the wrong trajectory solution due to (quasi-) degenerated data caused by the flat
terrain. For the second restraint, the previous methods result in low accuracy of terrain
reconstruction based on descent trajectory with the baseline (line connecting cameras’
optical center) approximately parallel to the optical axis of landing camera. Therefore,
the dual-restraints problem brought by the combination of terrain conditions and special
descent trajectory creates difficulties for the TR-TR process.
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Figure 1. The Dual-Restraints of Trajectory Recovery and Terrain Reconstruction (Material comes
from the China Academy of Space Technology, CAST, Beijing, China).
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In this paper, a novel trajectory recovery and terrain reconstruction (TR-TR) algorithm
is proposed for the dual constraints to overcome the above drawbacks when descent
trajectory recovery and terrain reconstruction interact with each other. Firstly, the TR-
TR algorithm obtains adequate feature points in the textureless region of descent images
by reducing the SIFT contrast threshold, which improves the accuracy of the recovered
trajectory. Next, the algorithm eliminates mismatching points by using scale constraints and
a priori terrain information, which improves the success rate of trajectory recovery. Then,
the algorithm uses the epipoles (the intersection of baseline and image) constrained parallax
beam method to obtain a robust trajectory from (quasi-) degenerated data caused by the
flat terrain. Finally, the algorithm allows the virtual planes to have multiple directions in
the plane-sweep method, which improves the accuracy of terrain reconstruction under the
constraint of the special trajectory. The TR-TR algorithm was tested in field experiment with
improvements made based on the results, and the accuracy was evaluated. The algorithm
was subsequently applied to the descent images of Tianwen-1's in-orbit data to recover the
descent trajectory and reconstruct the terrain of Tianwen-1's landing area, which provided
effective product support for the mission.

This paper presents the work of obtaining the position and pose information of the
landing camera and reconstructing the terrain of the landing area. Section 1 gives the
background of the research. Section 2 introduces the Tianwen-1's in-orbit data and the TR-
TR algorithm proposed. Section 3 shows the validation of the novel algorithm through field
experiment. Section 4 demonstrates Tianwen-1's in-orbit data processing results. Section 5
provides a discussion, summarizes current work, and looks forward to future work.

2. Data and Methodology
2.1. Data

The descent images used were continuously captured during the EDL phase by the
landing camera, which is a downward-facing optical camera (parameters are shown in
Table 1) mounted on the bottom of the landing platform.

Table 1. Landing camera parameters.

Name Value
Diagonal field of view (FOV) 43°
Square FOV 30° x 30°
Focal length 20 mm
Spectral range 500~800 nm
Entrance pupil diameter >4 mm
Entrance pupil position 21.9 mm
Integral time 0.03~64 ms
Image area resolution 2048 x 2048
Pixel size 5.5 pm

During the whole descent process of Tianwen-1, the landing camera acquired a total
of 84 descent images, among which the preceding images numbered 1~22 were sampled
too early to be valuable, whereas the last images numbered 43~84 were acquired too late
to be applied in the mission. Therefore, the 20 descent images numbered from 23 to 42
at a suitable altitude were chosen to recover the position and pose of the landing camera
during the EDL phase as well as to map the landing area. The acquisition time of the next
19 images is as follows in Table 2 if the acquisition time of the first image (ID of 23) is
recorded as T23.
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Table 2. Acquisition times of the descent images.

Image ID Acquisition Time (s) Image ID Acquisition Time (s)
23 T23 + 0.000 33 T23 + 65.536
24 T23 + 28.672 34 T23 +81.273
25 T23 + 32.768 35 T23 +94.209
26 T23 + 36.864 36 T23 + 98.305
27 T23 + 40.960 37 T23 +102.401
28 T23 + 45.056 38 T23 + 106.497
29 T23 +49.152 39 T23 + 110.593
30 T23 + 53.248 40 T23 +114.689
31 T23 + 57.344 41 T23 + 118.785
32 T23 + 61.440 42 T23 +122.881

2.2. Methodology

The four main steps of the TR-TR algorithm include feature extraction and matching,

mismatching points removal, robust motion estimation, and terrain reconstruction. Details
are as follows:

@

(In)

(1)

(Iv)

For the feature extraction and matching part, SIFT with a low contrast threshold is
applied to extract and descript feature points, after which BF matcher with KNN
(k = 2) is utilized to filter bad matches.

The TR-TR algorithm uses two constraints to remove mismatching points: the scale
monotonicity constraint and the a priori terrain information constraint. The scale
monotonicity constraint takes advantage of the fact that the feature point scale mono-
tonically varies with the descent image order to remove mismatching points. The
constraint of prior terrain information requires first finding the homography matrix
(H) corresponding to the points in the scene plane by a contrario RANSAC (AC-
RANSAC) method. Then, DEM of the landing area generated from the orbiter images
is exploited as prior terrain information to find the upper boundary of the plane in-
duced parallax (introduced in Section 2.2.2) corresponding to the homography matrix
(H), and, finally, remove points beyond the boundary.

According to the two solutions obtained by the homography matrix (H) decompo-
sition, two possible positions of epipoles are obtained as constraints to perform the
epipoles constrained parallax beam (ECPB) algorithm. If the fundamental matrix is
obtained, the determined motion solution can be obtained directly by decomposition
of the fundamental. If the fundamental matrix cannot be obtained, the solution that
does not conform to the parabolic descent trajectory constraint in the two solutions
obtained by decomposition of the homography matrix (H) is eliminated to obtain the
determined motion solution.

After refining the motion by bundle adjustment, the accurate descent trajectory is
obtained. A lot of sparse spatial points are also obtained when estimating motion
between images in the previous step. Triangular mesh is established based on these
sparse spatial points. Each triangle in the mesh is projected to all images that can see
the triangle. Based on these projections, multi-image normalized cross-correlation
score (NCC) curves are drawn and initial seed points are determined accordingly.
Initial seed points are then propagated to obtain depth maps for generating dense
point clouds. Finally, DEM and DOM of the landing area are generated based on
dense point clouds.

The flow chart of the TR-TR algorithm proposed in this paper for processing the

descent images is given below (Figure 2).

2.2.1. Feature Extraction and Matching

Compared with other operators, SIFT describes the position of points most accurately,

which can improve the trajectory recovery accuracy. Therefore, SIFT is selected to extract

and describe feature points in descent images. However, the uneven distribution of ground
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features in the landing area of Tianwen-1 leads to the emergence of large textureless areas
in the descent images. Unfortunately, in these textureless areas, SIFT with default threshold
in OpenCV (a famous open source computer vision library) is not able to extract sufficient
feature points. In order to solve this problem, the contrast threshold of the SIFT operator
should be set as small as possible.

Feature Extraction and Mismatching Points Removal
Matching

SIFT with low contrast
threshold as detector

Homography matrix estimation
using AC-RANSAC

|

Scale monotonicity | ;
constraint !

v
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Figure 2. Flow chart for TR-TR processing the descent images of Tianwen-1.

The principle of feature point matching is to compare the Euclidean distance of two
feature point descriptors as a similarity measure. For feature point p; in image I, to find
its matching point p; in image I, the BF matcher combined with KNN (k = 2) is used to
return the two best matches p,; and pj, (with similarity measure s; and sy, respectively)
from image I. If 51 /s; is smaller than a similarity ratio threshold (assuming s; < s), p21
is considered to be the correct matching point. The BF matcher is better than the FLANN
matcher because although the FLANN matcher is faster, the processing time of the descent
images is sufficient. Since the landing camera moves forward along the descent trajectory,
there will be overlapping areas in successive descent images. Hence, it is not enough to
match feature points only in adjacent images, but it should be done in multiple consecutive
images to obtain feature tracks.

2.2.2. Mismatching Points Elimination

Meng et al. uses RANSAC to search the fundamental matrix among all matching
points, and removes the matching points that do not conform to the calculated fundamental
matrix as mismatching points [24]. This method is suitable for a general scene, but not
suitable for the scene in the Tianwen-1 descent images. The scene in the Tianwen-1 descent
images is a planet surface with flat terrain, resulting in (quasi-) degenerated data. (Quasi-)
degenerated data may not provide sufficient constraints on the fundamental matrix due
to rank deficiency; hence, an incorrect fundamental matrix may be obtained. RANSAC
consistent with an incorrect fundamental matrix will remove a large number of correct
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matching points. Besides, Meng’s method does not take advantage of the characteristics
of the descent images, such as the monotonicity of scale changes. Based on this problem,
the TR-TR algorithm chooses to use the homography matrix to eliminate mismatching
points instead of using the fundamental matrix. Since most of the points (or all points)
in the (quasi-) degenerated data are located in a scene plane, these data may not form
sufficient constraints on the fundamental matrix, but it must form sufficient constraints
on the homography matrix. Therefore, a robust homography matrix can be obtained. In
addition to robustness, the homography matrix has another advantage that it can make use
of the prior terrain information, which the fundamental matrix cannot do. Apart from the
consistency method, the TR-TR algorithm also makes use of the scale monotonicity of the
descent images.

In the TR-TR algorithm, the scale monotonicity constraint is utilized first to eliminate
part of the mismatching points. The landing camera’s forward motion causes the scale
(obtained from the SIFT descriptor) of one feature track in the descent images to increase
monotonically with the acquisition time. As a result, feature tracks not meeting this
condition must contain mismatching points. For such feature tracks, the contained features
whose scale do not vary monotonically are removed to maintain the scale monotonicity of
the feature tracks.

Next, mismatching points are eliminated by prior terrain information constraint. Data
are degenerate when all points lie inside a plane, whereas those data are quasi-degenerate
when most points lie inside a plane with the rest lying outside the plane. The terrain
in the landing area of Tianwen-1 is flat and approximates a scene plane for the landing
camera. Most of the ground points are inside the scene plane, with occasional undulating
ground points (e.g., volcanoes, gullies, impact craters) located outside the scene plane.
The maximum elevation difference of the landing area can be evaluated from the DEM
generated by the orbiter images of Tianwen-1. Restricted by the maximum elevation
difference, when the approximate acquisition height corresponding to each descent image
is known (supplied by laser altimeter), the plane induced parallax (introduced in Figure 3
and denoted as p) of points outside the plane must have an upper boundary (denoted as
Pmax)- The points beyond the boundary must be mismatching points to remove.

Figure 3. Plane induced parallax. The ray through X intersects the plane 7 at the point X,. The
images of X and X are coincident points at x in the first view. In the second view, the images are the
points x’ and ¥’ = Hx, respectively. These points are not coincident when X is not on 7, but both
are on the epipolar line !}, of x. The vector between the points x’ and ¥’ is the parallax relative to the
homography induced by the plane 7.
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In order to obtain the plane induced parallax of corresponding points, the homography
matrix needs to be solved first. The homography matrix computed in conjunction with
the AC-RANSAC framework is robust to noise and mismatches [44]. The number of false
alarms (NFA) is determined by AC-RANSAC as:

NEA(H, k) = (n—4)< i )( Z >(£%<oc0)k_4 )

where H is the homography matrix to be tested, ¢, denotes the kth minimum residual, a
indicates the proportion of the area of the circle with a radius of one pixel in the image, n
represents the number of total matching points.

The homography matrix (H) is considered valid if

NFA(H) = min NFA(H,k) <1 @)

Let H indicate the homography matrix obtained by AC-RANSAC and ¢ the corre-
sponding maximum residuals; the correct matching points set P can then be figured out
according to H and &. Introducing set U as the total matching points, the rest of the match-
ing point set is obtained as the complementary set of P from U, which is represented by
CuP. CyP = @ implies that all matching points lie inside the plane corresponding to H,
which means that the data are degenerate. If not, matching points with too large plane
induced parallaxes are considered to be mismatching points and are removed from Cy; P,
leaving the matching points set Gy Py< -

2.2.3. Robust Motion Estimation

Meng et al. uses RANSAC to search the fundamental matrix among all matching
points, and decompose the fundamental matrix to obtain the motion [24]. In this way,
there is an obvious disadvantage that the (quasi-) degenerated data caused by flat terrain
will easily result in an incorrect fundamental matrix, and then get the wrong motion.
By contrast, in the TR-TR algorithm, motion can be obtained robustly. As mentioned in
the previous section, a robust homography matrix is obtained from (quasi-) degenerated
data. Based on the obtained homography matrix, the corresponding fundamental matrix is
estimated according to the relationship between the fundamental matrix and the homography
matrix if the data provide sufficient constraints. Specifically, the robust fundamental matrix is
estimated from the points (may including some mismatching points) located outside the plane
corresponding to the obtained homography matrix using the epipoles constrained parallax
beam method [38]. The robust motion is obtained by decomposing the fundamental matrix. If
the data cannot provide sufficient constraints, the fundamental matrix will not be obtained.
For such cases, the homography matrix is decomposed into two motion solutions. The TR-TR
algorithm utilizes the parabolic property of the descent trajectory to eliminate the one that
does not match the actual situation, and the remaining motion solution is robust.

Continuing from the previous section, CuPp<p,W = & means that matching points,
except those in the plane corresponding to H, are all mismatching points, indicating a case
of degenerate data. Conversely, if Ci;Py<p,,.. # @, there may exist correct matching points
that lie outside the plane which provides constraints on the epipolar geometry to estimate
the fundamental matrix.

H is decomposed to obtain two possible epipoles e} and ¢/, on the second image. The
ith matching point is imaged at x; and x/ for the first and second view, respectively. Ideally,
the line between x/ and Hx; would either pass through point e} or ¢}, corresponding to the
two possible fundamental matrices F; or B, respectively. However, in practice, it will not
happen because both x/ and Hx; are corrupted with noise. For simplicity, let x} and Hx;
have the same point error that has a distribution area of the circle of radius € with the point
as the center since ¢ (figured out from AC-RANSAC) represents point error more accurately.
The parallax beams [38] of x/ and Hx; are drawn to judge if they cover ¢} or €}. Set the
initial values of two counters Ng, and Ng to be zero. Let N f = Ng+1 if €] is covered.
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Similarly, let N g =Ng +1 if €} is covered. The geometric model (M) of the image pair is
determined as: R
M =H, if N; = Ng

M=F, Zf]\llf1 >1\Ilf2
M=F, if Ng <Np

A definite solution of motion comes from the decomposition of the fundamental matrix
if M = F, or M = I, when knowing the camera matrix (K), whereas two possible solutions
come from the decomposition of the homography matrix if M = H. In fact, the parabolic
property of the descent trajectory can be used to remove the unrealistic solution.

For convenience, x and y are defined [45]:

RT¢
x = W 3)

y=|[t|[n @)

where R and t are the rotation matrix and translation vector normalized with respect to the
depth of the plane of which the normal vector is represented by 7.

Equations (5) and (6) show the relationship of two solutions obtained from the decom-
position of the homography matrix, which is distinguished by subscripts a and b:

Yp = iypuH(ya +2x4) @)
o )
Xp=—| +—VYa— X (6)
b 0 ||ya||ya |yallxa
where,
P:\/’ xe X ye| [+ (xFye +2)° @)
v:Z(xeTyH—l) (8)
where,
e = {a,b} )
Replacing (3) and (4) into (5) and (6), we can figure out that
Ifallllna< ZRZta)
ny = £————— 1 ||ta||na + (10)
R A TR AT
tyll [ vhg
R}t :”( —||n RTt) 11
b'b 0 HnaH || aH ata (11)

For one descent image pair of Tianwen-1, denoting O} as the camera center of the
image taken at a lower altitude and Op as the camera center of the image taken at a higher
altitude, there are two possible locations of Oy (marked as Oy, and Opy) corresponding to
two solutions if the camera Oy, is fixed with a view along the inverse direction of the y-axis
of the camera coordinate system, as shown in Figure 4. It can be concluded from Figure 4

that the angle 6, between ||,||n, and OLz)> Ha satisfy Equation (12) when assuming that
Opy, is in the quadrant {+x, —z} (Op, must be located in the quadrant {+x, —z}, since
Op, is higher than Oy ):

m/2< 6, <m (12)
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Figure 4. The locations of Oy, and Oy when O is fixed.
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T is a vector pointing to the quadrant {—x, +z}. Equation (8) shows there are two

possible solutions (in opposite directions of { —x, +-z} and {+x, —z} according to the vector

algorithm) of n,, among which apparently only the one solution pointing {—x, +z} fits
the reality.

HV;;”H (v > 0) has the same direction with ||t,||n,, which points towards the plane

2RTt,

[[tall

ferred from Equation (9) that R;tb points to the quadrant {+x, £z} since p > 1. Obviously,

which implies that

perpendicularly. At the same time, | |11, |RaTt,Z has the same direction with . Itcanbein-

RN
OppO1, cannot point toward {+x, —z} because Oy, is higher than O;, which indicates that

—_
R]'ty actually points to the quadrant {+x, +z}, since R t;, = Op;,Oy.. Therefore, the angle
0, between Rgtb and ny, satisfies the following equation:

0<Op < (13)
where 0 < 6, < 7t/2 violates the visibility constraint of Iy, so:
T/2< 0, < T (14)

In Figure 4, two surfaces are drawn for Solution a and Solution b separately, which
does not correspond to the actual situation in which there is only one surface that can be
used to analyze the relationship between two possible locations of Oy when fixing Oy..
Next, the surfaces of Solution a and Solution b are brought together to get the following
schematic diagram:

According to Equations (12) and (14), as shown in Figure 5, it can be concluded that
Oy, and Opp, must not lie on the same side of the surface normal line of the Mars surface
at the point Oy..

The above discussion is for the case when O, lies in the {4x, —z} quadrant. It still
satisfies the above conclusion when Opj, lies in the { —x, —z} quadrant due to the property
of equivalent exchange of the two solutions [45].

For simplicity, a 2D case has been given above. It is not difficult to deduce that two
solutions follow the same principle in the actual 3D case, except that the normal line is
replaced by the normal plane which is perpendicular to the horizontal component of the
velocity of the lander and passes through O;. In practice, the solution in which Oy lies
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on the opposite side of the direction of the horizontal component of the normal plane’s
velocity is the correct solution.

Y ‘

Mars surface

Figure 5. The locations of Oy, and Oy, with two surfaces overlapping.

2.2.4. Terrain Reconstruction

Due to the forward motion of the descent images, the epipole is located inside the
image. The window correlation method used in binocular vision is not applicable in de-
scent images. If we resample one image along the epipolar line to make their resolution
equivalent as in stereo, then the images will be oversampled near the epipole while under-
sampled at the image boundaries. Hence, Meng proposed using the plane-sweep method
to reconstruct the terrain [24]. The specific method is to use several parallel virtual planes to
cut the terrain. For one point on image 1, the projection window of its correlating window
on each virtual plane on image 2 can be obtained by homography projection. Consequently,
several candidate windows are obtained on image 2 about the correlation window of that
point on image 1. The ZNCC of the correlation window on image 1 and the candidate
windows on image 2 are calculated as the correlation measure, and the depth value of the
virtual plane corresponding to the candidate window with the greatest correlation is taken
as the depth value of that point on image 1. The depth map of image 1 is generated by this
method. Subsequently, Meng studied the shape of ZNCC curves and formulated rules to
filter out ZNCC curves with poor conditions (such as too flat or with two similar peaks). A
point whose ZNCC curve is qualified is selected as the initial seed point. Then, the initial
seed points are propagated using BSFP strategy to generate a depth map [25].

Meng’s method has several disadvantages. Firstly, the method only discussed the
depth recovery of two images, but did not utilize the other images. Secondly, the virtual
planes used by this method in the plane-sweep algorithm has only one direction; thus,
this method has low depth accuracy for the recovery of forward-tilting terrain, which is
not good at the recovery of detailed terrain. Thirdly, this method does not use the sparse
spatial points obtained in the previous motion estimation steps. These sparse spatial points
are very accurate prior information which can be used to improve the terrain accuracy. In
contrast, the TR-TR algorithm proposes the plane-sweep method using multiple images.
The TR-TR algorithm uses virtual planes that do not have only one direction, so that they
can better fit the small-scale undulating terrain of the Tianwen-1 landing area. TR-TR
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algorithm takes advantage of sparse spatial points to increase the accuracy of reconstructed
terrain. Specific methods are as follows.

After camera motion refining and bundle adjustment, a series of sparse spatial points
are obtained, which are employed to constitute a mesh containing many spatial trian-
gles. The image I, with the lowest acquisition height is moved out from the image set
obtained by searching images containing some triangle P, leaving an image set denoted as
I'={L|i=1...N}. M virtual planes parallel to P are created around P and are marked as
{Vi | k =1...M}. The homography H: induced by V; between I; and I; in T is:

R;(Cp — Ci)”]z>K1

15
TR, (15)

H = K(RiRLl +

where, K is the camera calibration matrix, X represents a point passed through by V, nl is
defined as the normal of Vj, R; is the rotation matrix of I;, R} is the rotation matrix of I, C;
is the location of I; and C is the location of I .

Marking P; and P; as projections of P on I} and I;(I; € I'), respectively, the NCC of
pixel (u,v) € P between I and I[;(I; € T') is given:

Ci(u,0) = ) w(u,v)-r(lzk(u,v),Ii(u,v)) (16)

(u,0)eW,

where W, is the correlation window, w(u,v) indicates the weight of pixel (u,v) and
T(Iik(u, v), Li(u, U)) computes the dissimilarity of I!f and I; with regard to (u,v). w(u,v)
is obtained by:

w(u,v) = { e}:i Eb(lf?,)egpéa i (17)

where d is the distance between (u,v) and P;, implying less weight corresponding to
further distance.
T(I’Lk(u,v), Li(u, v)) is defined as:

T(Iik(ufv), Ii(w, v)) = Y1 (u,0) = L, 0)|| + (1 =)V (u,0) = VIi(u,0)||.  (18)

where ||I%(u,v) — I;(u,v) || computes the L1-distance of I!*(1,v) and I;(1,v)’s grey value
space, ||VI¥(u,0) — VI;(u,v) || computes the absolute difference of the gray-value gradi-
ents of I!*(u,v) and I;(u,v), and 1 is a user-defined parameter.

The final score Cy(u,v) of (u,v) with respect to Vj is obtained by summing up the
Ci(u,v) calculated from all images in I':

N

TCr(u,v) = ZC,i(u,v) (19)
i=1

The points at which the Cy (1, v) curve fluctuated with respect to k fits the condition
are selected as seed points, as well as sparse spatial points. The seed points are propagated
within the triangle P, to generate the depth map of I}, of triangle P, thus obtaining the point
clouds of P. In the same way, the point clouds of other triangles are calculated and fused to
obtain the final point clouds of the whole terrain. The terrain point clouds are projected to
the horizontal plane in the vertical direction according to the Mars geographic coordinate
system to generate a dense Delaunay triangle network. For each triangle, the elevation and
grayscale values of the raster points within the triangular surface slice can be obtained by
interpolation based on the elevation and grayscale values of the three vertices. Using this
method, the elevation and grayscale values of all raster points in the landing area can be
obtained to generate the DEM and DOM of the landing area.
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3. Field Experiment
3.1. Experiment Overview

In order to verify the method proposed in this paper, a corresponding field experiment
in the Red Cliff area with a Mars-like terrain was designed. The experimental data were
captured in November 2019 by the unmanned aerial vehicles (UAVs), DJI Phantom 3 and
Phantom 4, during descent when simulating the lander of Tianwen-1, through which far
more than 2000 images were acquired. The Red Cliff area is located in the Dachaidan
region of Qinghai Province, China. It is the first Mars simulation basement in China
and has topographic of great value for studying planetary landforms [46]. Before aerial
photography, a number of checkerboard grid plastic boards were deployed as ground
control points (Figure 6). The coordinates of the ground control points were measured
using the Topcon total station. The true value of the position and pose of the camera
corresponding to each descent image were evaluated from the coordinates of the ground
control points. In addition to the simulated landing, the UAV flew along multiple airstrips
and acquired a large amount of image data which were processed to obtain the true values
of the DEM of the experimental area (Figure 7). It can be seen that there are three similarities
between the landforms of the experimental area and the landing area of Tianwen-1 (refer
to the Tianwen-1's orbiter image): (1) the terrain is relatively flat (Utopia Plain of Mars);
(2) both contain striated feature (sand ridges on Mars); and (3) both contain small areas of
obvious topographic relief (impact craters on Mars).

Figure 6. The ground control points are represented by blue dots and white numbers, and the landing
point is indicated by a red pentagram.

3.2. Matching Accuracy and Initial Motion

The combination of the mismatching points elimination methods proposed in this pa-
per achieves higher matching accuracy. In addition, the proposed initial motion estimation
algorithm in this paper achieves more robust and accurate motion results. In order to verify
this, the result of Meng’s method [24] (searching fundamental matrix directly by RANSAC)
is compared in the experiment (Figure 8). The comparison of matching accuracy and the
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comparison of initial motion error are put together in this section because the matching
result directly affects the accuracy and robustness of initial motion estimation.

-2.6 m

125 m

Figure 7. DEM of the experimental area.
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Figure 8. Comparison of matching accuracy between the methods of this paper and Meng's.

3.2.1. Matching Accuracy

A combination of scale constraints and homography matrix constraints are proposed
to eliminate mismatching points in this paper. In the experiment, the true values of the
corresponding fundamental matrices can be evaluated based on the true values of the
translations and poses of the descent images. It is assumed that the fundamental matrix of
an image pair {I;, I } is denoted as F. A matching point is marked as x on image I; and x/
on image I. The epipolar line through x/ is represented by /. Taking the distance from x/
to [ as a measure, a matching point with such distance less than one pixel is considered to
be a correct matching point. The matching accuracy is obtained by dividing the number
of correct matching points by the total number of matching points. Twelve out of a total
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of forty-five pairs were sampled to compare matching accuracy. It is obvious that the
matching accuracy of four image pairs obtained by Meng’s method is too low. This is
due to the elimination of correct matching points since the incorrect fundamental matrices
are evaluated from (quasi-)degenerate data. These phenomena appear randomly among
image pairs, whereas the geometric models obtained by the method of this paper avoid
this randomness and thus can robustly eliminate the mismatching points. Apart from this,
the matching accuracy of the Meng’s method is still not as high as that obtained by the
method of this paper. The reason for this is that Meng’s method does not consider using
the scale constraint of descent images to eliminate the mismatching points.

3.2.2. Initial Motion

The ECPB algorithm was used to estimate an accurate geometry model of an image
pair, followed by the utilization of parabolic trajectory to remove the ambiguity of solutions
derived from the decomposition of the homography matrix. In order to verify that the
proposed algorithm can obtain more robust motion results, the relative pose and translation
of twelve image pairs selected from total forty-five image pairs by equal interval are
compared in the experiment with Meng’s method [24]. Compared to the vertical translation,
the horizontal translation has more influence on the accuracy of terrain reconstruction.
Thus, only the horizontal translation error (obtained by differentiation from the true value)
is compared. The rotational angle error calculated by Meng’s method is sometimes too
large (gross error). In order to reflect the details of the comparison, the maximum value of
the angle error is set to 0.5°, for which reason all angle errors over 0.5° are displayed as
0.5° (Figure 9).
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Figure 9. Comparison of the initial motion estimation results of image pairs between the methods of
this paper and Meng's. (a) Comparison of normalized horizontal error. (b) Comparison of pitch error.
(c) Comparison of roll error. (d) Comparison of yaw error.

From Figure 9, it can be seen that almost half of the motion solutions obtained through
Meng’s method [24] have gross errors in angle, which means they are completely wrong
solutions although they do not have gross errors in horizontal motion error. These wrong
motion solutions are considered to be results of decomposition of incorrect fundamental
matrices obtained from the (quasi-)degenerate data. In fact, this result corresponds to
the matching accuracy result in Figure 9 (the incorrect fundamental matrices lead to very
low matching accuracy and wrong pose solutions).The results of this paper’s algorithm
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do not have gross errors, which provides stable initial values for the subsequent steps of
bundle adjustment.

It can also be seen from Figure 9 that the accuracy of other correct pose solutions
obtained by Meng’s method is still not as high as that obtained by this paper’s method,
which is mainly because this paper’s method has higher matching accuracy in other image
pairs than the method of Meng.

3.3. Feature Points Extraction and Refined Motion

The feature points extraction method proposed in this paper obtains denser and more
uniform feature points, which achieves more accurate refined motion results after bundle
adjustment. In order to verify it, the feature points extracted by SIFT with default threshold
in OpenCV is compared in the experiment.

3.3.1. Feature Points Extraction

In OpenCV, the default contrast threshold for SIFT is 0.04. In the method of this paper,
this value is set to 0.01; thus, more matching points in the textureless area of the descent
images can be obtained; but at the same time, there will be more points in other texture-rich
areas, resulting in an increase in computation. Hence, the method of this paper also sets
the maximum number of extracted feature points by region to limit the number of feature
points that are too dense in some areas of descent images.

In order to visually compare the extraction of feature points, a descent image contain-
ing a textureless area is selected to show the results of the two algorithms (Figure 10).

(a) Features points extracted by SIFT

(b) Features points extracted by method of this paper

Figure 10. The comparison of extracted feature points between two methods shown in selected
descent image.
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It is shown in Figure 10 that evenly distributed feature points are obtained by the
method of this paper. These feature points are matched across all descent images according
to the method described in Section 2.2.1 to obtain a large number of feature tracks. The
comparison of the number of feature tracks obtained by the SIFT and the method of this
paper is displayed in Table 3. Feature tracks of different lengths (number of images spanned
by a feature track) are shown in the table.

Table 3. Number of feature tracks obtained by SIFT and the method of this paper.

Length of Feature Tracks SIFT The Method of This Paper

2 1105 2176
3 772 3680
4 383 4262
5 34 2997
6 7 1821
7 0 782
8 0 215
9 0 16

3.3.2. Refined Motion

Employing reliable initial values, the uniform and dense feature points extracted by
this paper’s algorithm and the SIFT feature points extracted by OpenCV with default
threshold are used as the observed data of the bundle adjustment. After making a differ-
ence with true value, camera pose and translation errors are displayed for comparison
(Figure 11).
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Figure 11. Comparison of the refined motion of selected images after bundle adjustment using feature
points extracted by the methods of this paper and SIFT. (a) Comparison of normalized horizontal
error. (b) Comparison of pitch error. (¢) Comparison of roll error. (d) Comparison of yaw error.

It can be seen that uniformly and densely extracted and matched feature points help
to obtain a more accurate motion. This is the result of control points involved adjustment.
The error is small at the beginning of the descent, followed by a slow accumulation with
descending height. The calculation results using feature points extracted by OpenCV
fluctuate more, and the results of this paper have higher stability.
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3.4. Terrain Reconstruction

Regarding terrain reconstruction, the method of this paper adopts the plane sweep
algorithm with multiple images in triangular units, whereas the previous method is the
plane sweep algorithm with just image pairs in image units. In order to compare the
number of initial seed points, a descent image is selected in the experiment, with all the
initial seed points obtained by the method of this paper in the area covered by this image
projected onto it for comparison with the initial seed points of this image calculated by
Meng’s method (Figure 12) [24,25].

(b) Initial seed points selected by method of this paper

Figure 12. Comparison of the number of initial seed points between methods of this paper and Meng’s.

Clearly, in Figure 12, there are missing initial seed points in the circular area around
the center of the image. This region, in which the variations in parallaxes are not sensitive
to changes in virtual plane depth, is actually the region near the epipole of the image,
resulting in a score curve that is too flat for pixels to meet the seed point selection condition.
Overall, it seems that the proposed method in this paper yields a much larger number of
seed points, even in the region near the epipoles.

In order to compare the terrain reconstruction error, the true terrain point clouds are
projected to a selected descent image to obtain the ground-truth (GT) depth map. The
depth maps of two methods are generated by projecting point clouds reconstructed by the
methods of this paper and Meng's to the selected descent image. Then, the depth error
maps of two methods are evaluated through making difference with the GT depth map
respectively. (Figure 13).

As shown in Figure 13, the depth error maps obtained by two methods both show a
contour-like distribution due to the plane sweep algorithm, in which the error variation
estimated by the method in this paper is smoother. In the area near the epipole, the error



Remote Sens. 2022, 14, 709

19 of 31

obtained by Meng’s method reaches more than 0.40 m, whereas the error evaluated by the
method in this paper does not exceed 0.25 m. Apart from the area near the epipole, the
method in this paper also calculates a lower error, which indicates that the accuracy of
terrain reconstruction has been significantly improved in this paper.

m

045
04
0.35
03
0.25
02
0.15
0.1
0.05
0
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(b) Deep error map from method of this paper

Figure 13. Comparison of depth error maps between methods of this paper and Meng's.

The average value of depth error maps of twelve images selected by equal interval are
obtained for comparison between the methods of this paper and Meng's (Figure 14) [24,25].
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Figure 14. The blue part of the figure shows the deep map errors obtained by this paper’s
method (marked as Erg-tr) and Meng’s method (marked as Epjeng), respectively. The red part
indicates the normalized difference (marked as dg) between Erg_7r and E Meng by the equation:
dg = 1— ETr—TR/EMeng- The normalized difference (dg) reflects the advantage of the method pro-
posed in this paper.
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It can be seen from Figure 14 that the error of the depth map obtained by both methods
has a tendency of first increasing and then decreasing with the landing process. The reason
for the increase is probably the gradual decrease in the tilt angle of the photographic
baseline, resulting in a small swing of the ray that creates a large variation in the vertical
direction, whereas the later decrease is caused by the increasing ground resolution of the
image when approaching the surface. During the whole landing process, it is illustrated
that the advantage of the method proposed in this paper increases with a lower acquisition
height of images. This is because at a low acquisition height, the method of this paper
exploits multiple images to score the correlation instead of just two images used by Meng's
method. The other images acquired from higher altitude have larger tilt angles which
alleviate the insensitivity of depth changes to parallax variation.

4. In-Orbit Data Processing

In the Tianwen-1 mission, using the TR-TR algorithm proposed in this paper, the
corresponding positions and poses of the Tianwen-1’s landing camera during the EDL
were recovered by processing the descent images, based on which the descent velocity was
analyzed. Finally, the DEM and DOM of the landing area of Tianwen-1 were generated.

4.1. Footprint Map

Based on the descent images of Tianwen-1, a footprint map was created. The footprint
map shows the projection field of each descent image (the broader the field, the higher
the acquisition height), which is more intuitive for us to understand the sampling method
of the descent images. It is evident from Figure 15 that in the first half of the descent,
there was a large swing of the landing camera which swung in the changing direction of
mainly east-west and slightly north-south. A more violent swing of the landing camera
denotes more deformation of the image and a greater distance from the landing site to the
intersection of the camera’s optical axis with the surface of Mars. Besides, it also leads to a
larger area far from the landing site covered by an image and a smaller overlap area with
other images. In the second half of the descent, the pose of the landing camera gradually
stabilized with a smaller swing in a mainly east-west and slightly north—south direction,
along with the gradual disappearance of the deformation of the image. As the center of
the image gradually approached the landing site, the overlapping area of adjacent images
gradually becomes larger, with the north direction of the camera gradually shifting from
the northwest to northeast, indicating that a clockwise rotation in the horizontal plane has
occurred in the lander. It was found that descent images cover mainly a large area to the
east, west, and south of the landing site, as well as a small area to the north of the landing
site. The last few images taken before landing demonstrated that the camera was no longer
swinging and no longer rotating horizontally during the final stage of descent. The upper
borders of the descent images were more densely distributed, whereas the lower borders
were more sparsely distributed, indicating that the horizontal moving component was
directed from southwest to northeast at the final stage of descent.

The descent trajectory and landing area terrain reconstructed from the descent images
of Tianwen-1 are in the camera coordinate system corresponding to the first descent image,
in which case the space relationships between the cameras are based on a hypothetical scale.
Therefore, the result needs to be registered under the Mars geographic coordinate system,
for which purpose a total of 24 ground control points were selected, as shown in Figure 16.

Figure 16 shows that the distribution range of ground control points gradually tightens
from the southern region of the landing site toward the north, because the coverage of the
descent image gradually shrinks with the landing process from a large area south of the
landing site to the small area around the landing site. Most of the ground control points are
mainly located in the southern region of the landing site, with few in the northern region,
leading to an asymmetrical distribution from north to south but a basically symmetrical
distribution in the east-west direction. The reason for this is the smaller imaging range of
the landing camera covering the northern region of the landing site (refer to the footprint
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in Figure 15). In addition, the topographic information of the landing area can be obtained
in advance based on the DEM generated from the images acquired by the Tianwen-1's
orbiter. Compared with the rugged topography of the northern region of the landing site,
the southern region is flatter, which can reduce the risk of obstacle interference when the
Zhurong rover carries out inspection and exploration work. Hence, the accurate acquisition
of topographic information in the southern region of the landing site is more conducive
to decision-making departments on the Earth to provide data support for the subsequent
Zhurong rover’s path planning, which is also an important reason why the ground control
points are mainly located in the southern region of the landing site.
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Figure 15. Footprint map of Tianwen-1’s descent images.

4.2. Recovery of Trajectory and Velocity

The positions and poses of the recovered landing camera during the EDL in the Mars
geographic coordinate system are shown in Figure 17.

In Figure 17, the landing camera is represented by a polyhedron, so that not only
the descent trajectory of the landing camera can be seen, but also the camera poses corre-
sponding to each descent image. In order to facilitate the display, the simplified models
of the landing camera corresponding to the lowest eight descent images are reduced to a
certain size. This is due to the fact that the interval heights of those eight images became
significantly smaller because of decreasing landing velocity. As indicated in Figure 17, there
are three adjacent descent image positions with large intervals, namely, View1 (V1, and
the same next) and V2, V11 and V12, and V12 and V13. The reason is that the sampling
intervals of the descent images at the other positions are 4.096 s, whereas the sampling
intervals of the camera became longer when these few images were taken; the sampling
interval is 28.672 s between V1 and V2, 15.737 s between V11 and V12, and 12.936 s between
V12 and V13 (refer to Section 2.1). Therefore, this phenomenon does not illustrate that
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the descent velocity has changed dramatically at the positions corresponding to these few
images. The analysis about the footprint can be verified by Figure 17, the lander swings
more in the east-west direction and less in the north—south direction during the EDL. The
swing becomes negligible during the descent process corresponding to the last eight images,
especially the swing in the east-west direction. During the time frame of the 20 descent
images in total, the lander descended over 5000 m, spanning a distance of about 800 m
from south to north and about 1100 m from west to east, for a total of about 1360 m in the
horizontal direction, with the horizontal movement component pointing from eastward
to northeastward.
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Figure 16. Diagram of the distribution of the ground control points selected for Tianwen-1.

The quadratic curves in two directions are fitted respectively. In the east-facing View,
the equation of the quadratic curve is (4-bit valid digits retained with integer bits less
than 4):

z = —0.002350y” + 7701y — 5,715,107,590 (20)

In the north-facing View, the equation of the quadratic curve is (4-bit valid digits
retained with integer bits less than 4):

z = —0.002950x% — 34.53x — 98,627 (21)

In order to verify that the descent trajectory has the property of parabola, the residual
error in the XY-plane between the fitted curves and the actual trajectory value is obtained
as in Table 4.

Statistically, the root mean square error (RMSE) and the coefficient of determination of
the recovered trajectory are obtained, respectively (Table 5).
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Figure 17. Side views of the descent trajectory of the Tianwen-1's landing camera with the left picture
viewed from west to east and the right picture viewed from south to north. The quadratic curves in
two directions are fitted respectively.

Table 4. Residual error in the X-axis direction and Y-axis direction.

Z (m) Res in X-axis (m) Res in Y-axis (m) Z (m) Res in X-axis (m) Res in Y-axis (m)
2508.252 8.213 3.935 —1482.290 5.689 8.766
828.214 —8.655 —0.465 —2542.272 6.976 0.182
591.026 —8.452 —0.334 —3094.474 0.944 —1.198
301.692 —1.730 —3.466 —3210.715 0.092 —5.491
130.631 —3.613 —8.914 —3324.941 —0.003 -1.711
—161.540 —0.994 —6.517 —3437.747 —0.582 —2.156
—404.045 —2.488 —2.847 —3545.003 —0.247 —0.095
—657.444 4.802 3.305 —3647.823 —-1.170 2.323
—896.076 3.575 5.838 —3738.504 —2.928 0.689
—1213.155 4.299 7.291 —3822.342 —3.728 0.865

Table 5. RMSE and coefficient of determination in the X-axis direction and Y-axis direction.

Statistic Variate X-axis Y-axis
RMSE (m) 4.458 4.351
Coefficient of Determination 0.903 0.967

In the vertically downward direction, the descent trajectory can be seen as shown in
Figure 18.
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Figure 18. Top view of the descent trajectory of Tianwen-1s landing camera. The green dots indicate
the landing camera positions corresponding to the descent images, whereas the solid orange line
represents the descent trajectory.

As illustrated by Figure 18, the overall landing trajectory is relatively smooth, except
for slight fluctuations in the middle section. During the first half of the descent, the
horizontal component of the velocity was mainly pointing from west to east, whereas in
the second half of the descent, a slight left turn occurred, after which the direction of the
horizontal component pointed from the southwest to northeast. The horizontal interval
variation of the camera corresponds to the vertical interval variation of the camera in
Figure 17. The V1 and the V12 far away from adjacent images, which is also the same
situation in Figure 17. In the final stage of descent, the green dots are densely distributed,
no longer turning and oscillating when facing northeast, which corresponds exactly to the
way the last few images in Figure 15 overlap.

According to the translation of the landing camera, combined with the acquisition time
of each descent image, the velocity components along the three directions of the coordinate
axis were calculated, from which the velocity components in the XY plane (horizontal
plane) were obtained, as depicted in Figure 19.

As displayed in the Figure 19, the velocity along the x-axis underwent a large fluctua-
tion in the middle section with two extreme maximum values and two extreme minimum
values, and gradually decreased to almost zero in the second half with a smooth trend.
There were two extreme maximums and an extreme minimum of the velocity along the
y-axis which experienced three significant decreases and two rebounds. Besides, the initial
velocity along the y-axis was not as large as along the x-axis. Small fluctuations were
observed at the end of the landing, presumably due to the thrust that was mostly along
the y-axis. The thrust was provided by the thrusters during the auto-tuning process. From
Figure 19, it can also be known that the horizontal velocity in the first half was mainly
determined by the velocity along the x-axis, whereas at the end of the landing it was
greatly influenced by the velocity along the y-axis. The initial velocity along the vertical
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direction was larger and relatively stable, reaching more than twice the initial velocity
in the horizontal direction. After experiencing fluctuations in the first half, the vertical
velocity reached its maximum at an altitude of about 3000 m above the surface. Then,
the velocity started a rapid descent until it was about 30 m/s, during which the lander
descended by an altitude of about 2000 m. At the end of the descent trajectory, a slight
change in acceleration occurred as the thrusters were turned on about 1000 m above the
surface, which corresponds to a velocity oscillation in the y-axis direction before landing.
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Figure 19. Velocity curve of the landing camera of Tianwen-1.

4.3. Terrain Reconstruction

The DEM (Figure 20) and DOM (Figure 21) were reconstructed from the descent
images of Tianwen-1.
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Figure 20. DEM of the landing area of Tianwen-1, and the impact craters are marked as red dashed circles.
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Figure 21. DOM of the landing area of Tianwen-1.

This DEM of the landing area spans about 1600 m in the east-west direction, corre-
sponding to a longitude range of about 2, and about 1600 m in the north-south direction,
corresponding to a latitude range of about 2/, which mainly contains an area of about
1200 m south of the landing site, an area of about 400 m north of the landing site, and an
area of 800 m to both the west and east of the landing site. It is demonstrated that the
topographic height difference in the area is within 20 m, which implies that the overall
topography is relatively flat with lower terrain in the northwest and southeast areas and
higher terrain in the southwest and northeast areas. The morphology of the impact crater is
mainly represented by a high circular crater lip and a relatively low crater center, according
to which several larger impact craters (five located in the western part with one in the
eastern part as marked in Figure 20) in the landing area are clearly distinguished in the
DEM. In order to evaluate the accuracy of DEM, the RMSE in the vertical direction of the
control points was calculated to be 1.612 m.

To facilitate comparison with the DEM, the DOM is produced to the same extent as
the DEM (Figure 21). Since the sun was located to the east of the lander during the descent
process, the east side of the descent image was brighter and the west side was darker,
which was most acute at the edge of the image. In addition, affected by the combination of
the vignetting of the landing camera’s lens and light propagation attenuation, the descent
image shows a phenomenon of brightness in the middle and darkness around, which
exacerbates the problem of low illumination on the western edge of the descent image. For
this reason, two templates were used for the illumination filtering of the image. Both of
them are dark in the middle and bright at the periphery with the relation between light
intensity and distance from the center of the template conforming to the quadratic functions.
The first template is centered on the projection of the sun in the image, with the second
template being centered on the center of the image. This filtering greatly attenuates but does
not completely eliminate the difference in the edge’s brightness in the point cloud fusion
process. As a result, some of the edges of the descent images are still visible in the DOM,
which is not yet enough to interfere in the recognition of the feature’s information on Mars’
surface. As described by the DOM, there are a large number of sand ridges that mainly exist
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in the flat area and rarely lie inside the impact crater or across the crater lip in the landing
area. The sand ridges are mainly arc-shaped, pointing from northwest to southeast with the
convex direction facing north. Most of the sand ridges exist independently, whereas some
of them appear to be connected. In addition, impact craters of different sizes and depths
in the landing area can be clearly seen, which together with sand ridges pose a potential
safety hazard to the roving rover. On this account, their effective identification will assist
teleoperation departments on Earth in route planning to avoid danger.

5. Discussion and Conclusions
5.1. Discussion

In this paper, the motivation of proposing the TR-TR algorithm for dual restrained
conditions comes from the mission support for Tianwen-1. When using the descent images
to recover the descent trajectory and reconstruct the terrain of the landing area, various
shortcomings of previous algorithms were found, thus failing to robustly recover the
trajectory or reconstruct the accurate terrain. In view of this problem, this paper has made
relevant research and found that there are dual restraints between the descent trajectory
and the terrain of the landing area. The terrain condition in the landing area leads to the
inability to calculate the motion of the landing camera robustly, and the forward motion
of the landing camera along the parabolic trajectory leads to the inability to reconstruct
the accurate terrain. Aiming at the problem of dual restraints, this paper studied the key
technologies that can solve it, and proposed the TR-TR algorithm. The TR-TR algorithm
has been verified and improved by field experiment and then applied to in-orbit data
of Tianwen-1.

The advantage of the TR-TR algorithm is that it can solve the dual-restraints problem
at the same time, while previous work has not been able to propose effective solutions to
the dual-restraints problem, or only partial solutions to one of them. For example, data
obtained by sensors were utilized to overcome the unrobustness of the trajectory recovery
due to the flat terrain [19]. The plane-sweep algorithm with BSFP strategy was proposed to
solve the problem of low terrain reconstruction accuracy caused by the forward motion of
the landing camera [25]. Based on these works, the TR-TR algorithm made improvements
for each restraint, and finally integrated them together to become an algorithm that can
overcome both restraints. Thus, the TR-TR algorithm outperforms previous algorithms
even when dealing with a single restraint. Some of the other previous algorithms were
also tested in the field experiment. Under the condition of a single restraint in the TR-TR
algorithm, the maximum error of the recovered trajectory is 0.712 m, and the accuracy is
better than that of the original algorithm, but it is not as high as that of the TR-TR algorithm
(0.397 m) for dual restraints [19]. The reason may be that TR-TR uses denser feature points
and more accurate matching points.

The TR-TR algorithm was mainly proposed for the mission of Tianwen-1; hence, it is
good at processing similar data with Tianwen-1 descent images. These kinds of descent
images are sequence images, but the sampling frequency is low, which leads to the sparse
images that cannot be processed according to the idea of video processing. By contrast,
descent images acquired by other planet exploration missions do not necessarily have such
conditions. For instance, the sensors of Chang’e-4 acquired dense descent images with
high sampling frequency [27]. In addition, the descent images of Chang’e-4 have high
contrast illumination since there is no air on the lunar [31]. The applicability of the TR-TR
algorithm in the descent images of other planets will be better. When encountering densely
sampled descent images or videos, the TR-TR algorithm will achieve higher accuracy, but
also increase the computational complexity. Hence, the generality of the TR-TR algorithm
still needs improvement.

The results of the field experiment showed that the TR-TR algorithm did outperform
the previous methods. The TR-TR algorithm obtained refined motion with higher accuracy
compared to the SIFT algorithm. This is because the TR-TR algorithm obtained uniform
and dense feature points by reducing the contrast threshold. Of course, it must also have
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something to do with the high matching accuracy. The accuracy of refined motion is lower
than that of initial motion because the cumulative error is added to it. Compared with
Meng’s method [24], the TR-TR algorithm obtained more stable and higher matching accu-
racy after removing mismatching points. The reason for the stability is mainly because the
TR-TR algorithm exploited more robust information (homography matrix and maximum
height difference of the terrain), while Meng’s method exploited unstable information
(fundamental matrix). More specifically, it is possible to obtain the incorrect fundamental
matrix, but it is not possible to obtain the incorrect homography matrix using (quasi-)
degenerated data. This is exploited by this algorithm to search for the robust homography
matrix first. In fact, the homography matrix has also been combined with RANSAC to
remove mismatching points [23]. However, the inlier threshold of RANSAC is not given.
The threshold is explicitly given in the TR-TR algorithm based on prior terrain informa-
tion. By using the DEM of the landing area, the robust maximum height difference of
the landing area is known. Then, the robust homography matrix is combined with the
maximum height difference to get the robust maximum plane induced parallax. Finally,
matching points are checked and eliminated according to the robust maximum plane
induced parallax. In addition to stability, the TR-TR algorithm also has higher matching
accuracy, because the TR-TR algorithm uses the monotonicity of feature scale variation
in the descent images to eliminate some other mismatching points, which is not used by
Meng’s method. The field experiment of robust motion estimation mainly includes two
parts: the estimation of initial motion and the adjusted motion. As for the initial value
of motion, it can be seen that Meng’s method will randomly get the error solutions with
the gross error when the (quasi-)degenerate data are used [24]. The error solutions come
from decomposition of the incorrect fundamental matrix which is obtained randomly. In
comparison, the TR-TR algorithm is able to obtain a more stable motion solution for two
reasons. The first one is that the TR-TR algorithm is able to obtain two motion solutions
based on the robust homography matrix decomposition and uses the parabolic property of
the descent trajectory to eliminate the one that does not match the real situation, leaving the
robust motion solution. The second is that according to the robust homography matrix, the
TR-TR algorithm makes full use of the points outside the scene plane, and uses the epipoles
constrained parallax beam method to search for a robust fundamental matrix among the
matching points that may contain mismatching points. For the adjusted motion, the TR-TR
algorithm is compared with the SIFT method with default threshold in OpenCV, and higher
trajectory recovery accuracy is obtained. This is because the TR-TR algorithm obtains more
and uniformly distributed matching points by reducing the contrast threshold of SIFT,
which provides more sufficient constraints, especially for the (quasi-) degenerated data.
For example, for (quasi-) degenerated data, there are points outside the scene plane, but if
the number of matching points is small, it is likely to be all in the plane. However, if the
number of matching points is large enough and the distribution is uniform, it is more likely
to contain points outside the plane. Such a point as an observed value participating in the
adjustment can provide the constraint in the vertical direction and obtain a more accurate
motion solution. Compared with Meng’s algorithm [25], the TR-TR algorithm obtained
higher terrain accuracy. The most direct reason is that the TR-TR algorithm found more
initial seed points as exact depth constraints. The better fit of the multi-directional virtual
planes to the small undulations of the terrain resulted in more initial seed points and made
more ZNCC curves eligible to be the initial seed points. Meng’s method is proposed for
two images, while the TR-TR algorithm is for multiple images. In the case of two images,
one of the images has only one epipole, and the insensitivity of depth to parallax near the
epipole cannot be resolved by more images. In contrast, in the case of multiple images,
one of the images can have more than one epipole, and the insensitivity of depth recovery
near a certain epipole can be solved by the sensitivity of other images in this region, thus
improving the accuracy of terrain reconstruction near the epipole.

The in-orbital descent images data of Tianwen-1 were used by the TR-TR algorithm to generate
the descent trajectory and reconstruct the terrain of the landing area. Some similar algorithms have
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been used to process in-orbit descent images of Chang’e-3 and Chang’e-4 [15,27,47]. They also
successfully recovered the descent trajectory and reconstructed the terrain of landing area.
The difference is that their descent trajectory is not parabolic, hence, their algorithm does
not necessarily apply to Tianwen-1.

5.2. Conclusions

This paper presents a detailed description of the descent images acquired by the
Tianwen-1’s landing camera and points out the difficulties encountered in the descent
trajectory recovery and reconstructing terrain of the landing area using descent images in
the dual-restraints conditions. In response to these difficulties, a novel trajectory recovery
and terrain reconstruction (TR-TR) algorithm was proposed, which solved the problems of
uneven distribution of feature points, high numbers of mismatching points owing to similar
features, unrobust motion estimated from (quasi-) degenerate data, and low accuracy of
terrain reconstruction in baselines along the optical axis. Robust motion was estimated by
using parallax beams with epipoles constraints and utilizing parabolic characteristics of
trajectories to eliminate uncertainty. More accurate trajectory was recovered by obtaining
evenly distributed feature points and removing more mismatching points. More accurate
and fine terrain was reconstructed by using a multi-image and multi-direction plane-
sweep method with sparse spatial points. Verified by the simulated landing experiment
in the Red Cliff area, the TR-TR algorithm obtained more accurate results than previous
methods, including more accurate trajectories and more accurate terrain. The maximum
error of recovered trajectory was reduced from 0.681 m of previous algorithm to 0.397 m.
The maximum error of terrain reconstruction was reduced from the 0.692 m of previous
algorithm to 0.462 m of the TR-TR algorithm. In practical applications, the TR-TR algorithm
was applied to the in-orbit data of Tianwen-1 by accurately recovering the landing trajectory
of the lander and mapping the high-precision terrain of the landing area. The recovered
trajectory was fitted to parabola in X-axis and Y-axis directions, and the corresponding
parameters and correlation coefficients were obtained. The fitting residuals were also
calculated. The vertical RMSE of the reconstructed terrain in the landing area of Tianwen-1
was calculated as 1.612 m. The terrain accuracy obtained by in-orbit data is lower than
that obtained by field experiment, because the accuracy of the control points in the in-orbit
data is relatively lower, and the selection error of control points on the in-orbit descent
image is relatively larger. The results met the accuracy requirements of the mission for
terrain reconstruction and supplied a strong product to support the follow-up inspection
and detection of the Zhurong rover and provided valuable data feedback for the future
planetary landing mission.

The innovations of this article are as follows:

(1) A novel algorithm (TR-TR) for descent trajectory recovery and landing area terrain
reconstruction based on Tianwen-1's descent images was developed in a dual-restraints
context, which has higher precision, accuracy, and robustness than previous methods;

(2) The landing simulation experiment of the Mars lander was carried out for the first
time in the Mars-like landform area to verify the descent trajectory recovery and terrain
reconstruction algorithms based on descent images;

(3) For the first time, the descent images of Tianwen-1 were employed to realize
the recovery of the descent trajectory of the lander and the terrain reconstruction of the
landing area.

5.3. Future Work

Although the TR-TR algorithm proposed in this paper has achieved good results,
there are still limitations, such as the requirement of the internal parameters of the descent
camera, the failure to utilize the shape and size of the ground objects in the landing area to
provide scale constraints for the reconstructed terrain, and the lack of the establishment
of the multi-scale precision evaluation method of terrain mapping based on images with
different resolutions. Moreover, as mentioned in the discussion, the generality of the TR-
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TR algorithm needs to be enhanced. Further research is needed for China’s future Mars
landing missions that still face enormous challenges. The terrain reconstruction algorithm
based on descent images is an important prerequisite and component of point cloud based
terrain reconstruction. However, dual restraints are still an inevitable problem for point
cloud terrain reconstruction. Therefore, the TR-TR algorithm in this paper can also provide
reference for point cloud reconstruction in planetary mapping.
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