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Abstract: Atmospheric water vapor plays a crucial role in atmospheric, climate change, meteoro-
logical, and hydrological processes. In a country like Ethiopia, with its complex topography and 
synoptic-scale spatiotemporal circulation patterns, the analysis of the spatiotemporal variability of 
precipitable water vapor (PWV) is very challenging, and is hampered by the lack of long observa-
tional datasets. In this study, we process the PWV over eight Ethiopian global positioning system 
(GPS) sites and one close to the Ethiopian eastern border, for the available common period 
2013-2020, and compare with the PWV retrieved from the state-of-the-art ERA5 reanalysis. Both 
PWV datasets agree very well at our sample, with correlation coefficients between 0.96 and 0.99, 
GPS-PWV show a moderate wet bias compared to ERA5-PWV for the majority of the sites, and an 
overall root mean square error of 3.4 mm. Seasonal and diurnal cycles are also well captured by 
these datasets. The seasonal variations of PWV and precipitation at the sites agree very well. 
Maximum diurnal PWV amplitudes are observed for stations near water bodies or dense vegeta-
tion, such as Arbaminch (ARMI) and Bahir Dar (BDMT). At those stations, the PWV behavior at 
heavy rainfall events has been investigated and an average 25% increase (resp. decrease) from 12 h 
before (resp. 12 h after) the start of the rainfall event, when the PWV peaks, has been observed. 

Keywords: Ethiopia; precipitable water vapor; GPS; ERA5 

1. Introduction
Water vapor is a very important constituent of the atmosphere, as it contributes 

strongly to the atmospheric energy budget by transporting moisture and energy as latent 
heat through the troposphere and lower stratosphere. Being the most important natural 
greenhouse gas, water vapor also affects the atmospheric radiation and circulation, and 
is therefore critical in the analysis and prediction of short and long-term changes in the 
global climate [1]. As a consequence, a good representation of water vapor concentra-
tions in climate models is essential [2]. Water vapor is also the source of clouds and pre-
cipitation, and therefore of crucial importance in many meteorological and hydrological 
processes. In any column of air, the amount of water vapor, or precipitable water vapor 
(PWV), provides an upper limit to the potential precipitation which could fall from that 
column of air [1]. In particular, many studies have confirmed that PWV variations can 
effectively reveal the occurrences and the life cycles of precipitation events [3–6]. 

The amount of atmospheric water vapor is highly variable, both in space and time 
[7]. It can be measured from ground-based, in-situ and by space-based instruments. 
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Ground-based global positioning system (GPS) receiver networks have proved to be re-
liable for estimating PWV with root mean square error (RMSE) values of 1–3 mm [8,9]. 
Previous studies have already shown that GPS can estimate PWV with the same level of 
accuracy as traditional water vapor measurement devices such as radiosondes and water 
vapor radiometers (WVRs) [10–14].  

In this paper, we focus on the characteristics of the PWV above Ethiopia. This 
East-African country in the (sub)tropics features a high population density and has a 
highly complex topography, with highlands (up to ~4500 m) in the north-western and 
central parts, and the lowland (down to ~-130 m, i.e., below sea level) of the East African 
Rift Valley which traverses the country from the north to the southwest, see Figure 1a. 
The Ethiopian climate is highly affected by this topography, but also by its location in the 
tropics and its proximity to the Indian Ocean [15]. As in other (sub)tropical African 
countries, Ethiopia’s economy relies on rain fed agriculture, water and energy, thus being 
very vulnerable to the impact of climate variability and change [16]. Apart from the spa-
tial variability, the temporal variability of rainfall over Ethiopia, however, is also known 
to be very large and linked to several large-scale systems such as ENSO [17,18]. The re-
gion has therefore been subject to severe droughts and floods with substantial so-
cio-economic impacts [19]. Climate-change projections for the Ethiopian highlands in-
deed foresee an overall drying trend [20], but also an increase in extreme precipitation 
[21] by the end of this century.  

Depending on their topography, Ethiopian regions have different climate vulnera-
bility. The lowlands are vulnerable to increased temperatures and prolonged droughts 
that may affect livestock rearing. The highlands generally suffer from intense and irreg-
ular rainfall, leading to erosion, which together with higher temperatures may result in 
lower agricultural production. This combined with an increasing population and con-
flicts, may lead to greater food insecurity in some areas [19]. Because of its complex 
orography, the prevalence of synoptic convective rainfall and synoptic-scale spatiotem-
poral circulation patterns, Ethiopia is a challenging region and regional climate models 
(as opposed to global circulation models) are necessary in order to provide a reasonable 
representation of atmospheric water and rainfall for climate-change projections [20,22]. 
Prior to the climate-change impact assessment, however, the reliability of climate models 
is typically assessed by model validation [2]. Thereby reanalysis data is mostly used as 
reference. However, since reanalysis data has a strong underlying modeling component, 
the question can be posed to what extend these can be trusted in such difficult region. 
Moreover, the accuracy of the data assimilation used in these reanalyses relies strongly 
on the availability and quality of the observational input [16]. 

Because of the relatively low cost and limited maintenance compared to other 
ground-based devices like radiosondes and microwave radiometers [1,9,14], measuring 
PWV with ground-based GPS stations is gaining importance in Ethiopia. In particular, 
the East African tropical region has also recently benefited from the Africa-Array (AA), 
which has created a multidisciplinary research network for the broader Earth science 
community, by installing continuous GPS instruments fitted with meteorological sensors 
[23]. However, the Ethiopian GPS network remains sparse, has incomplete spatial cov-
erage, with a poor representativeness in mountainous areas, suffers from data continuity, 
and has a lot of missing values. For instance, only two Ethiopian GPS stations, (Ad-
dis-Ababa or ADIS and Arbaminch town or ARMI) have a long time series of data, 
starting in 2007. Other Ethiopian stations whose PWV data have been described in earlier 
studies [24,25] have been decommissioned in 2011 (with the data no longer available); 
they have been set up along the two opposite sides of Ethiopian Great Rift Valley to 
study the geodynamical processes of this region, with the possibility to retrieve PWV 
from the data being only a by-product.  
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Figure 1. Maps of GPS stations in this study: (a) 8 Ethiopian GPS stations and the station Djibouti 
(DJIG) for which the PWV was retrieved and analyzed and (b) the entire network of stations used 
here for the processing of the zenith total delays (ZTD) at the Ethiopian GPS stations and DJIG. In 
total, we used the data from 26 IGS stations surrounding the country (including DJIG) and 8 Ethi-
opian stations (ADIS being also an IGS site) sites. 

In this study, we used a network of GPS sites to process the PWV retrievals at eight 
Ethiopian GPS sites and one nearby site at Djibouti, close to the eastern border of Ethio-
pia, for their common observation period of 2013-2017/2020. Those sites are located in 
distinct geographical regions; see Figure 1a. We compare the PWV time series at those 
sites with the PWV output from the most recent European Centre for Medium-Range 
Weather Forecasts (ECMWF) reanalysis model, ERA5 [26], at the site locations. In par-
ticular, we compare the PWV seasonal and diurnal cycles between both datasets, but also 
between the different sites to assess their spatial distributions. Our study differs from 
previous PWV comparisons at Ethiopia involving GPS by the considered time period 
(2007-2011 in [24,25]), the used subset of Ethiopian GPS sites [24,25,27], and the use of 
previous versions of ECMWF reanalysis models in [24,25,27]. Those analyses concluded 
that the GPS PWV had a dry bias compared to ERA-Interim [28] over Ethiopian low-
lands, and a wet bias over the highlands. Moreover, although the ERA5 temperature and 
precipitation fields have been already evaluated over Ethiopia [16,29], the precipitable 
water vapor, closely related with them, has not so far.  

Given its wide spatial and temporal availability, ERA5 is a very valuable dataset to 
study the spatiotemporal variability of PWV [30]. The reliability and accuracy of 
ERA-PWV has already been comprehensively evaluated at a global [31] and European 
[30] scale. However, in regions with few observations or complex terrain such as Ethio-
pia, ERA5-PWV might be severely biased [16]. GPS-PWV, which is not assimilated in 
ERA5, has the advantage of high local accuracy, but is more limited in space and time 
compared to ERA5-PWV. Therefore, in this paper, we investigate the spatial and tem-
poral PWV variability of ERA5 over Ethiopia, a country with a very complex orography 
and different spatiotemporal climate patterns. We therefore address the following ques-
tions: (1) Are there potential systematic PWV biases that depend on the orography? (2) 
Does the increased spatial and temporal resolution of ERA5 with respect to its prede-
cessor ERA-Interim amount to a closer agreement with GPS in terms of the PWV seasonal 
and diurnal cycle? Finally, given the high spatial and temporal resolution of the 
GPS-PWV dataset, we explore a potential relationship between GPS-PWV and severe 
rainfall events at two Ethiopian sites in areas that are sensitive to flooding. 

The paper is organized as follows. In section 2, we describe the different datasets 
used and the processing that is needed to retrieve PWV. In Section 3, we validate our GPS 
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processing by comparing with the processing carried out at the International GNSS Ser-
vice (IGS), and with the radiosonde observations at Addis Ababa. Then, we compare the 
PWV at the GPS stations with ERA5-PWV in terms of biases, seasonal and diurnal cycle 
in Section 4. An application of the GPS-PWV time series in predicting severe rainfall 
events is illustrated in Section 5. Finally, conclusions are drawn in Section 6. 

2. Datasets and Processing Strategies 
The following datasets are used in this study: GPS observations, surface meteoro-

logical measurements, ERA5 model output [26], the International GNSS Service (IGS) 
troposphere product [32], and radiosonde data. They are described below. 

2.1. GPS Observations and GAMIT-PWV 
In this study, to obtain PWV at the eight Ethiopian dual-frequency geodetic GPS 

receivers over the period 2013-2017/2020, Figure 1a, we used a network composed of 
these eight stations and of 26 surrounding IGS stations, see Figure 1b. Unfortunately, four 
out of the eight Ethiopian GPS stations (ARMI, DEBK, BDMT, and SHIS) suffer from 
significant observation gaps (see Table 1) and no Ethiopian station was available during 
the study period in the eastern part of the country (only during 2007-2011, see [24]). To 
compensate for this, we used the neighboring IGS station Djibouti (DJIG) instead. As al-
ready mentioned in the introduction, more GPS stations have been available in Ethiopia 
before 2011, and two of the GPS stations used here (ADIS and ARMI) have an extended 
time series since 2007 [24,25]. However, the common data period 2013-2017/2020 is used 
for the analysis in this paper. Although spatially limited, our GPS network covers dif-
ferent geographical areas with different climatological conditions, as also outlined in 
Table 1. 

Table 1. GPS stations in Ethiopia with geographic area information and duration of observations 
time. Stations marked with 1 have surface observations of temperature and precipitation. 

Station 
Latitud

e (°) 
Longitud

e (°) 
Altitude 

(m) 
City/Town  

station location 
Geographical Area 

Observatio
n Period 

ADIS1 9.02 38.46 2439.15 Addis-Ababa 
Subtropical highland 
climate, located in the 

central highland 
2013-2020 

ABOO1 8.59 37.48 1979 Ambo town 
subtropical highland, 
located in the central 

highland 
2013-2018 

ARMI1 6.03 37.33 1201.8 
Arbaminch 

town 

Very warm 
temperature, low land 

and surrounded by 
many water bodies and 
located in the African 
great rift valley in the 

southern part of 
Ethiopia 

2013-2015 

ASOS1 10.03 34.33 1626 Asosa town 
Warm temperature and 
located in the western 

part of the country 
2013-2017 

BDMT1 11.36 37.21 1793.38 Bahir Dar city 

highland and near lake 
Tana and located in the 
north-western part of 

the country 

2013-2017 

DEBK 13.09 37.53 2862 Debark town Cold temperature, 2013-2017 
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highland and near the 
high peak mountain, 

Ras-Dashin, located in 
the northern part of the 

country 

NEGE1 5.20 39.35 1554 
Negele-Borena 

town 

Warm area, Arid 
climate and located in 
the southern part of 

Ethiopia 

2013-2020 

SHIS 11.59 38.59 2010.5 
Shimsheha 

town 

Highland, located in 
the northern part of the 

country 
2013-2017 

DJIG 11.31 42.50 711 Djibouti 
warm and located near 

the Red Sea  
2016-2020 

  
GPS data were processed using the GNSS at Massachusetts Institute of Technology 

(GAMIT) software v10.71 [33,34] in ionosphere-free double-difference mode to estimate 
the ZTDs, from which the PWVs are derived. IGS stations are included in the data pro-
cessing 1) to enhance the absolute tropospheric estimation by introducing long baselines 
between GPS stations [11], and 2) to assess the precision of our GAMIT-ZTDs. The main 
processing options are summarized in Table 2. The time resolution of the GAMIT-ZTDs 
is 2 h. 

Table 2. GPS data processing options. 

Software Used GAMIT v10.71 [33,34] 
Processing Mode Multi-epoch joint least squares adjustment 

Sampling Interval 30 sec 
Frame of Reference International terrestrial reference frame ITRF2014 [35] 

Antenna PCO/PCV Model IGS14.ATX 

Solid Earth Corrections 
Solid earth tides, ocean loading induced earth tides, and 
polar motion induced earth tides according to the IERS 

2010 convention [36] 
Ocean Loading Model Finite element solution FES2004 [37] 

Ionospheric Model Ionospheric-free 
Observation Elevation 

Cut-off 
10 degree 

Mapping Functions Vienna mapping function VMF1(grid) [38] 

A priori Hydrostatic and 
Wet Tropospheric Model 

y 

VMF1(grid) [38] 
Initial hydrostatic delay estimated with Saastamoinen 

model using the global pressure and temperature 
(GPT2w) as input [39] 

Orbits and Satellite Clocks 
Time Resolution 

IGS Final 
2h 

 
2.1.1. Tropospheric Modelling in GPS Data Processing 

The troposphere causes an excess delay in the propagation of the GPS signals as well 
as a bending of its path in the atmosphere. The delay ∆𝐿𝐿 along the slant path(s) between 
the GPS satellite and the ground receiving antenna can be expressed as: 

∆𝐿𝐿 = 10−6 �[𝑁𝑁ℎ(𝑠𝑠) + 𝑁𝑁𝑤𝑤(𝑠𝑠)] 𝑑𝑑𝑠𝑠
𝑆𝑆

 (1) 
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where Nh and Nw represent the hydrostatic and wet refractivity, respectively. Equation 
(1) can be decomposed into hydrostatic, wet, and horizontal gradient delay components 
[40] as follows: 

∆𝐿𝐿 = 𝑚𝑚ℎ(𝜀𝜀) 𝑍𝑍𝑍𝑍𝑍𝑍 + 𝑚𝑚𝑤𝑤(𝜀𝜀) 𝑍𝑍𝑍𝑍𝑍𝑍 + 𝑚𝑚ℎ(𝜀𝜀) 𝑐𝑐𝑐𝑐𝑐𝑐(𝜀𝜀) [𝐺𝐺𝑁𝑁 𝑐𝑐𝑐𝑐𝑠𝑠(𝛼𝛼) + 𝐺𝐺𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼)] (2) 

where ε and α are respectively the elevation angle and the azimuth. Each component of 
the total delay is usually considered as the delay in the zenith direction (the zenith hy-
drostatic delay (ZHD) and the zenith wet delay (ZWD)) and the first-order north-south 
and east-west gradients terms GN and Ge [41–43] multiplied by the hydrostatic and wet 
mapping functions mh(ε) and mw(ε) (e.g., [44–46]). A mapping function represents the 
ratio of the excess path delay at the elevation angle ε to the path delay in the zenith di-
rection. The hydrostatic mapping function accounts for the bending effect. The sum of the 
ZHD and ZWD is called zenith total delay (ZTD): 

𝑍𝑍𝑍𝑍𝑍𝑍 = 𝑍𝑍𝑍𝑍𝑍𝑍 + 𝑍𝑍𝑍𝑍𝑍𝑍 (3) 

2.1.2. PWV Retrieval from GPS Observations 
In GPS data processing, ZTD is estimated and ZHD is modelled to access the ZWD. 

ZHD can be modelled using e.g., the Saastamoinen [47] formula, which is a function of 
surface pressure Ps: 

𝑍𝑍𝑍𝑍𝑍𝑍 =
(2.279 ± 0.0024)

𝑓𝑓(𝜑𝜑,𝑍𝑍)
.𝑃𝑃𝑠𝑠 (4) 

where 𝑓𝑓(𝜑𝜑,𝑍𝑍) accounts for the variations in the gravitational acceleration at the station 
with latitude 𝜑𝜑 and height H above a reference ellipsoid: 

𝑓𝑓(𝜑𝜑,𝑍𝑍) = 1 − 0.00266 𝑐𝑐𝑐𝑐𝑠𝑠(2𝜑𝜑) − 0.00028 .𝑍𝑍 (5) 

The ZWD can then be converted to PWV using the formula [48]: 

𝑃𝑃𝑍𝑍𝑃𝑃 = 𝑄𝑄.𝑍𝑍𝑍𝑍𝑍𝑍 (6) 

Following [49], the conversion factor 𝑄𝑄  is calculated using measurements of 
weighted mean temperature Tm as: 

𝑄𝑄 =
106

𝜌𝜌𝑣𝑣𝑅𝑅𝑣𝑣(𝑘𝑘3
𝑇𝑇𝑚𝑚

+ 𝑘𝑘2
′)

 (7) 

where 𝜌𝜌𝑣𝑣 is the density of water and 𝑅𝑅𝑣𝑣 is the specific gas constant of water vapor (461.5 
J.kg-1k-1). In this study, we used Tm and Ps estimates at the site locations from the empir-
ical global pressure and temperature model GPT2w [39], computed from ECMWF 
ERA-Interim temperature and humidity profiles. 

2.2. Radiosonde Data 
Radiosonde data are often used to validate GPS-PWV, as they provide accurate ver-

tical profile measurements of water vapor pressure (humidity) and temperature, from 
which PWV can be calculated. In this study, we used high-resolution sounding data at 
Addis Ababa station covering the period 2013-2020 to validate our GAMIT-PWV re-
trievals at this site. Addis Ababa radiosonde station, the only available radiosonde sta-
tion in Ethiopia, is located at a horizontal separation less than 4 km and an elevation 
difference less than 80 m from the ADIS IGS station. 

The radiosonde sounding data were collected from the Integrated Global Radio-
sonde Archive (IGRA) [50] and have a temporal resolution of 12 hr. The data quality 
control strategy that we implemented is the same as in [51]. Radiosonde temperature and 
humidity profiles are required to reach at least 300 hPa for the top level and have data 
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available at the surface and at least five (resp. four) standard pressure levels above the 
surface for stations below (resp. above) 1000 hPa. In addition, profiles with large gaps 
(i.e., larger than 200 hPa) in pressure between consecutive records of temperature or 
humidity are rejected. 

The method described in [52] is used for the (small) altitude offset correction be-
tween GPS and radiosonde station. The hydrostatic and ideal gas equations are used to 
adjust radiosonde pressure to the GPS station height as described in [53]. Finally, PWV 
from the GPS antenna level 𝑃𝑃0  to the top of the radiosonde records is calculated by inte-
gration over height as described in the following equation (PWV in units of kg/m2 or 
mm): 

𝑃𝑃𝑍𝑍𝑃𝑃 =
1
𝑔𝑔0
� 𝑞𝑞(𝑃𝑃)𝑑𝑑𝑃𝑃
𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡

𝑃𝑃0
 (8) 

where q(P), the specific humidity as a function of atmospheric pressure P, is given in 
units of kg/kg and g0 = 9.80665m/s2. 

2.3. ERA5 Reanalysis Data 
ERA5 is the fifth generation ECMWF atmospheric reanalysis of the global climate 

[26]. Compared with the previous reanalysis generation (ERA-Interim, [28]), ERA5 rea-
nalysis improves both the spatial resolution from ~80 km to ~31 km (0.25°x0.25°) and the 
temporal resolution from 6 hr. to 1 hr. [54]. In this study, we extracted 1hr temporal res-
olution of total column precipitable water vapor (TCWV) from the ERA5 surface grid at 
the GPS station locations. Because GPS antenna heights and reanalysis model surface 
heights are not identical (see height differences ∆ℎ in Table 3), the ERA5-PWV estimates 
were adjusted for the height difference ∆ℎ based on an empirical formulation derived by 
[55]: ∆𝑃𝑃𝑍𝑍𝑃𝑃 = −4 × 10−4 × 𝑃𝑃𝑍𝑍𝑃𝑃 × ∆ℎ , with ∆ℎ  in meters. The height differences be-
tween the GPS stations and surface heights in the reanalysis range from -468.88 m to 
+1218 m (negative values indicate that the GPS station is below ERA5 surface grid). 

Table 3. GAMIT-PWV compared to ERA5-PWV (ERA5-PWV used as reference). The different 
columns denote the number of ERA5-PWV and GAMIT-PWV observation pairs, the mean differ-
ences between GAMIT-PWV and ERA5-PWV (GAMIT-PWV minus ERA5-PWV) in mm, the Root 
Mean Square Errors (RMSE) in mm, the correlation coefficient R, the altitude of the GPS station in 
m, and the height difference Δh in m between GPS receiver antenna height and ERA5 model grid 
surface height. The comparisons between the two datasets are made at 2 hr resolution over the pe-
riod 2013-2020, when available. 

Station No. Obs. 
Mean Difference 

(mm) 
RMSE 
(mm) 

R Altitude (m) 
∆𝐡𝐡  
(m) 

ADIS 31194 -0.04 0.62 0.99 2439.15 58.31 
ABOO 21710 0.14 0.63 0.98 1979 76.37 
ARMI 14226 0.08 0.57 0.99 1200 -468.88 
ASOS 18910 3.62 3.80 0.96 1626 864.6 
BDMT 17235 1.25 2.05 0.97 1793.38 -353.16 
DEBK 18240 2.84 2.94 0.98 2862 1218.47 
NEGE 27452 1.27 1.42 0.98 1554 397 
SHIS 18913 -0.21 1.15 0.97 2010 -225.46 
DJIG 18012 1.72 1.94 0.99 711.41 303.2 

. 

2.4. IGS Tropospheric Product 
The IGS produces its troposphere product dataset [32] that includes ZTDs and hor-

izontal gradients for all IGS stations. This product has a temporal resolution of 5 min and 
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a nominal accuracy of ~4 mm [32]. In this study, we used this dataset, referred hereafter 
as IGS-ZTD, to validate the tropospheric delay outputs from our own processing strategy 
(see Section 3.1) at the 26 IGS sites surrounding Ethiopia (including DJIG) over the period 
2013-2020 (see Table 4). Additionally, this product is also available for the Ethiopian sta-
tion ADIS (Addis-Ababa), as it is also an IGS station. 

Table 4. Summary of the datasets and their characteristics. 

Datasets Obs. Type 
Time 

resolutio
n 

Obs. 
Start Obs. End Nb. Sites 

GAMIT-ZTD/P
WV 

Point 2 h 2013 
2017/202

0 
ZTD: 34 

PWV: 9 (8 Ethiopian+ DJIG) 

IGS-ZTD Point 5 min 2013 2020 
27 (26 outside Ethiopia + 

ADIS) 
ERA5-PWV Gridded 1 hr 2013 2020 9 

Radiosonde-PW
V 

Vertical 
profiles 

12 hr 2013 2020 1 

Surface 
temperature 

Point 
Max and 

min 
2013 2019 6 

Rainfall 
amount 

Point Daily 2013 2019 6 

 

2.5. Surface Meteorological Measurements 
Rainfall rate and surface temperature data for six Ethiopian stations (ADIS, ABOO, 

NEGE, ASOS, BDMT, and ARMI) for the periods 2013-2019 were collected (see Table 4). 
The surface temperature and rainfall records are used in this study to understand the 
spatiotemporal variations of the PWV in Ethiopia. The rainfall data will also enable us to 
investigate a possible link between GAMIT-PWV and heavy rain (see Section 5).  

3. Validation of GPS Processing 
In this section, we shortly validate our GPS processing strategy by comparing the 

calculated ZTDs of our network with the ZTDs processed by the IGS on common GPS 
sites (Section 3.1) and by studying the correlation of our GAMIT-PWV with radiosonde 
PWVs at Addis-Ababa (Section 3.2). 

3.1. Validation of the GAMIT-ZTD Based on the IGS-ZTD 
We first validated our GPS data processing by comparing the GAMIT-ZTD and the 

IGS-ZTD at the 27 IGS stations used in our network for the time span 2013-2020. In this 
comparison, we only retain the 18 IGS stations that have observation data above 50% of 
the processing time span. IGS ZTD products at 5-min sampling rate are averaged to 2 h 
intervals to be directly comparable with the GAMIT-ZTD estimates in this study. The 
results show a good agreement with biases between GAMIT-ZTD and IGS-ZTD ranging 
from -2.76 mm to 1.83 mm (IGS-ZTD taken as reference), RMSE ranging from 2.46 mm to 
4.79 mm, and correlation coefficients between 0.93 to 1.0. These values are in agreement 
with the nominal precision of the IGS-ZTD announced by IGS central Bureau (~4 mm).  

3.2. Validation of GAMIT-PWV with Radiosonde Observations 
We compared GAMIT-PWV to radiosonde-PWV at Addis Ababa for the period 

2013-2020. We obtained a high correlation (0.98), a small wet GAMIT-PWV bias of 0.51 
mm w.r.t. radiosonde PWV and a RMSE of 2.71 mm (Figure 2). Analyzing the GPS and 
radiosonde-PWV observations at the same station, but for a different time period 
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(2007-2011), Mengistu et al. [25] found a wet bias of 3.3 mm (RMSE 4.3 mm) between the 
GPS-PWV and the 12:00 UTC radiosonde observations, when the GPT surface pressure 
was used for the ZTD to PWV conversion, but only a bias of 0.1 mm (RMSE 2.5 mm) 
when making use of the observed surface pressure at the site. The better agreement be-
tween both datasets in our study might be explained by the different GPS processing, the 
use of the GPT2w surface pressure for the ZTD to PWV conversion, and including radi-
osonde observations at 00:00 UTC, which might impact the comparison with GPS-PWV 
retrievals as well, due to the known radiation dry bias in radiosonde daytime humidity 
observations (e.g., [56]). 

 
Figure 2. Scatter plot of radiosonde-PWV versus GAMIT-PWV for Addis-Ababa (ADIS) during the 
2013-2020. 

4. Spatiotemporal PWV Variability in Ethiopia from GPS and ERA5 PWV 
In this section, we assess to which extent both GAMIT-PWV and ERA5-PWV rep-

resent the spatiotemporal variability of PWV in a country with a very complex orography 
as Ethiopia.  

4.1. Comparison of GAMIT-PWV and ERA5-PWV over Ethiopia 
Table 3 shows the mean differences, RMSE, and correlation coefficients between the 

GAMIT-PWV and ERA5-PWV datasets at the eight Ethiopian GPS stations, plus DJIG 
(Djibouti), during the period 2013-2020. To calculate these statistical parameters, we time 
matched the ERA5-PWVs to the 2-hr time resolution of GAMIT-PWV by averaging the 
1-hr. sampled ERA5-PWVs to 2 hr. intervals. A first thing to note is that the two datasets 
highly correlate, with correlation coefficients ranging between 0.96-0.99. Mean PWV dif-
ferences between both datasets are in the range of -0.21 mm to 3.62 mm, with the largest 
(absolute) values reached for ASOS (3.62 mm) and DEBK (2.84 mm) stations. For most of 
the stations, GAMIT-PWV has positive (moist) biases with respect to ERA5-PWV, except 
for SHIS (-0.21 mm) and ADIS (-0.04 mm) stations. 

RMSE values between the two datasets range from 0.57 mm to 3.78 mm, with again 
the largest values for ASOS (3.78 mm) and DEBK (2.94 mm) stations. The higher mean 
difference and RMSE values at ASOS and DEBK stations are attributed to the large height 
difference between the ERA5 model surface grid and the GPS antenna height, which are 
864 m and 1218.47 m, respectively (see Table 3). The correction method that we applied to 
account for these height differences, seems therefore not very successful for these sites. 

The mean differences and RMSE found here between GAMIT-PWV and ERA5-PWV 
are lower than those reported in [25] for the period 2007-2011 between GAMIT-PWV and 
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ERA-Interim-PWV for the common three stations in both studies. In particular, the biases 
(resp. RMSE) of GAMIT-PWV w.r.t. ERA5-PWV for ADIS, ARMI and BDMT stations are 
respectively -0.04 mm, 0.08 mm and 1.25 mm (0.62 mm, 0.57 mm and 2.05 mm), whereas 
the biases (resp. RMSE) of GAMIT-PWV w.r.t. ERA-interim for these stations were -4.55, 
3.78 and 4.47 mm (5.7, 5.6 and 6.3 mm) in [25]. The better agreement in our study might 
be ascribed to 1) the higher spatiotemporal resolution of ERA5 compared to ERA-Interim, 
2) improved data assimilation and physical representation of processes in ERA5, 3) the 
use of GPT2w surface pressure and weighted mean temperature to convert ZTD to PWV, 
as [25] used the older GPT model [57] based on the ERA40 reanalysis. 

The earlier analyses [24,25] concluded that the GAMIT-PWV had a dry bias com-
pared to ERA-Interim over Ethiopian lowlands, and a wet bias over the highlands. With 
respect to ERA5, we do not observe such a clear relation between bias and the station’s 
altitude. However, other factors such as the location of GPS stations near water bodies 
and related representativeness differences with gridded datasets like reanalyses may 
contribute to discrepancies [24]. For instance, Bahir Dar (BDMT), a site in the Ethiopian 
northern highlands, is located near Lake Tana on its southward side, the largest highland 
lake in the region. The high evaporation rate from the lake may be responsible for the 
relatively high value of GAMIT-PWV record with respect to ERA-interim [25] and ERA5 
(our study). Those reanalysis gridded datasets with lower spatial (horizontal) resolution 
might not capture satisfactorily the higher evaporation rates due to the presence of a lake 
and related impact on the PWV field at the GPS site. The same explanation might be 
given for Djibouti (DJIG), located near the Red Sea and the Gulf of Aden. 

4.2. Seasonal Cycle 
We studied the seasonal cycle of the atmospheric water vapor over Ethiopia based 

on GAMIT-PWV and ERA5-PWV datasets, with the precipitation and surface tempera-
ture time series as auxiliary tools. As the distribution of rainfall in the country depends 
both on the regional topography and on the seasonal variation of the atmospheric circu-
lation [58], Ethiopia can be divided in three main regions based on the seasonal rainfall 
cycle: (i) northern and central-western areas with one rainy season that peaks in Ju-
ly/August; (ii) the southern part with two seasons of short rainfall (September–
November) and long rainfall (March–May) respectively; and (iii) the eastern and central 
parts with two rainy periods called spring (February–May) and summer (June–
September) rainy seasons. We will use this classification in discussing the seasonal PWV 
cycle as well. For stations in the northern part of the country (BDMT, DEBK and SHIS), 
and for the station ASOS in the western part of the country, PWV peaks during the 
months May/June-August, which corresponds to the summer season. An example is 
given in Figure 3a with station BDMT. During this season, the air flow is dominated by a 
zone of convergence in low-pressure systems accompanied by the oscillatory In-
ter-Tropical Convergence Zone (ITCZ) extending from West Africa towards India 
through Ethiopia or north of it [59], bringing a sufficient amount of PWV and rainfall in 
the northern and western part of Ethiopia. On the other hand, the lowest values of PWV 
in these parts of the country are observed during the months December-February, cor-
responding to the driest season for these areas, with little or no precipitation. During this 
season, Ethiopia is predominantly influenced by dry air masses originated from the Sa-
haran Anticyclone as well as cool and dry air masses originated from the Siberian and 
Arabian Anticyclones [59]. 

In the central part of the country (stations ADIS and ABOO, see Figure 3b for ADIS), 
the lowest PWVs are recorded during the months February-May and the highest values 
during the months June-July. In this region of the country, a regime of a mono-modal 
summer rainfall cycle (June–September) arises, with peak rainfall especially in Ju-
ly/August, which is also reflected in the PWV seasonal variation of those two sites. 

In the southern part of the country (stations NEGE and ARMI, see Figure 3c for 
ARMI), the highest PWV values are recorded once during the months September–
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November and once during the period March–May. The south of Ethiopia undergoes 
short rainfalls in September-November and long rainfalls in March-May. The (double) 
PWV peaks have a clear link with two precipitation periods. The seasonal cycle of both 
rainfall and PWV is strongly created by north–south movements of the ITCZ across the 
region [23].  

The seasonal cycle is also captured at the station DJIG, see Figure 3d, which is lo-
cated to the east of Ethiopia. This station exhibits a peak of PWV around August and the 
lowest PWV values in December. In terms of rainfall, August is known to be the wet 
season (summer season) and December is the driest month in this region [60]. Unfortu-
nately, we lack rainfall data for this site during the time period of our study.  

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3. Seasonal variations of GAMIT-PWV (green), ERA5-PWV (purple) and rainfall rate (blue) 
for the (a) BDMT (b) ADIS (c) ARMI, and (d) DJIG stations. The inter-annual variability is repre-
sented with the 1 sigma error bars and denoted by STDV (standard deviation). 

In general, Figure 3 shows that both the ERA5-PWV and GAMIT-PWV seasonal 
variations have nearly identical patterns, in particular for the ARMI and ADIS stations. 
The seasonal variations of both datasets for the stations BDMT and DJIG are also very 
similar, but the PWV monthly mean values are biased between both datasets, with this 
bias being non-constant over the months. As shown in Table 5, both datasets reveal very 
similar amplitudes of the seasonal PWV variation at the sites. This is compliant with the 
finding that ERA5 is able to capture the seasonal cycles of temperature (Figure 4 and [16]) 
and rainfall in Ethiopia [16,29] reasonably well, even if the peak in temperature is shifted 
by a month (Figure 4), and despite the difference in rainfall amounts (wet bias of ERA5 
compared to observations). From Figure 4, it can be noted that the temperature variation 
within a year is rather low for the Ethiopian sites, with a maximum difference between 
the monthly mean temperatures around 5°C. Overall, the summer (monsoon) seasons are 
wet, quite cloudy with often afternoon thunderstorms occurring and therefore charac-
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terized by relatively low temperatures compared to the other seasons. The winter and 
spring seasons are dry and warm, with the month of May often being the hottest month 
of the year. Fall has moderate temperatures.  

Table 5. Absolute and relative amplitude of the seasonal and diurnal cycles for GAMIT-PWV and 
ERA5-PWV datasets. 

Site 

Seasonal Cycle Diurnal Cycle 
GAMIT-PWV ERA5-PWV GAMIT-PWV ERA5-PWV 
Abs. 

Ampl. 
(mm) 

Rel. 
Ampl. 

(%) 

Abs. 
Ampl. 
(mm) 

Rel. 
Ampl. 

(%) 

Abs. 
Ampl. 
(mm) 

Rel. 
Ampl. 

(%) 

Abs. 
Ampl. 
(mm) 

Rel. 
Ampl. 

(%) 
ADIS 10.34 59.66 10.54 60.85 0.99 5.76 1.14 6.29 

ABOO 12.21 53.63 13.05 57.65 1.70 7.45 1.87 8.25 
ASOS 17.15 66.40 14.64 65.94 1.50 5.70 0.46 2.08 
ARMI 14.48 45.50 13.10 41.26 4.74 14.91 1.21 3.81 
BDMT 15.25 66.60 12.94 59.78 4.10 17.61 2.33 10.74 
DEBK 10.93 76.65 9.03 79.18 2.87 20.60 1.27 11.15 
DJIG 18.97 68.09 18.65 71.34 3.89 14.24 2.071 7.92 
NEGE 12.47 50.41 13.11 55.88 1.51 6.12 0.85 3.64 
SHIS 15.25 77.97 12.68 64.13 1.94 9.90 2.35 11.88 

 
We analyzed the year-to-year variability of the seasonal cycle of PWV using the 

standard deviation (STDV) of the monthly anomalies. The highest PWV inter-annual 
variability in terms of STDV is observed for DJIG station (with a peak of 6.24 mm in 
April). Given its particular location near the Red Sea and the Gulf of Aden, the transport 
of moisture to this region is sensitive to a large inter-annual variability, which is also il-
lustrated by its irregular rain pattern [60]. Larger standard deviations are also obtained 
for the stations located in the southern part of Ethiopia (ARMI and NEGE), ranging from 
2.80 mm to 4.9 mm, during the driest winter and early spring season (November to 
April). This large year-to-year PWV variability might be associated to the large 
year-to-year rainfall variability of winter rains over south-eastern Ethiopia, dominated by 
large scale changes in the Indian Ocean and its coupled atmosphere with a clear link to 
the Indian Ocean Dipole (IOD). Winter rainfall over south-eastern parts of Ethiopia is 
increased during positive IOD events [15,59]. On the other hand, stations located in the 
central and southern parts of the country (ADIS, ABOO, NEGE, and ARMI) show low 
PWV monthly anomalies STDV during summer season, ranging from 0.4 mm to 1.18 
mm. The small year-to-year variability during the summer season for this region is due to 
the rain pattern being during the wet season almost similar from year to year and from 
station to station (see the small STDV of the rainfall amounts in Figure 3). From Figure 4, 
we can see that the inter-annual variability of temperature is low for most of stations, 
especially during the summer season. 
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(c) 

 
(d) 

Figure 4. Seasonal variations of ERA5 and observed temperatures for the (a) BDMT, (b) ADIS, (c) 
ARMI, and (d) ASOS stations. The inter-annual variability is represented with vertical bars and 
denoted by STDV. 

4.3. Diurnal Cycle 
Many processes can induce diurnal variations in atmospheric water vapor. These 

include e.g., (1) surface evapotranspiration, which peaks around noon [61], (2) atmos-
pheric large-scale vertical motion, which tends to be downward from late morning to 
afternoon and upward from midnight to early morning [62], (3) atmospheric low-level 
moisture convergence and precipitation, which occurs more frequently around midnight 
[62]. 

As we have the GAMIT-PWV datasets available at 2-hr temporal resolution and the 
ERA5-PWV at 1 h resolution, we can investigate the presence of a diurnal PWV cycle at 
our Ethiopian sites. Mengistu et al. [25] and Yehun et al. [27] already pointed out the 
presence of a diurnal PWV cycle in some Ethiopian sites (including ADIS, ARMI, DEBK, 
and BDMT). We found that the amplitude of the diurnal PWV cycles varies from 0.99 mm 
(ADIS) to 4.74 mm (ARMI), with ARMI, BDMT and DJIG stations having the strongest 
diurnal cycle with mean amplitude between 3 and 5 mm (Figure 5 and Table 5), which 
corresponds to ~15% in terms of relative amplitude (Table 5). These three sites are located 
near water bodies and dense vegetation. BDMT is located near Lake Tana; ARMI is sur-
rounded by many water bodies (e.g., Lake Chamo and Lake Abiyata) and near dense 
vegetation, whereas DJIG is located near the Red Sea. For these three stations surface 
evapotranspiration is the main factor driving the diurnal variations. The stations ADIS, 
ABOO, ASOS, and NEGE have much lower diurnal cycles, less than about 1.5 mm (less 
than 7.5% relative amplitude, Table 5). Although the ERA5-PWV dataset has a higher 
temporal resolution, the amplitude of the diurnal cycle is for most of the sites smaller for 
ERA5-PWV than for GAMIT-PWV, with the only clear exception being the SHIS site 
(with diurnal amplitude of 0.4 mm or 2% higher for ERA5 than for GAMIT-PWV). Ap-
parently, the gridded ERA5-PWV dataset smoothens out the local diurnal variations at 
the GPS site locations.  

Because of the stronger diurnal cycle in the GPS-PWV dataset, we have also inves-
tigated the GPS-PWV diurnal cycle over Ethiopia for all seasons separately. We concen-
trate here only on the sites with a clear, significant diurnal variation (i.e., BDMT, ARMI, 
DJIG, and DEBK). We found that the amplitude of the diurnal cycle depends on the sea-
son. Maximum amplitudes between 5 and 6 mm are observed during fall and spring 
seasons. As rainfall events occur in these seasons, they are characterized by a very green 
environment at these sites, more water on the surfaces (more water bodies) and with 
plenty of sunlight. The evapotranspiration from the green plants and water bodies results 
in the largest observed diurnal cycle in this season. On the other hand, minimum am-
plitudes of the diurnal cycle (only a few mm) at those sites arise during winter and 
summer seasons. The winter season is characterized with little observed surface moisture 
and hence low evapotranspiration, whereas the summer season is characterized with 
relatively low temperature (Figure 4) with little sunlight, which result in less evapo-
transpiration from the surface. In this analysis, we do not notice a clear link in the simi-
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larity between the diurnal cycles for the sites that have similar seasons (see previous 
Section 4.2). Clearly, the diurnal variation of the PWV is more governed by local pro-
cesses and vegetation.  

 
                         (a) 

 
                         (b) 

 

      (c) 

 
                       (d) 

Figure 5. Diurnal cycles in the GAMIT-PWV and ERA5-PWV datasets at the (a) BDMT,(b) ADIS,(c) 
ARMI, and (d) DJIG stations. The inter-day variability is represented with vertical bars and de-
noted by STDV. 

The PWV diurnal cycle peaks in the late evening (18:00 or 20:00GMT, 21:00 –23:00 
LT) for the stations ARMI and BDMT, with the peak at 18:00 GMT only at BDMT for June, 
July and August (JJA) and September, October and November (SON). The minimum is 
reached around 10:00 GMT at BDMT (12:00 GMT for SON), and around 12:00 GMT at 
ARMI (14:00 GMT for JJA). Hence, these stations only show a small dependence of the 
phase of the diurnal cycle on the season. The phase of the maximum of the diurnal cycle 
at DEBK shifts every season with 2 hours, from 14:00 GMT (SON) to 20:00 GMT during 
March, April and May (MAM), and back, while the minimum values are obtained during 
the morning (04:00 GMT or 06:00 GMT, so 07:00 or 09:00 LT). At DJIG, it is the phase of 
the minimum of the diurnal cycle that shifts every season with 2 hours, from 14:00 in Jun, 
July and August (JJA) to 18:00 GMT in December, January and February (DJF), and back. 
The phase of the maximum falls in the late morning (08:00 GMT), except during the 
summer (04:00 GMT, early morning: 07:00 LT). The diurnal cycle at DJIG is hence more or 
less reversed as compared to the other sites. 

5. Analysis of the Relationship between GPS-PWV and Heavy Rainfall 
Ethiopia has a high degree of risk to natural disasters such as flooding as well as 

drought. For instance, in our time period considered here, 2013, 2016, 2019, and 2020 
were years marked with major flooding events in the country, while 2015 was a drought 
year [63,64]. In this section, we want to elaborate on the potential of a GPS network in 
Ethiopia for nowcasting applications to predict heavy rainfall events. Zhang et al. [65] 
stated, generally, that PWV could be used to complement conventional meteorological 
observations for the monitoring and predictions of severe weather events. Indeed, many 
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studies have confirmed that PWV variations can effectively reveal the occurrences and 
the life cycles of precipitation events [3–5]. For example, Priego et al. [4] found that three 
GPS stations on the Spanish Mediterranean coasts show a quick and clear increase in 
PWV (around 30 kg/m2) a few hours before the onset of heavy precipitation. In addition, 
the maximum value of PWV occurs almost simultaneously with the peak intensity of 
rain. Based on the analysis of a number of case studies of intense precipitation in the 
Lisbon area, Benevides et al. [66] found that most intense rainfall events occur after steep 
ascents in PWV and developed a simple algorithm that forecasts rain in the 6 h after a 
steep ascent of the GPS-PWV in a single station. Those sharp increases in the GPS-PWV 
before very intense rainfall events were termed GPS-PWV “jumps” in [5], probably as-
sociated with water vapor convergence and the continued formation of cloud condensate 
and precipitation particles. They explored the pattern in the GPS-PWV time-derivation 
before a heavy rainfall event for use in nowcasting applications.  

In this study, we investigate heavy rainfall events over the entire periods of availa-
ble data for the BDMT (2013-2016) and ARMI (2013-2015) sites. These sites lie in regions 
which are sensitive to flooding events, and those have the largest number of heavy rain-
fall events, as compared to the other sites of our sample. Therefore, Figure 6 presents the 
time series of GAMIT-PWV, ERA5-PWV and precipitation for the two sites. This figure 
shows that periods of intense rainfall (indicated by horizontal red line and orange rec-
tangle) are typically associated with a PWV peak, while a PWV peak does not necessarily 
mean that there is or will be precipitation. Therefore, we analyzed the time-varying 
characteristics of PWV from about 12 h before, during, and 12 h after heavy rainfall 
events. Based on the standard deviation of the rainfall records at these stations, we set a 
threshold value of 5 times the standard deviations to characterize heavy rainfall periods. 
This yields a threshold value of 46.34 and 38.38 mm for BDMT and ARMI respectively. 
Based on this criterion, we determined nine periods of heavy rainfall for BDMT and 
twelve periods for ARMI. We first discuss two specific cases. The maximum amount of 
rainfall recorded at ARMI was 86.2 mm on October 15, 2013. On that day, the GAM-
IT-PWV started to rise 12 h before the occurrence of the heavy rain from 31.34 to 37.17 
mm (i.e., a relative change of 16%) and then dropped to 30.23 mm (i.e., -18%) 12 h after 
the heavy rainfall event. As another example, we mention the maximum amount of 
rainfall recorded at BDMT (90.8 mm) that happened on September 2, 2016. Also, for this 
case, we observed a rise in PWV (starting from 29.68 to 36.36 mm i.e., an increase of 18%) 
during 12 h before the rainfall to reach a peak at 36.36 mm and then a decrease down to 
22.59 mm (i.e., -38%) 12 h after the start of the rainfall event. 

 

 
(a)  

 
                           (b) 

Figure 6. Time series of GAMIT-PWV, ERA5-PWV and amount of rainfall for the stations (a) ARMI 
and (b) BDMT. The horizontal red line shows the threshold value we determined for the heavy 
rainfall events and the orange rectangle shows that PWV values are maximum during heavy rain 
events. 
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This analysis was carried out for all 21 heavy rainfall cases identified. In these cases, 
we observed a steady rise in PWV from 12 hours before the start of the rainfall (with 
around 25% on average), when the PWV reaches its peak value, followed by a steady 
PWV decrease, to obtain again the initial PWV value after about 12 h (relative decrease of 
almost 25% again). Hence, for these extreme rainfall cases, there is a steady build-up of 
water vapor in the atmosphere before the heavy rainfall starts at the peak value of PWV. 
Afterwards, the pouring rain dries out the atmosphere again. As such, monitoring the 
PWV could be used as an indicator in a nowcasting tool for heavy precipitation, for the 
two Ethiopian sites considered here. 

6. Conclusions and Outlook 
Due to its complex topography and synoptic-scale spatiotemporal circulation pat-

terns, Ethiopia is a very challenging country for studying the spatiotemporal variability 
of temperature, rainfall, and precipitable water vapor. Unfortunately, observational 
weather and climate data are sparse in the country, due to availability and accessibility 
problems, and a lack of data continuity. Although relatively low cost and with limited 
maintenance, ground-based GPS devices retrieving the PWV are rather limited in space 
and time as well in Ethiopia. In this paper, we relied on a sample consisting of eight sites 
in Ethiopia and one site close to the eastern Ethiopian border (Djibouti) during a maxi-
mum common time period of 2013-2020. Only two of our sites have data before 2013, 
other Ethiopian GPS sites with data in 2007-2011 [24,25] were decommissioned. Over 
data-sparse regions, reanalysis products are often taken as an alternative solution to as-
sess the spatiotemporal variability of essential climate variables like water vapor, but a 
proper evaluation of their strengths and weaknesses, especially when data assimilation is 
rather restricted, should not be overlooked.  

Compared to earlier studies over Ethiopia, we used the latest ECMWF reanalysis 
product, ERA5, to retrieve PWV values. We evaluated the ERA5-PWV output at the nine 
GPS site locations in (or close to) Ethiopia to assess whether the improvement of ERA5 
with respect to previous reanalyses in terms of temperature and rainfall is also reflected 
in terms of the precipitable water vapor. More specifically, the following two questions 
were addressed: (1) Are there potential systematic PWV biases that depend on the very 
complex orography? (2) Does the higher spatial and temporal resolution of ERA5 com-
pared to his predecessor ERA-Interim amount to a closer agreement with GPS in terms of 
the PWV seasonal and diurnal cycle? This is the first study assessing the ERA5-PWV in 
Ethiopia. 

First, we validated our GAMIT-PWV ZTD retrievals with the IGS ZTD product at 18 
IGS sites with long data series (2013-2020). Additionally, both the ZTD processing and 
the ZTD to PWV conversion at Addis Ababa have been evaluated with radiosonde ob-
servations. Those comparisons confirmed the good quality of our GAMIT-PWV pro-
cessing, giving confidence in the reliability of the generated GAMIT-PWV dataset at the 
Ethiopian sites. The GAMIT-PWV achieves a good correlation with the ERA5-PWV at the 
Ethiopian GPS sites, with correlations exceeding 0.96. For the majority of the sites, 
GAMIT-PWV shows a wet bias (within 2 mm) with respect to ERA5-PWV. The largest 
wet biases for GAMIT-PWV are obtained for stations with a significant height difference 
between the GPS site and the ERA5 surface grid (ASOS: 3.62 mm wet bias, 865 m height 
difference, and DEBK: 2.84 mm wet bias, 1218 m height difference). An improvement of 
the height difference correction scheme (between the GPS site and the ERA5 surface grid 
at the site location) is therefore envisaged. Here, as opposed to earlier analyses [24,25] 
that concluded that GPS-PWV had a dry bias compared to ERA5’s predecessor 
ERA-Interim over Ethiopian lowlands, and a wet bias over the highlands, we do not find 
such a clear link between the ERA5-GPS PWV mean differences and station height. Fur-
thermore, the RMSE obtained between GPS and ERA5 in our study are also significantly 
reduced compared to the values reported in those previous studies between GPS and 
ERA-Interim.  
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Making use of the GAMIT-PWV and ERA5-PWV datasets, we also investigated their 
similarity in capturing the spatiotemporal PWV variability in Ethiopia. Given the rather 
limited time length of the GPS datasets at our small sample of stations, we restricted 
ourselves to comparing the seasonal and diurnal PWV cycles in both datasets. We found 
that the PWV seasonal variability is represented similarly by the two datasets and is also 
clearly linked with the seasonal cycle of precipitation. This result for PWV is compliant 
with the finding that ERA5 is able to capture the seasonal cycles of temperature [16] and 
rainfall in Ethiopia [16,29] very well. In Ethiopia, the variation of temperature within a 
year is rather modest, and its direct link with the PWV seasonal cycle is less clear. Be-
cause of the high temporal resolution of the GAMIT-PWV and ERA5-PWV datasets 
compared to e.g., [24,25], we also had a closer look at the mean PWV diurnal cycle at the 
Ethiopian stations. Stations like ARMI and BDMT have higher diurnal amplitudes than 
the stations in the highlands. These former stations are located in an area where evapo-
transpiration is high, with very high temperatures. 

In the last section, the data of two stations ARMI and BDMT were used to explore 
the potential of GPS-PWV monitoring for nowcasting severe rainfall events. The larger 
areas around those stations have been frequently affected by flooding events. We there-
fore selected heavy rainfall events in the daily precipitation time series at those stations 
and analyzed the GPS-PWV behavior preceding and following such an event. We found 
that GPS-PWV tends to increase from several hours before heavy rainfall (about 25% on 
average from 12 h before the rainfall starts), reaches a peak during rainfall, and decrease 
after the heavy rainfall (also by about -25% on average at 12 h after the start of the rain-
fall). This study illustrates the opportunity that a denser network of GPS sites in Ethiopia 
can provide for setting up a warning system for heavy rainfall. 

While ERA5 is much closer to observations than its predecessor, the horizontal res-
olution of 0.25°x0.25° can still be considered too coarse for assessing the PWV variability 
over Ethiopia. Additionally, in order to obtain reliable climate projections, especially for 
extreme precipitation, climate simulations at convection-permitting resolutions are nec-
essary [21,67]. In this study, in which we wanted to assess the present-day representation 
of PWV by GPS and ERA5, we are spatially limited by the coverage of the GPS network 
in Ethiopia, which are mainly “point” observations. However, the use of a gridded da-
taset like ERA5 would enable us to better investigate the spatial variability of the PWV 
over the entire country of Ethiopia.  

Moreover, ERA5 is available since 1979, giving the opportunity to study both PWV 
and rainfall at Ethiopia over the past decades. In a follow-up study, we will use ERA5 to 
validate an ensemble of regional climate models over Ethiopia [20,22] in terms of PWV 
and rainfall. In a next step, we will then investigate the impact of climate change on PWV 
and extreme rainfall. 
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