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Abstract: Timely and accurate cropland information at large spatial scales can improve crop manage-
ment and support the government in decision making. Mapping the spatial extent and distribution
of crops on a large spatial scale is challenging work due to the spatial variability. A multi-task
spatiotemporal deep learning model, named LSTM-MTL, was developed in this study for large-scale
rice mapping by utilizing time-series Sentinel-1 SAR data. The model showed a reasonable rice
classification accuracy in the major rice production areas of the U.S. (OA = 98.3%, F1 score = 0.804),
even when it only utilized SAR data. The model learned region-specific and common features
simultaneously, and yielded a significant improved performance compared with RF and AtBiLSTM
in both global and local training scenarios. We found that the LSTM-MTL model achieved a regional
F1 score up to 10% higher than both global and local baseline models. The results demonstrated
that the consideration of spatial variability via LSTM-MTL approach yielded an improved crop
classification performance at a large spatial scale. We analyzed the input-output relationship through
gradient backpropagation and found that low VH value in the early period and high VH value in
the latter period were critical for rice classification. The results of in-season analysis showed that
the model was able to yield a high accuracy (F1 score = 0.746) two months before rice maturity.
The integration between multi-task learning and multi-temporal deep learning approach provides a
promising approach for crop mapping at large spatial scales.

Keywords: spatiotemporal analysis; deep learning; long short-term memory; multi-task learning;
rice mapping; Sentinel-1

1. Introduction

Sufficient food supply is critical for the increased global population, but it has be-
come more vulnerable under the increased occurrence of extreme climate events caused by
global warming [1]. Timely and accurate crop mapping at large spatial scales can provide
fundamental information (e.g., crop types, locations, and periods) to improve crop manage-
ment, production forecasts, and disaster assessment [2]. For example, it can provide new
insights into the spatial variances of crop production and their driving factors. This digital
information can be used to help farmers and the government to improve the allocation of
agricultural resources, such as optimizing water management and supply chain logistics.
Therefore, it is essential to develop accurate crop mapping approaches that can be applied
at large spatial scales to support food security.
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Remote sensing technology can provide low-cost, multi-temporal, multi-band, and
large-scale observation data for crop information extraction repeatedly and consistently [3].
With the advent of the increased number of remote sensing data, numerous studies have
been conducted for large-scale crop mapping based on various satellite products (Table 1).
Most existing crop mapping products at large spatial scales are usually based on simplified
approaches and evaluated in the selected samples of a study area. A large-scale crop
mapping product with sub-field level resolution and high accuracy evaluated in the whole
study area is still needed for a thorough understanding for the crop production at regional
to global scales. In addition, existing crop mapping products are usually based on the
optical remote sensing products, such as MODIS and Landsat. The optical remote sensing
products are principally hampered by cloud cover, which is persistent in many parts
of the world during the crop growth period, particularly for rice in tropical areas. The
cloud coverage influences the completeness of the observation time series that hinders the
monitoring of the crop growth process.

Note: ‘N/A’ means not available; ‘Multiclass’ means more than three categories; ‘S’
means calculated by selected samples; ‘W’ means calculated by whole study area.

Synthetic Aperture Radar (SAR) imagery has great potential for crop mapping in
tropical areas because of its all-time and all-weather imaging capacity. SAR has shown its
benefit for dynamic change information extraction in recent studies, such as land cover
mapping, urban change monitoring, crop monitoring, and tropical forest disturbance
alerts [4–6]. Crop growth is a typical dynamical process from planting to maturity. The
complete temporal information on crop growth provided by SAR at high spatial resolution
globally that could potentially improve the crop mapping results.

Previous studies have demonstrated the potential of utilizing the similarity of the
crop growth process across different regions in improving the crop classification accuracy
at large scales [7,8]. The life cycles of specific crop have similar development patterns,
despite the spatial heterogeneity of physiological response to environmental conditions.
For example, rice would go through a series of physiological processes from planting
to mature. This progress is a common time-series of rice and remote sensing would
reflect responding temporal characteristics. These commonalities provide opportunities
for expending crop classification models to a large spatial scale. Many multi-temporal
approaches were developed by extracting phenological metrics from the time-series of
satellite observation [9,10]. These approaches usually include two steps: fitting time-series
curves by mathematical functions, and extracting phenological metrics or parameters using
empirical methods, such as predefined thresholds [11,12]. These approaches, however,
heavily rely on domain knowledge and are usually only suitable for a certain area since the
extracted information is limited.

The data-driven machine learning algorithm, as another alternative, is becoming one
of the predominant approaches for crop mapping under various spatial scales and reso-
lutions. These approaches, such as decision tree (DT), random forest (RF), and support
vector machine (SVM), can extract the useful patterns for crop classification from the high-
dimensional time-series of remote sensing data [13–15]. The Cropland Data Layer (CDL), as
one typical large-scale crop type map product published by the United States Department of
Agriculture (USDA), provides crop type maps at 30-m resolution updated annually based
on a DT-based classifier [16]. Such approaches, however, are not originally designed for
processing time-series of remote sensing data, resulting in the sequential relationship hid-
den in time-series profiles being not explicitly used, thereby necessitating the incorporation
of handcrafted and pre-defined temporal features into input variable collections.
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Table 1. An overview of existing crop mapping at large spatial scales.

Major Classification
Approach Sensors Study Area Crop Types Reference

Data
Overall

Accuracy Reference

Threshold
based

Rule based MODIS
South and
southeast

Asia
Rice Statistical

data N/A [17]

Rule based MODIS Northeast
China Rice

VHRI,
NLCD,

Statistical
data

97% (S) [14]

Rule based Landsat Northeast
Asia Rice

VHRI,
Existing rice

map
98% (S) [11]

Rule based MODIS
Kansas and

Central
China

Winter wheat CDL, Field
surveys 90.3% (S) [12]

DTW Landsat,
Sentinel-1&2

Central
China Winter wheat Field surveys,

VHRI 89.9% (S) [18]

Machine
learning

DT MODIS US Multiclass CDL 71.7–81.2%
(S) [19]

DT MODIS,
Landsat US Soybean CDL 93–95% (S) [20]

DT Landsat US Soybean CDL, Field
surveys 84% (S) [21]

GMM MODIS Kansas and
Ukraine Winter crop CDL, Field

surveys 91.6% (S) [8]

RF Landsat,
Sentinel-2 Germany Multiclass

Field surveys,
Statistical

data
80.9% (S) [13]

RF, K-means
and GMM Landsat US Midwest Multiclass CDL 70–87% (S) [10]

RF Sentinel-1&2 Heilongjiang,
China Multiclass Field surveys 97% (S) [3]

Deep
learning

3D-CNN MODIS
Kansas and

northern
Texas, US

Winter wheat
CDL,

Statistical
data

87.1–91.9%
(W) [22]

U-Net Sentinel-1
Arkansas

River Basin,
US

Rice CDL 90.6% (W) [23]

Abbreviations: DTW, Dynamic time warping; DT, Decision tree; GMM, Gaussian mixture model; RF, Random
forest; MODIS, Moderate Resolution Imaging Spectroradiometer; VHRI, Very high resolution imagery; NLCD,
National Land Cover Dataset; CDL, Cropland data layer; Note: ‘N/A’ means not available; ‘Multiclass’ means
more than three categories; ‘S’ means calculated by selected samples; ‘W’ means calculated by whole study area.

Deep learning, as an end-to-end network approach, can extract and automatically
organize intricate relationships from high-dimensional data through multiple levels for
representation [24]. The most commonly used deep learning models in the land cover
mapping field are convolutional neural networks (CNNs) and recurrent neural networks
(RNNs). Unlike CNN, which is mainly adopted to extract spatial-spectral features [25],
RNN focuses on learning sequential relationships by explicitly linking adjacent observa-
tions [26]. Long Short-Term Memory (LSTM) is the most well-known variant of RNN,
facilitating time-series analysis and allowing exhibiting long-term temporal dependen-
cies through gated mechanisms [27]. The multi-temporal architecture of LSTM renders it
inherently suitable for modeling vegetation cycles and extracting common crop growth
features of different regions from time-series satellite observations. Recently, LSTM has
been widely applied to develop a generalized model that can be applied across different
geographical locations. Rußwurm and Korner [28] employed an LSTM network to extract
dynamic temporal characteristics from a sequence of satellite observations to classify crop
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types. Xu et al. [29] developed an attention-based bidirectional LSTM model and achieved
improved generalizability for large-scale dynamic corn and soybean mapping. These
end-to-end deep learning approaches with higher generalizability have effectively reduced
the cumbersome efforts in feature construction efforts and showed potential for large-scale
applications.

Mapping the spatial extent and distribution of crops on a large spatial scale is a
challenging work due to the spatial variability, such as the diverse cropland landscape and
crop calendar. The variances are influenced by the environmental conditions (e.g., climate,
soil, and topography) and farm management (e.g., plant date, land size, and irrigation)
across space. Therefore, the information extracted from satellite images, such as cropland
spectral, texture, and shape characteristics, varies over space and time. The CDL is one of
the most widely used large-scale crop type maps, however, the workflow to generate CDL
needs substantial labeled samples collected by time- and labor-cost field survey, which
are not readily available in other countries. Its processing and methodology also lead to
some limitations, such as lag of release time and inconsistencies across states [30,31]. Prior
studies at large spatial scales usually develop a global model for the entire study area and
simplify the spatial variability [21,32,33]. The lack of consideration of spatial variability
leads to their comparatively low overall performance and large inconsistencies across
regions. Some studies focus on constructing deep learning models with high transferability
to ensure the accuracy of large-scale crop mapping [7,34,35]. However, there is a significant
degradation in transfer performance compared with relatively high local performance,
hindering practical applications of these approaches on large spatial scales.

Multi-Task Learning (MTL) is a learning paradigm in machine learning that aims to
improve the performance of multiple related learning tasks by leveraging useful informa-
tion among them [36]. MTL generalizes the previous concept of transfer learning because
the information is shared among all tasks [37]. It enables the model to learn multiple
related tasks and share information across the tasks simultaneously. Previous studies have
demonstrated that the MTL mechanism can improve the generalization performance com-
pared to independently learning each task [38,39]. In remote sensing field, MTL is mainly
used to improve the classification performance of target detection tasks (e.g., road and
building footprints) in high-resolution satellite images [40,41]. In large-scale crop mapping,
crop classification tasks in different regions can also be regarded as related learning tasks
suitable for MTL. The temporal patterns of crop growth are generally consistent across
regions but have domain-specific characteristics due to variances in environmental and
farm management. The MTL mechanism can utilize the domain-specific features while con-
sidering the common features across regions. The integration of MTL into multi-temporal
deep learning model can potentially address the spatial variability challenges in large-scale
crop mapping and improve the crop classification on a large spatial scale.

We developed a multi-task spatiotemporal deep learning model using time-series
Sentinel-1 SAR data for rice classification at large spatial scales. The major rice production
area in the U.S. was used to demonstrate the model development. We designed an Attention-
based Bidirectional Long Short-Term Memory (AtBiLSTM) network to extract the common
temporal features of different regions from the time-series SAR images. Then, we utilized
multi-task learning by treating the rice classification of each region as related tasks to learn
both common and region-specific features under the consideration of the variability at large
spatial scales. We used a gradient backpropagation approach to evaluate the contribution
of each temporal input to the rice classification for a superior comprehension on the effect
of temporal input on rice classification. Specifically, we aimed to answer the following
research questions in this study:

(1) Can the LSTM-based model using the Sentinel-1 SAR data perform well for large-scale
rice mapping?

(2) How much benefit can MTL bring to improve the crop mapping at a large spatial scale?
(3) What is the contribution of the temporal input to the rice classification as the growing

season progresses?
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2. Materials
2.1. Study Area

The study was conducted in the major U.S. rice production areas, which consists of
South Central region (Arkansas, Mississippi, Missouri, Louisiana, and Texas) and the Sacra-
mento Valley of California. Rice production requires particular agronomic conditions, such
as a plentiful water supplement, high average temperatures during the growing season,
and a smooth land surface. Therefore, rice production in the U.S. is limited to certain areas.
According to the statistics data retrieved from the USDA National Agricultural Statistics
Service (NASS) Quick Stats portal [42], the U.S. rice production areas are distributed in six
states, including Arkansas, California, Mississippi, Missouri, Louisiana, and Texas.

The study area was determined by a two-step method: (1) we acquired the US-wide
30-m resolution CDL maps from 2014 to 2018 and divided them into a regular grid of
20 km × 20 km blocks. (2) We calculated the 5-year average rice percentage for every block,
and then excluded the blocks with a very low rice percentage (<0.02%) and far away from
the six states. Finally, the study area consisted of 561 blocks and cumulatively accounting
for more than 99% of the total rice area of the U.S. (Figure 1). The total number of pixels is
249,334,001, corresponding to 224,400 km2.
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Figure 1. Block-level rice area ratios of the four rice production regions in the U.S. The size of each
block is 20 km × 20 km.

Unlike other parts of the world where rice production is divided between irrigated
and non-irrigated fields, all U.S. rice is produced in irrigated fields [43]. However, different
types of rice (i.e., long-, medium-, or short-grain) are grown over the U.S. determined
by regional soil conditions. Moreover, the rice growing seasons vary by region due to
various environmental conditions and farmers’ decisions. We divided the entire study area
into the following four regions based on their rice phenology and growth environments:
Arkansas Grand Prairie (AP), Mississippi Delta (MD), Gulf Coast (GC), and Sacramento
Valley (SV) [44,45].

2.2. Data
2.2.1. Sentinel-1 Time-Series Data

The Sentinel-1 mission provides free C-band SAR imagery globally with a two-satellite
configuration [46]. In this study, the Sentinel-1 Level-1 Ground Range Detected (GRD) dual-
polarized (VV + VH) data in Interferometric Wide Swath (IW) mode at a 10-m resolution
was used. All available Sentinel-1 scenes in ascending orbit covering the study area were
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accessed through the Google Earth Engine (GEE). Each scene of data was pre-processed
using the following steps, as implemented by the Sentinel-1 toolbox in GEE: (1) orbit file
application, (2) GRD border noise removal, (3) thermal noise removal, (4) radiometric
calibration, and (5) terrain correction. An extra pre-processing step, the Refined Lee filter,
was applied to reduce the speckle noise [47]. Finally, we reduce the resolution of the SAR
images to 30 m by calculating the average of each pixel to match the CDL label data. Both
Sentinel-1 satellites have a 12-day revisit cycle at the equator. A 6-day revisit time can
be achieved with two satellites operating. However, this frequency of observation in a
specific orbit is currently available only in a limited region. In this study, the time interval
of Sentinel-1 time-series data was 12 days, determined by the maximum revisit time in
the study area. Although we used all available Sentinel-1 scenes in ascending orbit, some
were still missing. A pixel-level linear interpolation was applied to fill the gaps in the
time-series data.

The U.S. rice-growing season varies by region. Planting in Texas and southwest
Louisiana typically begins in early or mid-March, Delta States in April, and California
in late April. A typical rice growing season in the U.S. lasts 6 months. We assumed the
earliest planted date of different regions, as well as the start of Sentinel-1 time-series data
was determined according to the state-level 5-year average Crop Progress Report (CPR)
of rice [42], (Table 2). The length of time-series data was set to 16 to cover the entire rice-
growing season. Finally, we used a total of 1245 Sentinel-1 images to construct time-series
data at 12-day interval with 16 time steps in 2018 and 2019.

Table 2. Summary of the planted date, sample set size, and category proportions in each region in
2018 and 2019.

Region Planted Date Number of Pixels Year Scenes
Proportion of Category

Rice Other

AP April 1st 52,890,444
2018 110 10.97% 89.03%

2019 109 8.64% 91.36%

MD April 1st 77,332,666
2018 195 2.88% 97.12%

2019 188 2.44% 97.56%

GC March 10th 91,559,112
2018 152 3.77% 96.23%

2019 152 3.00% 97.00%

SV April 25th 27,551,779
2018 99 8.54% 91.46%

2019 240 8.59% 91.41%

2.2.2. USDA Cropland Data Layer

The CDL was used as a reference map for both the training and test datasets. The
CDL is an annual publicly available land cover classification map provided by the USDA,
NASS [16]. The 30-m CDL was based on the information from the Common Land Unit
(CLU), NASS June Agriculture Survey, National Land Cover Dataset (NLCD), and imagery
from several satellites including Landsat 5/7/8, RESOURCESAT-1/2, Sentinel-2, Disaster
Monitoring Constellation (DMC) DEIMOS-1 and UK2. Providing more than 100 land cover
and crop type categories, CDL has a high accuracy for the major crop types [31].

3. Methodology
3.1. LSTM-Based Multi-Task Learning Model

The overall structure of the LSTM-based Multi-task Learning (LSTM-MTL) model
included a shared Attention-based Bidirectional LSTM (AtBiLSTM) Network and four
MTL-based region-specific output layers (Figure 2). We combined MTL and a multi-
temporal model to utilize the common and region-specific features of different regions
simultaneously. The model obtained a pixel-level time-series of satellite observations
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during the rice growing season as the input and yielded a predicted category as the output.
The AtBiLSTM network used multiple LSTM layers to extract common temporal features of
different regions hierarchically from satellite time-series data. Then, the model classified the
pixels through the region-specific output layers to adequately extract the spatial variances
across different regions.
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Figure 2. Overall structure of the LSTM-based Multi-task Learning (LSTM-MTL) model for
rice classification.

Shared AtBiLSTM Network. The entire time-series data of the study area was fed into
the shared AtBiLSTM network to extract the common crop growth features of different
regions. The input data is a time sequence {x1, x2, . . . , xt, . . . , xT} and xt is a vector that
includes multiple radar polarization bands [VVt, VHt] in the time step t during the rice
growing season. A two-layer bidirectional LSTM network is built to learn general temporal
features from the input sequence. The details of the AtBiLSTM network are well introduced
in our prior work [29]. We set the dimension of hidden feature of AtBiLSTM as 128 after
testing the candidate values of 32, 64, 128 and 256.

MTL-based region-specific output layers. In this study, we used MTL to conduct
the region-specific output layers based on regional characteristics. The study area was
divided into four regions according to variances of environmental condition and farm
management. Rice classification tasks in different regions were regarded as related learning
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task with commonalities and differences. Each individual region-specific output layer
was designed to extract domain-specific feature but trained jointly. The structure of the
output layer for each task was the same, consisting of a single fully connected layer with
the Softmax function.

In a single specific task, the layer received the hidden feature H from the shared
AtBiLSTM network as input and produced a discrete probability distribution consisting of
two predicted probabilities corresponding to “rice” and “other” categories. The highest
probability was adopted as the predicted category, and the cross-entropy function was used
as the loss function. The adjusted loss function was calculated as follows:

Lsingle = −
1
N

N

∑
i=1

K

∑
j=1

ptrue
i,j log

(
ppred

i,j

)
+ λw2 (1)

where N is the size of the training set of a single task; i is the index of the sample; K is
the number of categories; j is the category index; ptrue

i,j and ppred
i,j are the true and predicted

probabilities that the i-th sample belongs to the j-th category, respectively. λ is the L2
regularization parameter, and w is the weight matrix including all learnable parameters in
the model.

We jointly learned the four tasks to share potentially related features of different
regions. We assumed that each task had the same contribution to the U.S. rice mapping
to obtain global optimal classification performance. The multi-loss function was defined
as follows:

Ltotal =
N

∑
i=1

Li (2)

where N is the number of tasks, Li is the loss function to be minimized of task i, and Ltotal
is the combined loss of all tasks. The backpropagation algorithm with the Adam optimizer
was used for training the network [48]. The dropout technique and L2 norm regularization
were applied to prevent the model from overfitting.

3.2. Baseline Classification Models

Two baseline methods, including Random Forest (RF) and AtBiLSTM were developed
to evaluate the performance of the LSTM-MTL model. RF is an ensemble machine learning
algorithm using bagging strategy [49], and it is well-known to avoid overfitting [50].
The AtBiLSTM model is a spatially generalizable model that can learn temporal features
efficiently and automatically. The main structure of AtBiLSTM is the same as the share
network in the LSTM-MTL model; the difference is that the AtBiLSTM has only one output
layer. The comparison between LSTM-MTL and AtBiLSTM can highlight the advantages
of MTL-based region-specific pattern extraction.

We searched the optimal values of the hyperparameter configuration of the RF and
AtBiLSTM models for each region in a certain range. For RF, we optimized two hyperparam-
eters to adjust the rice mapping task in this study: the number of trees called n_estimator,
and the number of features to consider for the best split called max_feature. We determined
the optimal values of n_estimator after testing the candidate values of the range {100,
200, 400, 800}, and the max_feature was determined after searching in {2,4, log2(S× T) ,√

S× T}. For AtBiLSTM, the dimension of the hidden feature was tested for candidate
values of 32, 64, 128, and 256. The cross-entropy function was used as the loss function.
The configurations of the optimizer, L2 norm regularization, and dropout were the same as
those used in the LSTM-MTL model.

3.3. Model Evaluation

We compared the classification results with the CDL map of the year 2019 to evaluate
the performance of all models, which has been widely used as reference data in previous
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studies [21,23]. Overall accuracy, F1 score, Cohen’s kappa coefficient, user’s accuracy, and
producer’s accuracy were computed as performance indicators for all models.

The user’s accuracy was the proportion of correctly classified samples of the i-th
category to the total samples of the i-th category in the classified image (Equation (3)).
Producer’s accuracy was the proportion of correctly classified samples of the i-th category
to the total samples of the i-th category in the reference image (Equation (4)). The F1 score
is the harmonic mean of the user’s and producer’s accuracy for each class (Equation (5)):

UAi =
ncorr

i

nre f
i

(3)

PAi =
ncorr

i

npred
i

(4)

F1i = 2
UAi ∗ PAi
UAi + PAi

(5)

where i is the index of the category, ncorr
i is the number of correctly classified samples in the

i-th category, npred
i and nre f

i are the sample size in the i-th predicted and reference category,
respectively. UAi is the user’s accuracy of the i-th category, and PAi is the producer’s
accuracy of the i-th category, and F1i is the F1 score of the i-th category. The Cohen’s kappa
coefficient was calculated from the probability of the observed agreement and the expected
agreement was given by a hypothetical random classifier using Equations (6)–(8):

kappa =
po − pe

1− pe
(6)

po =
1
N

K

∑
i=1

ncorr
i (7)

pe =
1

N2

K

∑
i=1

npred
i nre f

i (8)

3.4. Experiments

We performed several experiments to comprehensively analyze the classification
capability of the LSTM-MTL model (Figure 3). To mimic real-life situations, we used
historical data to build models and applied them to rice mapping for the following year.
Our study area covered more than 99% of the rice production area in the US, with a total of
249,334,001 pixels at a 30-m resolution. For the LSTM-MTL model, the training set consisted
of four parts, and each part randomly sampled 10% of the pixels from the four regions
in 2018. The entire 2019 sample set was used as the test set. To better demonstrate the
generalization abilities of the LSTM-MTL model, we trained the baseline models (RF and
AtBiLSTM) in two ways: globally trained and locally trained. For the globally trained
baseline models, the training set was consistent with the LSTM-MTL model. The locally
trained baseline models were trained in each region separately. We fed 24,933,398 randomly
sampled pixels from a single region to train a local model, making the size of the training set
the same as that of the LSTM-MTL model and baseline global models. Specifically, we built
an LSTM-MTL model, two global baseline models (RF and AtBiLSTM trained globally in
the entire study area), and a total of eight local baseline models (RF and AtBiLSTM trained
locally in four regions). We also designed an in-season classification experiment to obtain
insights into how the models dynamically establish crop mapping from the early-season to
end-season. In this scenario, the model could only see the partially unmasked time series
with a limited length. The length of the input observation sequence gradually increased
until full sequences were included.
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Figure 3. Diagram of experiment design. An LSTM-MTL model, two global baseline models (RF
and AtbiLSTM trained globally in the entire study area), and eight local baseline models (RF and
AtbiLSTM trained locally in four regions) were built.

The experiments were performed on a Linux workstation (Ubuntu 16.04 LTS) with
two Intel Xeon Gold Processors (2.1G/20 Core/27.5M), 128 GB of RAM, and four NVIDIA
GeForce RTX 2080 Ti graphics cards (11 GB of RAM). All the deep learning models were
implemented on the Python platform using the PyTorch, whereas RF was implemented
using the Python Scikit-learn library.

4. Results and Discussion
4.1. Spatial Variance Analysis across Different Rice Production Regions

The VV and VH time-series curves of rice and other types exhibited different patterns
during the rice growing season (Figure 4). The shapes of radar backscatter curves of rice
in the four regions exhibited some common patterns: the VV and VH of rice land had a
decreasing trend in the early stages and then rose as the rice grew. After the rice reached
its peak growth, the radar backscatter achieved convergence with a slight decrease during
maturity. The change in radar curves is related to the change of the canopy structure and
the underlying soil surface during the rice growth period [51,52]. The common patterns
indicated the similar development patterns of rice life cycles in different regions. We also
found that the radar backscatter distributions varied across regions. For example, SV
had the lowest values of both VV and VH for rice and other types. The values of radar
backscatter in SV in the planted period were lower than those in the other three regions
and had a higher decreasing rate. This pattern could reflect the specific rice management
strategy in SV, in which rice was grown in flooded fields at planting to aid in weed
suppression in this region. In the other regions, flooding occurred after the rice plant
developed 4–5 leaves, three to four weeks after emergence [45,53]. The difference in radar
backscatter time-series between regions reflected the variation in farm management and
rice-based cropping systems across the rice production regions in the U.S.
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Figure 4. Time-series curves of radar backscatter (VV and VH) of four rice production regions in 2019.
The X-axis is the time step after planted, and the Y-axis is the value of radar backscatter of VV and
VH. The red lines represent the average values of “rice,” and blue lines represent the average values
of “other.” The light buffer areas indicate a standard deviation from the average value.

We observed that the components of the main land cover type category varied across
regions in 2019 (Figure 5) that potentially challenged the rice classification at large scales.
For example, many crops including soybeans, corn, cotton, and rice were grown in AP and
MD, but were relatively rarely grown in the other two regions. Rice’s proportion of farm
production value varied among regions, accounting for 30% in MD, 50% in AP, 65% in
GC, and 80% in SV [45]. Wetlands were the major non-cropland cover in AP, MD, and GC,
while there were relatively less wetlands in SV. The landscape of rice production regions
also showed spatial heterogeneity. For example, more than half crop land in the SV was
only grown to rice because of impeded drainage [54]. Therefore, the sample purity of rice
was higher in SV, whereas rice from other regions was mixed with other crops. The spatial
variability made it difficult to build an acceptable global model or a high transferability
local model for the U.S. rice mapping.

4.2. Performance Evaluation of LSTM-MTL Model
4.2.1. Assessment of Classification Accuracy with CDL

The LSTM-MTL model provided a good classification accuracy for the rice mapping
in the U.S. with overall accuracy equaled 98.3% and F1 score equaled to 0.804 (Table 3). For
the U.S., the producer’s accuracy of rice was 74.6%, the user’s accuracy was 87.2%, and
the kappa score was 0.795. It is noteworthy that we only used the Sentinel-1 SAR data
to achieve the reasonable classification performance. The results showed the potential of
combing deep learning and cloud-free SAR data for large-scale crop mapping. The model
performance varied among the four regions that SV had the highest F1 score (0.936) while
GC achieved the lowest classification F1 score (0.640). By definition, the overall accuracy
has an emphasis on the major class (“other”) rather than the rare class (“rice”), which made
the OA in the four regions similar. However, the F1 score, producer’s accuracies, user’s
accuracies, and kappa were with large difference in the four regions. The spatial variance
was related to the different rice area ratios in each region. We found that higher F1 scores
occurred in the regions with higher rice area ratios. For example, both AP and SV had the
highest rice area ratios (8.6%) in 2019.
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Table 3. Accuracy indices of the LSTM-MTL model for rice mapping in the U.S.

Class
Confusion Matrix Accuracy (%)

F1 Score Kappa
Rice Other PA UA OA

AP
Rice 3,685,063 899,107 80.4 88.3

97.4 0.841 0.827Other 489,589 47,816,685 99.0 98.2

MD
Rice 1,401,857 488,123 74.2 76.1

98.8 0.751 0.745Other 440,661 75,002,025 99.4 99.4

GC
Rice 1,425,161 1,322,294 51.9 83.5

98.2 0.640 0.631Other 282,102 88,529,555 99.7 98.5

SV
Rice 2,132,676 232,897 90.2 97.3

98.9 0.936 0.930Other 58,847 25,127,359 99.8 99.1

Total
Rice 8,644,757 2,942,421 74.6 87.2

98.3 0.804 0.795Other 1,271,199 236,475,624 99.5 98.8

4.2.2. Comparison with Global Baseline Models

The LSTM-MTL model exhibited the highest rice mapping accuracy compared to
the global AtBiLSTM and RF models (Figure 6). The LSTM-MTL model achieved an F1
score of 0.804 in the U.S., which was superior to AtBiLSTM (0.762) and RF (0.745). The
LSTM-based models showed a superior rice mapping performance than RF with an overall
F1 score increase of 0.011–0.080 in all regions. This improvement can be explained by the
unique temporal learning structure of the LSTM network. The gate mechanism of the
LSTM cell enabled the model to selectively accumulate the temporal information from the
SAR time-series during the crop growth period. The results indicate that considering the
temporal characteristics of the dynamical crop growth process can lead to a more accurate
crop classification.



Remote Sens. 2022, 14, 699 13 of 21

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 21 
 

 
Remote Sens. 2022, 14, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/remotesensing 

Total 
Rice 8644757 2942421 74.6 87.2 

98.3 0.804 0.795 
Other 1271199 236475624 99.5 98.8 

4.2.2. Comparison with Global Baseline Models 
The LSTM-MTL model exhibited the highest rice mapping accuracy compared to the 

global AtBiLSTM and RF models (Figure 6). The LSTM-MTL model achieved an F1 score 
of 0.804 in the U.S., which was superior to AtBiLSTM (0.762) and RF (0.745). The LSTM-
based models showed a superior rice mapping performance than RF with an overall F1 
score increase of 0.011–0.080 in all regions. This improvement can be explained by the 
unique temporal learning structure of the LSTM network. The gate mechanism of the 
LSTM cell enabled the model to selectively accumulate the temporal information from the 
SAR time-series during the crop growth period. The results indicate that considering the 
temporal characteristics of the dynamical crop growth process can lead to a more accurate 
crop classification. 

 Multi-task learning (MTL) significantly improved the performance of the LSTM-
based model, which enabled the model to achieve a higher F1 score, increasing from 0.762 
to 0.804 in the U.S. (Figure 6). Notably, the improvements by MTL occurred in all regions 
and the largest improvement by MTL was in the MD, with an increase in the F1 score by 
0.061. Compared with global baseline models, the regional F1 score was increased by 
0.023–0.080 (2.5–12.7%). The comparison in the kappa score of rice showed similar results 
that the LSTM-MTL model performed better than baseline models (Figure S1). As men-
tioned in Section 4.1, there exist spatial variances and local patterns in each region, which 
makes large-scale crop mapping challenging. Compared to traditional global models 
without considering spatial variability at large scales, the MTL model can utilize the re-
gion-specific patterns while considering the common patterns of each region. The results 
implied that applying MTL to learn the region-specific patterns was a promising method 
for dealing with the spatial variability under large-scale crop mapping. 

 
Figure 6. Rice classification performance (F1 score) of LSTM-MTL, AtBiLSTM (global) and RF 
(global). All three models were trained and tested globally based on data from the entire study 
area. The bold values stand for the best score of the three models. 

4.2.3. Comparison with Local Baseline Models 
The local baseline models of the four rice production regions were trained and tested 

locally. The results showed that the LSTM-MTL model also provided superior perfor-
mance than the local-trained models of all regions (Figure 7a). The local-trained models, 
both AtBiLSTM and RF, yielded improved classification accuracy in all regions compared 
to the model trained globally; however, the LSTM-MTL model was the most accurate 
model in all regions, with an F1 score increased by 0.003–0.070 (0.4–10.3%). The LSTM-
MTL model showed similar improvement over AtBiLSTM and RF when evaluated by the 
kappa score of rice (Figure S2a). The outperformance can be attributed to the shared layers 
of the LSTM-MTL model trained based on all regions. The features learned by related 

Figure 6. Rice classification performance (F1 score) of LSTM-MTL, AtBiLSTM (global) and RF (global).
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Multi-task learning (MTL) significantly improved the performance of the LSTM-based
model, which enabled the model to achieve a higher F1 score, increasing from 0.762 to
0.804 in the U.S. (Figure 6). Notably, the improvements by MTL occurred in all regions and
the largest improvement by MTL was in the MD, with an increase in the F1 score by 0.061.
Compared with global baseline models, the regional F1 score was increased by 0.023–0.080
(2.5–12.7%). The comparison in the kappa score of rice showed similar results that the
LSTM-MTL model performed better than baseline models (Figure S1). As mentioned in
Section 4.1, there exist spatial variances and local patterns in each region, which makes
large-scale crop mapping challenging. Compared to traditional global models without
considering spatial variability at large scales, the MTL model can utilize the region-specific
patterns while considering the common patterns of each region. The results implied that
applying MTL to learn the region-specific patterns was a promising method for dealing
with the spatial variability under large-scale crop mapping.

4.2.3. Comparison with Local Baseline Models

The local baseline models of the four rice production regions were trained and tested
locally. The results showed that the LSTM-MTL model also provided superior performance
than the local-trained models of all regions (Figure 7a). The local-trained models, both
AtBiLSTM and RF, yielded improved classification accuracy in all regions compared to the
model trained globally; however, the LSTM-MTL model was the most accurate model in
all regions, with an F1 score increased by 0.003–0.070 (0.4–10.3%). The LSTM-MTL model
showed similar improvement over AtBiLSTM and RF when evaluated by the kappa score
of rice (Figure S2a). The outperformance can be attributed to the shared layers of the
LSTM-MTL model trained based on all regions. The features learned by related tasks in
other regions could help local rice classification. The MTL enabled the model to better
capture the common features from all regions so that the rice classification in each region
benefited from the data in other regions.

We also conducted a spatial transfer experiment using local baseline models. Both the
classification accuracies of AtBiLSTM and RF dropped when models were trained in one
region and transferred to the remaining regions (Table S1). The improvement of LSTM-
MTL over AtBiLSTM and that over RF in the F1 score of the U.S. reached 0.043–0.212 and
0.082–0.152, respectively (Figure 7b). This improvement was also similar in the comparison
of rice’s kappa score (Figure S2b). We also observed inconsistencies in the performance of
local models when tested locally and globally. For example, although models trained in
SV had the best performance locally (0.933 for AtBiLSTM and 0.928 for RF), their transfer
performance in the U.S. was the worst (0.592 for AtBiLSTM and 0.652 for RF). The model
showed a trend to capture patterns suitable for SV but not suitable for the remaining three
regions due to the spatial variability. The rice features extracted from satellite images in SV
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are quite different from those in the southern regions because of variances in environmental
conditions and farm management. For example, rice producers in SV particularly prefer
medium-grain cultivars while long-grain rice is grown almost exclusively in the southern
regions [43,54]. The results indicated that the application of transfer learning for crop
mapping on a large spatial scale is still challenging. We suggest that MTL is a promising
deep learning approach for improved feature extraction at large spatial scales to address
the spatial variability challenge.
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Figure 7. Performance comparison with local baseline models: (a) local rice classification performance
in terms of rice’s F1 score of the LSTM-MTL, AtBiLSTM (local), and RF (local). The LSTM-MTL model
was trained globally. The AtBiLSTM and RF models were trained only based on local data. The
bold values stand for the best score of the three models. (b) Rice classification performance in terms
of rice’s F1 score, all local baseline models were test in the U.S. The red dotted line represents the
performance of the LSTM-MTL in the U.S.

4.3. Understanding the Behavior of the LSTM-MTL Model for Rice Mapping
4.3.1. Temporal Feature Importance Evaluation

We applied a gradient backpropagation method to analyze the importance of temporal
input on rice classification [55]. Based on the well-trained LSTM-MTL model, we propa-
gated gradients from the classification probability value in a backward fashion through the
entire network via the chain rule to the individual temporal input variables. The gradients
( ∂p

∂x ) reflect the influence of each input variable on the rice classification.
The gradient backpropagation results reflected the influence of the temporal input

on the rice classification of the LSTM-MTL model (Figure 8). Positive (negative) gradients
would suggest an increase (decrease) in the probability of classifying the pixel as its true
category when the input changes at certain times. For example, the VH’s gradient of rice
category in AP reached a negative peak value at time step seven, indicating that a lower
VH value at that time could lead to a higher probability of rice classification. We found
that the gradients of rice and other pixels always showed converse values, illustrating how
the model classified the pixels according to the temporal inputs. The results indicated
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that low VH values in the early period and high VH values in the latter period led to
the rice classification. This pattern was similar across different regions, indicating that
the model captured common features during the rice growth in all regions to establish
the classification. We also found that the gradients reflected the spatial variances across
different regions. For example, the curve of the VH gradients showed a left-shift compared
to those in the other three regions, which could reflect the earlier phenological process
there. The USDA CPR report showed that the rice in SV was headed 1–2 weeks earlier
from the planted stage in 2019 [42]. Based on this result, we suggest that our model can
capture the spatial variability of rice growth at large spatial scales, which is essential for
the widespread application of crop mapping.
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“rice” or “other.”.

4.3.2. In-Season Classification

The classification accuracy improved as additional time-series data were fed into the
model, with the overall F1 score increasing from 0.312 to 0.804 (Figure 9). The improvement
mainly occurred in the early period and achieved convergence at time step 12. In the later
periods till rice maturation, the model’s performance exhibited less variability, with the
standard deviation of the overall F1 score being 0.02. The dynamical changes in the model
performance were similar to the temporal process of rice growth, which also showed fewer
differences when rice was near the mature stage. The results suggest that the model can
achieve a high classification accuracy (F1 score = 0.746) of approximately two months prior
to the rice mature stage. Early rice mapping information can be instructive for agricultural
system simulation, for example, rice yield prediction.

The dynamic change in the in-season classification varied in the four regions. SV
showed a larger difference than the other three regions. In the early stage, the model in SV
had already achieved a high rice classification F1 score (0.811). After a short improvement
period, the model’s performance showed convergence. The southern regions (AP, MD,
and GC) were similar in the in-season rice classification process. The regional F1 scores
ranged from 0.022 to 0.165 in the beginning and reached the highest at the end of the season,
ranging from 0.640 to 0.841. The regional differences reflected that the temporal learning
process of the model was different due to the spatial variance. For example, the various rice
area ratios across the four regions might be one of the driving factors. SV had the largest
rice area ratio (8.6%) and the purest rice sample in the four regions in 2019. This pattern
enabled the model to better extract the rice characteristics with less influence from other
land cover types.
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Figure 9. Classification F1 score of the LSTM-MTL model over time in different regions and in
the entire study area. Each point reflects the classification F1 score of the LSTM-MTL model using
temporal input until corresponding time steps. The comparison among the four regions highlights
the similar trends and regional characteristics during the in-season rice classification process.

4.4. Rice Area Estimation Compared with CDL

The rice area estimated by the LSTM-MTL model showed similar distribution with the
CDL at block-level (Figure 10). It is important to highlight that our deep learning model
only utilized Sentinel-1 SAR data to achieve a comparable performance with the CDL. The
results showed that the model estimated the planted rice area of the U.S. in 2019 as 8924.4 ha,
with an underestimation of 14.4% compared with the CDL and with an underestimation
of 10.8% with the harvest area reported by the USDA NASS’s survey [42]. The underesti-
mation occurred in all regions according to the mapping results (Figure 10). The rice area
estimation performance also varied across the four regions. The underestimation ratios
were −8.9%, −2.5%, −37.9%, and −7.4% in AP, MD, GC, and SV, respectively. The highest
underestimation level in GC resulted from a localized underestimation pattern occurring
in the eastern region. One possible reason is the higher estimated area of CDL compared to
the USDA statistical data. We compared the 2019 rice area of CDL and USDA statistics and
found that GC had two states with large overestimation of the rice area of CDL. Compared
with the rice harvest area reported by the USDA NASS’s survey, the CDL based rice area of
2019 was overestimated by 17% and 30% in Louisiana and Texas, respectively (Table S2).
The pixel-level rice mapping results suggested that the varied area estimation performance
could be driven by the different environmental conditions and farm management (Figure
S3). The spatial variances in the four rice production regions led to inconsistencies in the
complexity of the classification tasks in different regions. For example, rotational practices
vary among regions in the U.S. In AP and MD, rice is commonly grown in rotation with
another crop, mostly soybean. In GC, rice-fallow-rice or rice-fallow-fallow-rice is the most
predominant system. In SV, most rice area is in continuous rice culture due to a lack
of viable rotation options in the poorly drained soils [43]. Therefore, the distribution of
rice in SV is more concentrated, making rice classification easier than that in the other
three regions.
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The LSTM-MTL model learned region-specific and common features simultaneously
and achieved reasonable performance improvement in rice mapping on a large spatial scale
through the combination of MTL and AtBiLSTM network. It should be noted that the deep
learning model only used Sentinel-1 SAR data to well capture the rice growth patterns for
classification. Although the LSTM-MTL model here is for rice in the U.S., it can possibly be
applied to other crops and in other regions. The cloud-free characteristics of SAR data also
provided a potential to achieve global crop mapping through our deep learning framework
that could provide new data-driven insights for the global food production. The model
showed potentials for application of crop mapping across regions with spatial variances, in-
cluding the accuracy, timing, and transparency. Many possibilities remain to further refine
the deep learning crop mapping framework. For example, the model’s ability to deal with
the unbalanced data should be further improved. Rice is a relatively rare and infrequent
crop in the entire U.S., which leads to a class imbalance problem in rice mapping. It is a
pervasive problem in many real-world applications of deep learning techniques [56,57].
One possible improvement is to apply balancing methods (e.g., Random Oversampling and
Synthetic Minority Oversampling Technique) to boost the accuracy of rice [58]. Another
typical further improvement is multi-source data fusion. Combinations of optical and
radar satellite images have been studied to address land cover classification tasks [3,59,60].
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Using bands or vegetation indices from multiple satellites such as Sentinel-1, Landsat, and
MODIS as input features is conducive to Information extraction and time-series construc-
tion, especially for large-scale study. With the increased data sources of remote sensing,
the multi-task learning approach can be possibly improved to address spatial variability
and identify common features. In addition, our model achieved reasonable pixel-level
rice classification results, there is still room for improvements toward field recognition.
Further improvements, include adopting object-based image analysis approaches [61,62]
and combining CNN into the LSTM-MTL model [63,64], have the potential to generate the
configuration of the crop field at large spatial scales.

5. Conclusions

This study developed a multi-task spatiotemporal deep learning model named LSTM-
MTL that uses time-series Sentinel-1 SAR data for large-scale rice mapping. The model
integrated AtBiLSTM network for temporal feature learning and MTL for region-specific
pattern learning. The model was applied in the major rice production area in the U.S.
to map its cropping patterns in 2019. Results showed that: (1) even when we only used
the Sentinel-1 SAR data, the LSTM-MTL model showed reasonable rice classification
accuracy in the major rice production areas of the U.S. (OA = 98.3%, F1 score = 0.804) and
outperformed the RF and AtBiLSTM models. (2) The LSTM-MTL model achieved better
crop classification accuracy than the model without MTL, suggesting that the consideration
of spatial variances based on MTL led to improved crop classification performance at large
spatial scales. (3) The gradient backpropagation analysis reflected that a low VH value in
the early period and high VH value in the latter period could lead to the rice classification
by the model. (4) The LSTM-MTL model achieved more accurate classification performance
as the time-series of observations increased through the rice growth season and was able to
achieve a high accuracy approximately two months before rice maturing. Together, these
findings demonstrated that considering spatial variances based on the combination of MTL
mechanism and AtBiLSTM network is a promising approach for crop mapping at large
spatial scales with the support of Sentinel-1 SAR time-series data. The input-output nexus
of the model found in this study could provide new data-driven insights for deep learning
based crop mapping. This study provided a viable option toward large scale crop mapping
and could be applied to other crops and in other regions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs14030699/s1, Figure S1: Rice classification performance (Cohen’s kappa coefficient) of
LSTM-MTL, AtBiLSTM (global), and RF (global). All three models were trained and tested globally
based on data from the entire study area. The bold values stand for the highest score of the three
models, Figure S2: Performance comparison with local baseline models: (a) local rice classification
performance (Cohen’s kappa coefficient) of LSTM-MTL, AtBiLSTM (local), and RF (local). The LSTM-
MTL model was trained globally. The AtBiLSTM and RF models were trained only based on local
data. The bold values stand for the best score of the three models (b) Rice classification performance
(Cohen’s kappa coefficient), all local baseline models were tested in the U.S. The red dotted line
represents the performance of the LSTM-MTL model in the U.S., Figure S3: Representative blocks in
the four rice production regions of the U.S. (a) The predicted rice results generated by the LSTM-MTL
model; the binary reference of rice land from the CDL; the cropland type maps from the CDL; and
the very-high-resolution (VHR) remotely sensed imagery of the four blocks. (b) The ratios of the
major cropland types in corresponding blocks, Figure S4. Confusion matrices of the test set by the
LSTM-MTL model. Values in confusion matrices represent the number of samples. Diagonal values
stand for the number of correctly classified samples, Table S1: Transfer performance (F1 score) of
local baseline models, Table S2: Comparison between the rice area of the CDL estimation and USDA
statistics at state level in 2019.
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