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Abstract: Phragmites australis (P. australis) is one of the most important plant species found in wetland
ecosystems, and its aboveground biomass (AGB) is a key indicator for assessing the quality or health
of a wetland site. In this study, we combined Sentinel-1/2 images and field observation data collected
in 2020, to delineate the distribution of P. australis in the Momoge Ramsar Wetland site by using a
random forest method, and further, to estimate AGB by comparing multiple linear regression models.
The results showed that the overall classification accuracy of P. australis using the random forest
method was 89.13% and the P. australis area in the site was 135.74 km2 in 2020. Among various
remote sensing variables, the largest correlation coefficient was observed between dry weight of
AGB of P. australis and Sentinel-2 red edge B7, and between fresh weight of P. australis AGB and
red edge B5. The optimal models for estimating dry and fresh weight of P. australis AGB were
multiple linear regression models, with an accuracy of 75.4% and 69.2%, respectively. In 2020, it
was estimated that the total fresh weight of P. australis AGB in this Ramsar site was 21.2 × 107 kg
and the total dry weight was 7.2 × 107 kg. The larger weight of P. australis AGB was identified
mainly at central and western sites. The application of Sentinel-2 red-edge band for AGB estimation
can significantly improve the model estimation accuracy. The findings of this study will provide a
scientific basis for the management and protection of wetland ecosystems and sustainable utilization
of P. australis resources.

Keywords: remote sensing; aboveground biomass; random forest; Phragmites australis; wetland

1. Introduction

Wetlands are valuable ecosystems of the earth, with multiple unique functions and
services. They not only provide humans with a large amount of raw material and water
resources, but also maintain ecological balance, and protect biodiversity and rare species
resources [1,2]. Phragmites australis (P. australis) is a typical wetland plant community type
that is important in wetlands internationally. It plays an important role in the functions and
services of the wetland ecosystem, such as sequestering carbon and providing shelter for
migrating waterbirds [3,4]. P. australis is also an important biological resource. However,
excessive utilization of P. australis resources may damage the sustainable management of
a wetland ecosystem [5,6]. Therefore, the accurate extraction of P. australis distribution
information and the precise weight estimation of P. australis aboveground biomass (AGB)
has enormous scientific significance and practical value [7].
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In order to invert the biomass more accurately, it is very important to obtain the fine
spatial pattern of wetland communities, which can also be highly informative for better
management of wetland ecosystems [8,9]. Currently, there are many studies on wetland
classification [10,11], but the accuracy of wetland classification needs to be improved due
to the wide distribution of wetland vegetation, complex community composition, high
spectral similarity, and insignificant variation in the characteristics of different vegeta-
tion [12]. Refining classification on a community scale and extracting single community
data can effectively improve the accuracy of wetland mapping and biomass inversion,
and achieve a clearer understanding and far-reaching impact on wetland landscape pat-
terns [13]. Machine learning is an efficient method for extracting wetland vegetation at
community scale [14]. As an important branch of machine learning methods, random forest
classification is an accurate and efficient method for wetland information gathering [15].
Using a random forest algorithm to extract wetland vegetative information can effectively
improve classification accuracy and help analyze spatial patterns of wetlands.

A remote sensing data source is an important prerequisite for achieving reliable wet-
land classification. Due to the complex community composition of wetland vegetation
and intensive disturbance from water bodies, traditional remote sensing images with low
spatial resolution, such as Landsat and MODIS, are often not ideal for fine-scale classi-
fication [16–18]. Sentinel-2 satellite images have a higher spectral and spatio-temporal
resolution in optical images, and contain three unique bands within the red-edge range, giv-
ing Sentinel-2 an advantage in wetland plant identification [19,20]. Radar images provided
by Sentinel-1 satellites allow for stable periodic data acquisition. They contain characteris-
tics of all-day and all-weather capabilities, which can effectively ameliorate the shortfall in
Sentinel-2 optical images, which are often covered by cloud and fog [21]. The spectral re-
flectance of wetland vegetation has a more distinctive feature in areas with water coverage,
especially in the red-edge band of Sentinel-2. The reflectance of typical wetland vegetation
is generally lower than that of other terrestrial vegetation [22]. Radar images may be unaf-
fected by atmospheric illumination and clouds, and can be used together with Sentinel-2
to obtain information on different types of wetland vegetation [23,24]. Therefore, com-
pared with using a single image source, combining the red-edge and radar features of both
Sentinel sensors could improve the accuracy of wetland vegetation identification [25,26].

Nowadays, the remote sensing-based models used to estimate the weight of wetland
vegetation AGB can be categorized as optical remote sensing models, radar models, and
multi-source remote sensing collaborative models. There are two main methods used
in the estimation of wetland vegetation AGB based on remote sensing models, namely,
machine learning and linear regression [27]. Although machine learning can achieve spatial
prediction of AGB, it cannot explain the relationships satisfactorily [28], and the estimation
results cannot ensure high precision [29]. The linear regression model, combined with
multiple variables, can effectively describe the complex linear relationship between AGB
of P. australis and remotely sensed variables, and the inversion accuracy is high for small
areas [30].

The Momoge Wetland Ramsar site (No. 2188) is an internationally important wetland
in northeastern China. It is an important breeding ground and habitat for migratory birds,
and plays an important role in biodiversity conservation and climate regulation. There
are many plant species in the Ramsar site, with the P. australis community occupying the
largest proportion. Analysis of P. australis community distribution and AGB estimation can
help to better manage the overall wetland environment [31,32]. The lack of high-precision
information on the spatial distribution of P. australis and AGB estimation has limited the
conservation and asset estimation of the wetland. To better manage the Ramsar site, we
used a random forest algorithm and regression models in combination with Sentinel-1 and
Sentinel-2 remote sensing images, to depict P. australis distribution and estimate its AGB.
We tested the effectiveness of multiple regression models for accurately retrieving fresh
and dry weight of P. australis AGB. The results of this study are expected to improve the
management, conservation, and sustainable utilization of P. australis resources.
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2. Materials and Methods
2.1. Study Area

The Momoge Wetland, located in the western Jilin Province of China (Figure 1), spans
45◦42′ N to 46◦18′ N and 123◦27′ E to 124◦4′ E, and covers a total area of about 1440 km2. As
an important stopover site for the migration of Grus leucogeranus and other important water
birds, the reserve was designated in the List of Wetlands of International Importance in
2013 [33]. The reserve is flat with a relative elevation difference of only 2–10 m. This region
belongs to the temperate continental monsoon climate, with strong winds and drought in
spring, heat and rain in summer, cool and dry conditions in autumn, and cold and snow in
winter. The annual average temperature is 5 ◦C, the annual average evapotranspiration
is 1500 mm, and the annual average precipitation is 385 mm [34]. The Nenjiang River
system flows through the east portion for 111.5 km, with a drainage area of more than
30,000 hectares. The region is rich in plant and animal resources, with about 600 species of
seed plants, and the dominant wetland vegetation is P. australis [35]. There are abundant
wildlife species, including 298 species of birds [36].

Figure 1. The geographic location and sample location of the study area. The background image is
from Sentinel-2.

2.2. Datasets
2.2.1. Sentinel-1/2 Image Selection and Processing

In this study, Sentinel-1 IW GRD (ground range detected, GRD) images and Sentinel-2
L1C images were selected as remote sensing data sources. These images were acquired
on 23 July and 15 July 2020, respectively, and were downloaded from the European Space
Agency (ESA) website (https://earth.esa.int/web/guest/home (accessed on 15 July 2020

https://earth.esa.int/web/guest/home
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and 23 July 2020)). The Sentinel-1 data were preprocessed by orbit correction, resampling,
and clipping to obtain the radar data of VV and VH polarization backscattering coefficients
for the study area. The 10 bands of Sentinel-2 L1C were obtained after atmospheric cirrus
cloud correction and resampled to 10 m resolution (Table 1).

Table 1. Description of the Sentinel-1/2 images used.

Acquisition Date: 15 July 2020 Acquisition Date: 23 July 2020

Sentinel-2 Band Spatial Resolution (m) Sentinel-1 Band Spatial Resolution (m)

B2 Blue 10
VV polarization
backscattering

coefficient
10

B3 Green 10
B4 Red 10

B5 VRE1 20
B6 VRE2 20
B7 VRE3 20

VH polarization
backscattering

coefficient
10

B8 NIR 10
B8a VRE 20

B11 SWIR1 20
B12 SWIR2 20

2.2.2. Field Survey Dataset

A field investigation was conducted from 20 July to 28 July 2020. Field truth samples
of P. australis and other land cover types were recorded by a hand-held global positioning
system (Figure 1). The ENVI 5.5 was used to select samples from Sentinel-2 images concern-
ing contemporaneous Google Earth images. Considering the equilibrium of samples, the
number of samples was set according to the areal proportion of different object types. As
the focus of this study was on the delineation of P. australis, the sample number was larger
than other ground object samples. A total of 389 samples were selected, including 186
P. australis, 31 water bodies, 32 woodland, 32 barren land, 34 grasslands, 39 other wetland
vegetation and 35 artificial vegetation.

2.2.3. Biomass Sampling of P. australis

Three 1× 1 m quadrats were randomly obtained from each sample plot (100 m× 100 m)
with a sampling frame. P. australis vegetation in the study area is regularly harvested each
year, so the biomass of the dried P. australis stems was not considered in this paper. All
overground parts of P. australis plants in the quadrats were cut, and the environmental
background (whether there was obvious human interference, etc.) of samples was recorded
to eliminate other interference. The few P. australis that were in an unnatural growth state
due to human trampling disturbances needed to be removed during sample processing.
Preset sampling considers, as much as possible, the vegetative structure and environmental
differences of the P. australis. The sampled P. australis ranged from 30 to 220 cm in height,
with fully grown green stems that had not yet flowered. According to the distribution
characteristics and growth density of P. australis in the study area, a total of 186 typical
samples were selected for sampling. The samples were taken to the laboratory and weighed
in fresh condition. The fresh AGB weight of each sample was obtained by averaging the
fresh AGB weight of the three quadrats. The AGB for all samples were dried at 65 ◦C to
constant weight, and the dry weight of AGB per unit area of P. australis was calculated by
taking the mean value.

2.3. Methods

The distribution of P. australis was delineated by a random forest algorithm and the
AGB of P. australis was spatially estimated by a regression model (Figure 2). First, the
Sentinel-1 and Sentinel-2 images were preprocessed to construct a feature set of classifica-
tion variables (Section 2.3.1). The random forest model was trained to classify land cover
at the site and identify P. australis (Section 2.3.2). A variety of remote sensing variables
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were selected for correlation analysis (Section 2.3.3), and significantly correlated remote
sensing variables with AGB of samples were selected to construct a regression linear model
for AGB inversion (Section 2.3.4). Finally, the accuracy of delineating P. australis and the
inversion model of AGB were evaluated (Section 2.3.5).

Figure 2. Flowchart of AGB inversion of Phragmites australis at the Momoge Ramsar site.

2.3.1. Classification System and Classification Feature Sets

Referring to the national atlas of land cover classification system [37] and considering
the study focus, the land cover in the Momoge Ramsar site was categorized into vegetated
wetland, water body (rivers, lakes, and artificial ponds), woodland, grassland, artificial
vegetation, and barren land [38]. Vegetated wetland consists of multiple vegetation types,
and we separated P. australis from other wetland vegetation.

Studies have shown that the integration of Sentinel-1 and Sentinel-2 can improve the
accuracy of mapping land cover [39,40]. Two sensitive vegetation indices, the normalized
difference vegetation index (NDVI) and the enhanced vegetation index (EVI), were selected
based on Sentinel-2 data. The two radar features of Sentinel-1, VV and VH polarization
backscattering coefficients, and 10 bands of Sentinel-2 (R, G, B, NIR, VRE1, VRE2, VRE3,
NIR2, SWIR1, SWIR2) were used for the remote sensing vector feature set.
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2.3.2. Training the Random Forest Model

Random forest is a common method in machine learning. It is an integration algorithm
based on a decision tree, which uses multiple trees to train and predict samples. The bagging
method is adopted in a random forest to generate an independent training sample set with
the same distribution for each decision tree, and the final classification result depends
on the votes of all decision trees [41,42]. The key to using random forest to measure the
importance of features is to evaluate the contribution of each feature in each decision tree,
calculate the average value, and then compare the contribution value of features [43].

The classification experiment in this study was based on the random forest module
in ENVI. Based on this module, the bagging framework of random forest regression had
the following parameters: the number of trees was 100 and the number of features was the
square root method by default. The Gini Coefficient was selected for the impurity function
and Min Node Sample was 1.

2.3.3. Selecting Remote Sensing Variables for Predicting P. australis AGB

As shown in the Table 1, VV and VH polarization backscattering coefficients were
extracted from preprocessed Sentinel-1, and the 10 spectral bands were obtained from
Sentinel-2. The three unique red-edge bands of Sentinel-2 were effective for monitoring
vegetation, and B5, B6, and B7 were selected as remote sensing variables for AGB inversion.
According to the characteristics of the study area and the relevant results of AGB remote
sensing inversion at home and abroad [44–46], the difference vegetation index (DVI),
enhanced vegetation index (EVI), normalized difference vegetation index (NDVI), inverted
red edge chlorophyll index (IRECI), soil adjusted vegetation index (SAVI), modified soil-
adjusted vegetation index (MSAVI), and the modified chlorophyll absorption ratio index
(MCARI) were used to facilitate AGB estimation. The vegetation index was calculated
using the Band Math tool. Since the data were raster structure, the vegetation index value
of each sample was the corresponding pixel value on the vegetation index image. The
description and calculation formula are shown in Table 2. SPSS Statistics 22 was used to
analyze the correlation between fresh and dry AGB weight of each remote sensing variable
and P. australis sample, and the sensitivity of P. australis AGB to different remote sensing
variables was calculated.

Table 2. Remote sensing variables and calculation formulas.

Variable Types
Name of

Remote Sensing
Variables

Description or Calculation Formula

Radar
characteristics

VV VV polarization backscattering coefficient
VH VH polarization backscattering coefficient

Red edge band
characteristics

B5 (VRE-1) Sentinel-2 Vegetation Red Edge band 1
B6 (VRE-2) Sentinel-2 Vegetation Red Edge band 2
B7 (VRE-3) Sentinel-2 Vegetation Red Edge band 3

Vegetation index
characteristics

DVI NIR-Red
EVI 2.5(NIR − Red)/(NIR + 6Red − 7.5Blue + 1)

NDVI (NIR − Red)/(NIR + Red)
SAVI ((NIR − Red)/(NIR + Red + L))(1 + L)

MSAVI 2NIR+1−
√
(2NIR+1)2−8NIR−Red

2
MCARI ((VRE1 − Red) − 0.2(VRE1 − Green))(VRE1/NIR)
IRECI (VRE3-Red)/(VRE1/VRE2)

2.3.4. AGB Inversion Regression Model

Correlation coefficients were used to analyze remote sensing variables and vegetation
AGB. Correlation analysis of 12 remote sensing variables with fresh and dry AGB weight of
P. australis (177 samples) was conducted. Correlation analysis is a statistical method used
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to study the correlation between variables, and the magnitude of the correlation coefficient
indicates the strength of correlation between the variables [47,48]. The formula is:

R =
n ∑n

i=1 xiyi −∑n
i=1 xi·∑n

i=1 yi√
n ∑n

i=1 x2
i − (∑n

i=1 xi)
2·
√

n ∑n
i=1 y2

i − (∑n
i=1 yi)

2
(1)

where R is the correlation coefficient, xi and yi are the values of independent and dependent
variables at various points, and n is the number of sample points.

A simple linear regression model has been widely used to estimate AGB, and to obtain
a linear or nonlinear equation by regression fitting with a single vegetation index as an
independent variable. The simple linear regression model is expressed as follows:

Y = β0 + β1x +u (2)

the above expression represents the true relationship between variables Y and x, where Y is
the dependent variable AGB, x is the independent remote sensing variable, u is the random
error term, β0 is the constant term, and β1 is the regression coefficient. The above model
can be divided into two parts: β0 + β1x is non-random and u is random.

Simple curve regression models are used to fit the curvilinear correlation between
vegetation index and AGB, using an exponential model or high-order equation. Although
the model fitting accuracy has been improved, due to the basis of the algorithm itself, there
will be large errors in the inversion results for uneven areas of vegetation coverage. The
polynomial equation is the basic model of AGB, and the formula is as follows:

Y = β0 + β1x1 + β2x2 + . . . + βmxm + u, (3)

where Y is the dependent variable of vegetation AGB, xi (i = 1, 2, . . . , m) is the independent
remote sensing variable, βj (j = 1, 2, . . . , m) is the regression coefficient, and u is the
residual error.

This multiple linear regression model was first defined to solve economic problems.
In practical economic problems (and other fields such as geography and data statistics), a
dependent variable is affected by multiple predictor variables [49]. The general form of the
multiple linear regression model is:

Y = β0 + β1x1 + β2x2 + . . . + βkxi + u (4)

where Y is the dependent variable vegetation AGB, xi (i = 1, 2, . . . , n) is the independent
remote sensing variable, k is the number of explanatory variables, βj (j = 1, 2, . . . , k) is the
regression coefficient, and u is the error coefficient. The above formula is also known as the
random expression of the population regression function.

Studies have shown that the AGB of vegetation in the growing state is correlated
with various vegetation indices [50,51]. In AGB inversion model construction, it is more
accurate and practical to estimate AGB by integrating multiple remote sensing variables
and vegetation indexes, than by using only a single variable.

2.3.5. Precision Validation

Combined with the field P. australis samples and the verification samples selected visu-
ally on Google Earth, accuracy evaluation was conducted by combining visual evaluation
and the confusion matrix. The obvious classification error targets were verified visually, and
the confusion matrix was used to quantitatively evaluate the classification accuracy. Three
indices including overall accuracy, Kappa coefficient, and mapping accuracy were selected.

For the inverse regression model, three indices, R2, F, and P, were selected to evaluate
the accuracy of the regression equation. R2 was the coefficient of determination, and its
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value reflected the tightness of the sample data fitting the regression equation and the
degree of prediction coincidence. R2 is calculated by:

R2 =
∑n

i=1

(
ŷi − y

)2

∑n
i=1
(
yi − y

)2 (5)

where ŷi is the model estimate of AGB, yi is the measured value of AGB, y is the mean of
the measured values of AGB, and n is the number of samples.

The F value is the result of variance analysis and is the overall test of the whole
regression equation. P refers to the significance test of the regression equation. If the
corresponding p-value is less than 0.05, the regression equation can be considered to be a
significant predictor.

A scatter diagram was produced for the optimal regression model to verify the fitting
effect of the model, and field data were selected from 21 P. australis sites sampled in the
field. The field measured values were compared with the estimated values of the optimal
regression model to verify the accuracy of the model through the relative error size.

3. Results
3.1. Classification Accuracy and Spatial Pattern of P. australis

Table 3 presents the confusion matrix, overall accuracy (OA), and Kappa coefficients
of the classification in this study, which revealed that random forest classification achieved
good performance, with an overall accuracy of 89.13%, and Kappa coefficient of 0.87. The
classification producer accuracy and user accuracy of P. australis vegetation were 92.24%
and 92.92%, respectively.

Table 3. Confusion matrix of land cover classification in the Momoge Wetland Ramsar site.

P. australis Water
Body

Barren
Land

Wood
Land Grassland Other Wetland

Vegetation
Artificial

Vegetation Total

P. australis 4173 19 0 3 0 59 237 4491
Water body 13 11,808 0 0 0 0 0 11,821
Barren land 0 0 2900 0 25 0 216 3141
Woodland 26 0 0 2137 11 159 11 2344
Grassland 0 0 2 0 4409 436 12 4859

Other wetland
vegetation 0 0 3 143 1396 3800 14 5436

Artificial vegetation 312 0 133 572 0 38 2169 3224
Total 4524 11,827 3038 2855 5841 4572 2659 35,316

Producer Accuracy% 92.24 99.84 95.46 74.85 75.48 84.86 81.57
User Accuracy% 92.92 99.89 92.36 91.17 90.76 71.39 67.28

Overall Accuracy = 89.13% Kappa Coefficient = 0.87.

The Momoge spatial distribution, consistent with the field survey results, is shown in
Figure 3. There were fewer commission or omission errors, which indicated the effective-
ness of the classification method.
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Figure 3. Spatial distribution of land cover types in the Momoge Wetland Ramsar site.

P. australis was distributed widely in the middle and west parts of the study area. The
distribution of P. australis was mostly concentrated in areas with abundant water, such as
rivers and lakes. The total area of P. australis was 135.74 km2, accounting for 9.1% of the
entire Ramsar site.

3.2. Optimal Regression Model for Predicting P. australis AGB
3.2.1. Sensitivity of Different Remote Sensing Variables to P. australis AGB

The samples of fresh and dry weight of P. australis AGB were tested for normal distri-
bution, and of which nine samples with large deviations were removed. The correlation
analysis between the remaining P. australis samples and the remote sensing variables
showed that 11 remote sensing variables had a significant correlation with P. australis AGB
at the p < 0.01 (significant correlations) level, except for the radar variable VV (Figure 4).
The correlation coefficients between dry weight of P. australis AGB and DVI, IRECI, B7,
B6, and B5 were all larger than 0.5, indicating that DVI, IRECI, B7, B6, and B5 were highly
sensitive to the dry weight of AGB variance of P. australis. The sensitivity of the five remote
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sensing variables from large to small was B7 > B6 > IRECI > DVI > B5. The correlation
coefficients between the fresh weight of P. australis AGB and DVI, B7 and B5 were all above
0.4, indicating that DVI, B7, and B5 were highly sensitive to the fresh weight of P. australis
AGB, and the sensitivity of the three variables was B5 > DVI > B7. Through correlation
analysis, remote sensing variables were selected to construct the remote sensing inversion
model of P. australis dry and fresh weight of AGB.

Figure 4. Correlation coefficients between remote sensing variables and AGB of Phragmites australis.

3.2.2. Optimal Regression Model and Accuracy Evaluation for Predicting P. australis AGB

A total of 11 remote sensing variables significantly correlating with dry and fresh
weights of P. australis AGB were selected to construct the linear regressions (Table A1),
simple curve regressions (Table A2), and multiple linear regression models. The comparison
of model R2 values showed that the optimal inversion models for fresh and dry weights
of P. australis AGB were all multiple linear regression models, and the model formula is
shown in Table 4.

Table 4. Optimal regression model for AGB inversion.

Multiple Linear Regression Model R2 F P

Fresh weight of
AGB

Y = 856.114 + 379.777(B5) + 199.002(DVI) +
726.696(B7) − 785.183(B6) − 1514.958(IRECI)
−208.821(MCARI) − 206.846(SAVI) −

1754.943(EVI) + 374.596(MSAVI) − 146.105(NDVI)
−209.012(VH)

0.692 7.438 0.000

Dry weight of
AGB

Y = −314.773 + 404.26(B7) − 446.934(B6) +
140.101(IRECI) + 29.898(DVI) + 212.375(B5)

+106.868(MCARI) − 56.928(SAVI) +
88.964(MSAVI) − 16.539(NDVI) + 530.148(EVI) −

73.929(VH)

0.754 9.252 0.000

Y is AGB.

Table 4 shows that R2 of the multiple regression models of fresh AGB weight and
dry AGB weight were 0.692 and 0.754, respectively. To further evaluate the accuracy of
the model, the field measurements were compared with the estimates from the multiple
linear regression models. Scatter plots of relative errors were produced using field survey
data and model prediction data (Figure 5). The dry AGB weight of predictive coincidence
was 74.6%, fresh weight of AGB predictive coincidence was 93.8%, and the relative error
between the estimated results and the measured data was mostly small. The relative error
of samples near the pond was large because the pixels were not pure, which indicated that
the calculation results of the model were consistent with the actual situation.
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Figure 5. Accuracy verification of the scatter diagram. (A) Fresh weight of AGB. (B) Dry weight
of AGB.

3.3. Spatial Estimates of P. australis AGB

The AGB of P. australis in the Ramsar site was estimated using the above optimal estima-
tion models of fresh and dry weight of AGB. The maximum and minimum fresh weights
of P. australis AGB in the region were 1926.05 g/m2 and 20.12 g/m2, and the maximum
and minimum dry weights of P. australis AGB were 822.91 g/m2 and 7.23 g/m2, respec-
tively. The average fresh and dry weights of AGB were 1566.03 g/m2 and 531.86 g/m2,
respectively. The total fresh and dry weights of AGB of P. australis in the study area were
21.2 × 107 kg and 7.2 × 107 kg, respectively.

The fresh and dry weights of AGB were divided into five levels to obtain the spatial
distribution map of the reserve AGB (Figure 6). Fresh weight of P. australis AGB primarily
ranged 400–800 g/m2, and dry weight of AGB 150–300 g/m2. The higher AGB of P. australis
was mainly found in the middle and west parts of the study area, while the high AGB of
P. australis was concentrated around the rivers and lakes.
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Figure 6. AGB pattern and statistics of Phragmites australis. (A) Fresh weight of AGB. (B) Dry weight
of AGB.

4. Discussion

We extracted P. australis distribution at the community scale from the Momoge Wetland
Ramsar site using the random forest algorithm, combining the radar features of Sentinel-1
and the spectral characteristics of Sentinel-2. The classification accuracy was improved
compared with a single type of remote sensing image [52,53], which has significant advan-
tages in identifying the spatial distribution of wetland vegetation. In the random forest
model, the three red-edge bands of Sentinel-2 and the two vegetation index features of
NDVI and EVI were used to create variable feature ranks. The red-edge feature has capa-
bility to identify wetland vegetation [54,55]. Due to the instantaneous nature of surface
information recorded by remote sensing images, there are often spatial differences in the
same land types, resulting in misclassifications of “same matter with different spectrum”
and “foreign matter with the same spectrum” [56,57]. In the future, we can try using
multi-temporal remote sensing images to classify wetland vegetation in order to eliminate
spatial differences.

Our results showed that the remote sensing variables with the highest correlation with
AGB of P. australis were two Sentinel-2 red-edge bands (Figure 4). Red edge bands could
indicate the sensitive spectrum of green plant growth conditions, which are less influenced
by background information when used in vegetation identification [58,59]. Many previous
studies have also shown that the use of Sentinel-2 red-edge band to construct vegetation
index inversions can effectively predict vegetation growth characteristics [60,61]. Moreover,
due to the high water content of P. australis in the fresh state, some spectral features
have different limitations when used under the influence of water, resulting in a higher
correlation between vegetation index and dry weight of AGB than that between vegetation
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index and fresh weight of P. australis AGB [62]. Our results also revealed that the accuracy
of AGB inversion was improved by integrating Sentinel-1/2 red-edge indexes and radar
features. When a traditional Thematic Mapper (TM) remote sensing image is used, the
influence of water noise cannot be eliminated [63,64]. The level of vegetation information
and different elements of vegetation can be obtained through different spectral channels
of optical remote sensing [65]. However, when the penetration of optical remote sensing
is insufficient, radar remote sensing can be used to obtain the canopy height of wetland
vegetation [66]. Comparison with the results of related studies shows that the classification
accuracy of combining the red-edge band of Sentinel-2 and radar scattering coefficients
of Sentinel-1 in this paper was improved by 2–5% [67,68]. Therefore, the combination of
Sentinel-1 and Sentinel-2 images is helpful to improve the accuracy of AGB inversion of
P. australis vegetation.

The formation of P. australis as a single dominant species in perennially flooded areas
leads to a higher AGB of P. australis. This is because wetland is under the condition
of flooding, where soil organic matter and nitrogen elements are deposited, providing
sufficient nutrients for plant growth and development [69,70]. In addition, abundant
mineral nutrients in wetlands facilitate nutrient uptake and plant growth [71,72]. The spatial
differences in P. australis growth are also affected by human activities, such as industrial
effluents, road construction, and wasteland reclamation, with different disturbances from
human activities in different regions [73]. The destruction of P. australis vegetation will affect
the carbon sequestration function and ecological environment of wetland ecosystems [74].
P. australis not only can be used in papermaking and medicine, but also has strong economic
and ecological values as the species can regulate climate and conserve water [75]. Therefore,
the high-precision AGB inversion of P. australis can provide a reference for the restoration
and management of P. australis. In order to further strengthen the conservation of P. australis
resources in wetlands, the relevant departments should formulate wetland protection
policies, raise the conservation awareness of residents, minimize the interference of human
activities, effectively maintain the wetland functions and ecological environment, and
achieve the scientific management and sustainable utilization of P. australis resources.

5. Conclusions

In this study, by combining Sentinel-1/2 satellite images, field-measured data, the
random forest algorithm, and multiple regression models, we delineated the spatial dis-
tribution of P. australis in the Momoge Ramsar Wetland site and estimated the fresh and
dry weight of P. australis AGB. The results showed that the overall accuracy of P. australis
delineation based on Sentinel-1/2 images and the random forest method was 89.13%, and
the producer accuracy of P. australis was 92.24%. The optimal inversion model of dry and
fresh weight of AGB was the multiple linear regression model, and the predictive coinci-
dence was 74.6% and 93.8%, respectively. In addition, the AGB of P. australis in the wetland
was estimated by the model, and the fresh and dry weights of AGB were 21.2 × 107 kg and
7.2× 107 kg in 2020. The distribution of P. australis AGB showed obvious spatial differences,
and the high values were distributed mainly in the middle and west parts of the study
area. The P. australis AGB pattern was successfully predicted by the proposed method with
good accuracy, indicating the effectiveness of the Sentinel-1/2 data. In future studies at
larger scales, different vegetative structures and environmental differences should be taken
into account when obtaining ground samples as a way to ensure the generalizability of the
model. The methods and generated data could benefit the sustainable management of the
Momoge Wetland Ramsar site.
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Appendix A

Table A1. The simple linear regression models of AGB inversion.

Simple Linear Regression Model R2 F P

Fresh AGB Dry AGB Fresh
AGB

Dry
AGB

Fresh
AGB

Dry
AGB

Fresh
AGB

Dry
AGB

DVI Y = 94.601X + 32.786 Y = 58.795X + 3.855 0.168 0.287 19.748 39.456 0.000 0.000

EVI Y = −25474.1X +
12841.298 Y = -11140X + 5614.933 0.099 0.084 10.762 8.971 0.001 0.003

IRECI Y = 988.958X + 48.703 Y = 688.448X + 11.128 0.148 0.317 16.960 45.440 0.000 0.000
MCARI Y = −496.785X + 159.414 Y = -319.359X + 84.169 0.184 0.345 22.101 51.646 0.000 0.000
MSAVI Y = 77.709X + 25.610 Y = 54.533X − 5.275 0.099 0.215 10.725 26.881 0.001 0.000
NDVI Y = 62.920X + 45.448 Y = 47.494X + 6.611 0.084 0.213 9.033 26.534 0.003 0.000
SAVI Y = 48.968X + 38.738 Y = 33.942X + 4.326 0.105 0.223 11.456 28.096 0.001 0.000

B7 Y = 92.998X + 35.745 Y = 63.534X + 2.731 0.167 0.241 19.631 31.084 0.000 0.000
B6 Y = 109.958X + 31.961 Y = 75.392X + 0.017 0.154 0.321 17.829 46.252 0.000 0.000
B5 Y = 583.525X − 46.448 Y = 334.526X − 39.109 0.132 0.268 14.938 35.877 0.000 0.000
VH Y = 309.324X + 26.062 0.066 6.905 0.01

Y is AGB.

Table A2. The simple curve regression models of AGB inversion.

Curve Regression Model R2 F P

Fresh AGB Fresh AGB Fresh AGB Fresh AGB

DVI Y = 1013.351X − 2062.661X2 + 1434.618X3 0.192 7.603 0.000
IRECI Y = 3060.607X − 86,367.302X2 + 999,864.866X3 + 37.16 0.403 43.44 0.000

MCARI Y = −1385.306X + 2895.829X2 + 225.919 0.134 7.535 0.001
MSAVI Y = 722.027X − 1308.796X2 + 805.478X3 − 66.292 0.115 4.174 0.008
NDVI Y = 686.102X − 1525.248X2 + 1109.235X3 − 24.43 0.112 4.024 0.01
SAVI Y = 412.465X − 599.9X2 + 293.628X3 − 21.856 0.125 4.592 0.005

B7 Y = 247.359X − 447.164X2 + 372.205X3 + 22.05 0.172 6.642 0.000
B6 Y = 250.181X − 490.966X2 + 478.936X3 + 22.842 0.158 6.016 0.001
B5 Y = 87.605X + 1134.670X2 + 7.059 0.185 11.016 0.000

Curve Regression Model R2 F P

Dry AGB Dry AGB Dry AGB Dry AGB

DVI Y = 454.874X − 815.043X2 + 525.493X3 − 55.01 0.301 13.788 0.000
IRECI Y = 540.258X + 13,446.345X2 − 206,133.785X3 + 9.802 0.432 53.047 0.000

MCARI Y = 170.852X − 1597.673X2 + 47.478 0.246 15.807 0.000
MSAVI Y = 181.920X − 303.982X2 + 205.433X3 − 18.921 0.226 9.333 0.000

www.geodata.cn
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Table A2. Cont.

Curve Regression Model R2 F P

Dry AGB Dry AGB Dry AGB Dry AGB

NDVI Y = 290.012X − 590.474X2 + 427.825X3 − 20.792 0.231 9.598 0.000
SAVI Y = 160.815X − 207.596X2 + 101.023X3 − 17.116 0.233 9.737 0.000

B7 Y = -99.743X + 423.332X2 − 328.471X3 + 20.538 0.355 17.621 0.000
B6 Y = −251.365X + 874.941X2 − 721.383X3 + 36.285 0.332 15.869 0.000
B5 Y = 1002.791X − 1528.997X2 − 111.212 0.277 18.54 0.000
VH Y = 1831.173X − 30,031.630X2 + 146,088.610X3 + 5.927 0.1 3.566 0.017

Y is AGB.
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