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Abstract: Pedestrian detection is vitally important in many computer vision tasks but still suffers from
some problems, such as illumination and occlusion if only the RGB image is exploited, especially in
outdoor and long-range scenes. Combining RGB with depth information acquired by 3D sensors may
effectively alleviate these problems. Therefore, how to utilize depth information and how to fuse RGB
and depth features are the focus of the task of RGB-D pedestrian detection. This paper first improves
the most commonly used HHA method for depth encoding by optimizing the gravity direction
extraction and depth values mapping, which can generate a pseudo-color image from the depth
information. Then, a two-branch feature fusion extraction module (TFFEM) is proposed to obtain
the local and global features of both modalities. Based on TFFEM, an RGB-D pedestrian detection
network is designed to locate the people. In experiments, the improved HHA encoding method
is twice as fast and achieves more accurate gravity-direction extraction on four publicly-available
datasets. The pedestrian detection performance of the proposed network is validated on KITTI and
EPFL datasets and achieves state-of-the-art performance. Moreover, the proposed method achieved
third ranking among all published works on the KITTI leaderboard. In general, the proposed method
effectively fuses RGB and depth features and overcomes the effects of illumination and occlusion
problems in pedestrian detection.

Keywords: 3D sensor; multi-modal data; pedestrian detection; HHA; feature fusion

1. Introduction

The importance of pedestrian detection cannot be overstated. It is the basis for many
computer vision tasks and is widely used in video surveillance, robotics, automatic driving
and healthcare assistance. Benefitting from convolution neural network (CNN) methods
and large-scale datasets, RGB image based pedestrian detection performance has made
great progress with the development of RGB cameras in recent years. However, some chal-
lenges are difficult to solve if only RGB visual information is exploited, such as insufficient
light, occlusion, small-scale objects and dense crowds, as shown in Figure 1a–d. Unlike
RGB images, depth images generated from 3D sensors are not affected by illumination and
can provide three-dimensional information, but have the problems of low resolution and
high noise. Therefore, combining RGB and depth images (RGB-D data) to detect people
can compensated for the other’s shortcomings and provide the possibility to solve those
challenges. Many pedestrian detection methods [1–6] based on RGB-D data have been
presented. They also demonstrated that the using of multi-modality RGB-D data is better
than using the single modality form. However, two issues with regard to using RGB-D
data are worthy of further investigaton: (1) how to use depth images; and (2) how to fuse
the RGB and depth modalities.

For the issue of using depth images, it is unsuitable to directly feed it into a deep
network, as the depth image is usually a single channel and 16-bit image. Therefore,
the depth information is usually encoded as grayscale or a three-channel pseudo-color
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image (as shown in Figure 2). Among them, horizontal disparity, height above ground,
and the angle of the pixel’s local surface normal makes with the inferred gravity direction
(HHA) [7] contains more information in three channels. Moreover, HHA has been effec-
tively applied to semantic segmentation [8], scene understanding [9], and salient object
detection [10]. However, it performs inadequately at pedestrian detection. For example,
some studies [11,12] have shown that the detection performance of converting depth infor-
mation to a jet colormap is better than that of converting it to HHA. But the HHA carries
more information than the jet colormap. We found that the HHA encoding only extracts the
gravity direction, so it is easy to introduce noises when calculating the channel of the height
above ground, which seriously affects pedestrian detection. To address this problem, we
propose to improve the HHA encoding method by extracting the ground plane parameters
instead of just extracting the ground direction. The improved algorithm effectively reduces
the error encoding of height above ground.

(a) Insufficient Light

(c) Small Scale (d) Dense Crowds

(b) Occlusions

Figure 1. Visualization of RGB and depth images in some challenging pedestrian detection scenarios.

For the issue of fusing multi-modal information, most existing RGB-D [2,4] or RGB-
T [13,14] pedestrian detection algorithms explored the feature maps of two modalities in
weighted fusion. This process possibly obtains local features of two modalities, since the
additive fusion of two corresponding channels is independent of other channels. Employing
1× 1 convolution after concatenated two feature maps is also a common fusion method [1,3].
In contrast, this method extracts global features because each channel of the convolution
output is a linear combination of all input channels. In our opinion, local features are as
important as global features. Therefore, we designed a two-branch network to fuse these
two modalities in both global and local views.

To this end, this paper proposes an RGB-D data based pedestrian detection network
which takes RGB and improved HHA images as inputs. In the proposed model, an im-
proved HHA method is firstly proposed to encode the depth image more accurately. We
also perform depth equalization for the mapping of the depth values, which improves the
color space utilization. The improved method runs twice as fast and estimates the direction
of gravity more accurately. Then, we design a two-branch feature fusion extraction mod-
ule (TFFEM) which uses two branches to extract the global and local features separately.
In the local feature extraction, we also propose an adaptive channel cross fusion (ACCF)
module to learn the weights of each channel and to become more efficient. We validate the
designed network on two publicly-available datasets and achieve state-of-the-art detection
performance. One dataset is KITTI [15]. It employs the LiDAR sensor to capture the point
cloud, which can still be encoded as an HHA image. Another dataset is EPFL [16], whose
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depth images are acquired directly by the 3D sensor of Kinect v2. In summary, the main
contributions of this paper are summarized as

• We design an RGB-D data based pedestrian detection network which achieves the
state-of-the-art detection performance on KITTI and EPFL datasets.

• We improve the HHA encoding method, which is twice as fast and can extract the
full ground parameters. Moreover, the detection performance outperforms other
encoding methods.

• We propose two new modules, i.e., TFFEM and ACCF, in the deep network, which
can learn rich multimodal features.

Figure 2. Sample images after encoding the depth information via different methods on the
two datasets.

2. Related Work
2.1. Single Modal Based Pedestrian Detection
2.1.1. Depth Image Based Approaches

There are many pedestrian detection algorithms for single-depth images, and they
can be classified into three main types, i.e., traditional methods, CNN-based methods,
and the combination of the traditional and CNN model methods. These methods require
high depth image quality, so it is not sufficient to only use the depth image outdoors or in
large spaces.

Traditional methods generally require several steps. In the preprocessing stage,
many studies [17,18] use background modeling algorithms to remove background re-
gions, and some algorithms use plane detection to remove areas that contain planes. In the
region of interest(ROI) extraction stage, the methods for depth images are also various.
Hu et al. [17] use spatial clustering to obtain ROI. Tian et al. [19] utilize height information
to remove ROI that contains points that are too high or low. And, more often, the head
information is exploited because the size and shape of the person’s head is usually fixed in
space, so researchers propose many head-based features [18–21] to filter the ROI. However,
the problem with these methods is that they can only detect the upper body region of the
people and cannot detect the people with the head obscured.

The traditional method combined with CNN [19] usually uses CNN to classify the
extracted ROI at the end. Since most invalid ROIs have been removed by depth information,
the speed of these methods is also significant. Meanwhile, some studies [22,23] proposed
end-to-end pedestrian detection networks that only use depth images. However, these
methods are still based on head features.
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2.1.2. RGB Image Based Approaches

Since the RPN network was proposed in the two-stage object detection method Faster
RCNN [24], the performance of CNN-based pedestrian detection algorithms [25] has greatly
exceeded that of traditional methods [26–28]. Later, single-stage object detection methods
were proposed, such as YOLO [29,30], SSD [31], and EfficientDet [32], which are faster and
have high detection accuracy. Many studies of pedestrian detection are based on them.
The above methods require many pre-defined anchors, which reduces the flexibility of
the network in training. Meanwhile, some anchor-free object detection algorithms such
as CenterNet [33] and FCOS [34] have been proposed. Correspondingly, the CenterNet-
based pedestrian detection algorithm CSP [35] has achieved high detection performance.
Moreover, there are also some networks designed specifically for pedestrian detection, such
as TAFT [36], and W3Net [37]. RGB image based pedestrian detection algorithms have
made significant progress. However, RGB images do not provide 3D information and are
sensitive to illumination, which may significantly degrade the detection performance of
these algorithms in changing environments.

2.2. Multi-Modal Based Pedestrian Detection

Multimodal data are more stable than single modality data, and also contain richer
information. Therefore, many RGB-D pedestrian detection methods have been presented
in recent years. These methods mainly address two issues: the fusion position of two
modals, and the fusion method. Earlier approaches [38–41] only fused the classification
results of each modality without interaction in feature extraction. They used adaptive
joint probabilities to combine the scores of each modality. Based on the Faster-RCNN,
Ren et al. [12] adopted two parallel VGG networks to extract features and fused them
in the last layer while leaving the rest unchanged. Ophoff et al. [1,42] verified through
extensive experiments that fusing two features extracted in the middle network layer is
superior to fusion the early and late ones. In addition. There are also many studies that
focus more on fusion methods. Zhang et al. [2,4] referred to the SENet [43] and computed
weight for each channel after combining the two features.

Some studies also focused on other elements. Guo et al. [5] obtained the mask of
people’s target labels by clustering depth images and combined this information to improve
the stability of pedestrian detection. Some studies [44,45] proposed multitask models that
enable the network to output the box and distance information to enhance the feature
representation. Linder et al. [3] improved the network by adding a synthetic RGB-D dataset
that is rendered with a semi-realistic game engine.

Furthermore, some different encoding strategies have been explored for using depth
information in multimodal data. The pixel values of the raw depth image indicate the
distance from the object to the camera. Since this value varies greatly for different devices
and units, it is not directly suitable for training. The efficient way is to encode the depth
image to a grayscale one (as shown in Figure 2a) according to Equation (1),

f (Zuv) =
Zuv −min(Z)

max(Z)−min(Z)
(1)

where Z denotes the depth value, and uv refers to the image coordinates. Existing deep
learning networks are designed for three-channel color images, so many methods further
encode grayscale into pseudo-color images such as jet colormap (as shown in Figure 2b)
before training.

The above encoding methods, although efficient, ignore the 3D information provided
by the depth. The depth image can be converted to a point cloud by camera intrinsic. Some
methods extract the spatial information in the point cloud and then invert it back to the
image plane to generate a new pseudo-color image, which carries adequate information.
Tian et al. [19] proposed the DMH representation, which contains three channels of raw
depth value, a multi-order depth template, and a height difference map. Currently, the most-
commonly used depth encoding method is HHA [7,46] (as shown in Figure 2d).



Remote Sens. 2022, 14, 645 5 of 19

3. Proposed Method

This section contains two parts. The first part introduces the improved HHA method
for using depth information. We describe the original HHA encoding and its shortcomings.
The improvements in gravity direction estimation and depth value mapping are also pre-
sented. The second part introduces our proposed RGB-D data-based pedestrian detection
network and its submodules.

3.1. Improved HHA Encoding

The original HHA image is in three-channel, and each channel is obtained by encoding
original depth information. We aim to improve the encoding procedure in two components
(described in Sections 3.1.3 and 3.1.4) while obtaining a same-size image.

3.1.1. Vanilla HHA

The first channel in an HHA image is horizontal disparity, which is inversely propor-
tional to the depth value (denoted as z) obtained from 3D sensors. The converted value in
each pixel is computed according to Equation (2).

d =
f ∗ b

z
(2)

where d is the disparity of each pixel in the first channel, and f , b are the focal length and
the baseline of one camera.

For the pixel values in the second and third channels, the gravity height and the angle
with the gravity direction of each point are calculated respectively. The gravity direction is
estimated as follows. Firstly, the depth value z is converted to a point-cloud value, and the
normal is calculated [46]. Next, the gravity direction (i.e., normal of the ground plane) is
estimated iteratively by point normal. The initial step is to set go = [0, 1, 0]T (the default
camera view is a horizontal forward view). All point normal is n. The second step is to get
the parallel normal set N‖ and the horizontal normal set N⊥ in n according to Equation (3)

N⊥ = {ni|θ(ni, go) < Td ∪ θ(ni, go) > 180− Td}
N‖ = {ni|θ(ni, go) > 90− Td ∩ θ(ni, go) < 90 + Td}

(3)

where θ(a, b) denotes the angle between the three-dimensional vectors a and b, and Td
denotes the angle threshold. The third step is to estimate the new gravity direction using
N‖ and N⊥. The estimation process is equivalent to searching the gn that minimizes
Equation (4)

min
g:‖gn‖2=1

∑
ni∈N⊥

cos2(θ(ni, gn)) + ∑
ni∈N‖

sin2(θ(ni, gn)) (4)

where gn need to be normalized to satisfy ‖gn‖2 = 1. According to the trigonometric
function, the Equation (4) can be rewritten as Equation (5).

∑
ni∈N⊥

cos2(θ(ni, gn)) + ∑
ni∈N‖

−cos2(θ(ni, gn))

= gn(N⊥NT
⊥ − N‖NT

‖ )gn
T

(5)

Then according to the Courant-Fischer theorem from linear algebra, the gn can be
obtained by decomposing the matrix N⊥NT

⊥ − N‖NT
‖ . After that, gn is used as the initial

direction go. The above steps are repeated until the stop condition is met.
The vanilla HHA [7] adopts the angle thresholds Td to 45◦ and 15◦ and iterates five

times under each threshold. After getting the gravity direction, the angle of each point is
calculated directly. And the gravity height is calculated by first rotating the whole point
cloud to the horizontal direction and then subtracting the smallest y coordinate value from
the y coordinate value of each point.
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3.1.2. Shortcoming Analysis of Vanilla HHA

The method of gravity estimation in vanilla HHA uses horizontal elements (floor,
ceiling, etc.) and vertical ones (wall, etc.) in the scene, which has high stability but suffers
from some shortcomings.

First, it only estimates the gravity direction and cannot obtain the complete ground
plane equation. The plane equation is as in Equation (6)

Ax + By + Cz + D = 0 (6)

The gravity direction g = [A, B, C]T . Hence, there is also a missing parameter D. Due
to the lack of this parameter, the original method is calculating the height by subtracting
the smallest y coordinate value. This calculation is sensitive to the camera pose and noise.
And if the complete ground plane parameters are available, the height can be calculated
directly by the point-to-plane distance equation. As shown in Figure 3b, the original
method makes a difference in generating HHA images on the NYU2 and EPFL datasets.

Figure 3. The encoded HHA images by the original and our improved methods on different datasets.

Secondly, the original method requires ten iterations. Each iteration has to process all
points, which is inefficient and susceptible to noise interference. This would cause poor
accuracy of the estimated gravity direction.

3.1.3. Improved Gravity Direction Estimation

To address the shortcomings of vanilla HHA, we improve the gravity direction estima-
tion in HHA encoding by considering the ground plane parameters and removing a part of
the points after each iteration.

Our ground estimation process is designed as follows. In the first step, after obtaining
the gravity direction gn according to the original method, we calculate the ground plane
parameter D using all the parallel points P‖ according to Equation (7)

D =
1
N ∑

p∈P‖

pT · gn (7)

where p = [px, py, pz]T denotes the points, and N is the number of parallel points. In the
second step, combining the obtained ground plane equation, only the points that satisfy
the Equation (8) are retained

Ps = {p|pT · gn + D > Tup ∩ pT · gn + D < Tdown} (8)
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where Tup and Tdown are the manual thresholds. The idea of removing points is to consider
that the points belonging to the ground are under the estimated plane, so threshold Tup is
set to keep the points under the plane. Meanwhile, the threshold Tdown is set to remove the
points too far from the plane, preventing noise interference.

Our estimation process is iterated only three times, and the final ground plane param-
eters are obtained using all parallel point fits at the end of the three iterations. The final
ground equation was fitted using least squares estimation, where the process is to calculate
the parameters − A

C ,− B
C ,−D

C so that Equation (9) takes the minimum value.

min ∑
p∈P‖

(−A
C

px −
B
C

py −
D
C
− pz)

2 (9)

The whole iterative process is shown in Figure 4a1,a2,b1,b2,c1,c2, in which the red
points represent the vertical points P⊥ and the blue points represent the parallel points P‖.
It can be seen in Figure 4, the number of points decreases in each iteration, and the final
estimated ground is shown as the green points in Figure 4d1 d2. In addition, the threshold
values for the three iterations are Td = [45°, 30°, 10°], Tup = [−30 cm, −15 cm, −5 cm],
and Tdown = [+∞, +∞, 15 cm]. The improved gravity direction extraction method reduces
the number of iterations and removes redundant points each time to improve the fitting
accuracy. After obtaining the ground equation, the point-to-surface distance is directly used
as the gravity height channel of HHA images, which does not require manual adjustment
of parameters and can be more adaptable to different data. The subsequent experimental
results also prove the superiority of our method.

(a1) First Iteration (b1) Second Iteration 

(c1) Last Iteration (d1) Estimated Ground Plane 

KITTI

Dataset

EPFL

Dataset

(a2) First Iteration (b2) Second Iteration (c2) Last Iteration (d2) Estimated Ground Plane

Figure 4. The iterative processes of our improved gravity direction estimation on the KITTI and
EPFL datasets.

3.1.4. Improved Depth Value Mapping

Moreover, we update the depth value mapping to facilitate the calculation of the first
channel in improved HHA. The first channel of HHA images is mapping the horizontal
disparity to grayscale. Therefore, we directly use the depth values instead of the horizontal
disparity. The mapping method uses average mapping in HHA encoding. The depth value
is evenly arranged to the grayscale of 0–255, as shown in Figure 5c. This mapping is simple
and easy to implement. However, the accuracy of most 3D sensing is proportional to the
distance, and the depth error is larger when the distance is farther. Therefore, more objects
are spread in the front and middle of the depth range, as shown in Figure 5a,b. As can be
seen, there are already very few objects with a distance of more than 40 m in the KITTI
dataset. Hence, if the depth values are equally mapped on the grayscale an imbalance will
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result. For example, the distant regions containing few objects occupy the same range on
the grayscale as the near regions containing more objects. To address this problem, we
propose a depth equalization mapping (DEM) method, as shown in Figure 5d.

Figure 5. The depth-value distribution of pedestrian objects on two RGB-D datasets (a,b) and the
two different mapping methods (c,d).

The DEM refers to the histogram equalization (HE) algorithm. The mapping process
can be seen as computing the mapping function g = f (z) so that the depth values z are
converted to grayscale values g. f is computed by Equation (10)

f (zi) = L
zi

∑
z=0

H(z) (10)

where L is the maximum range of the grayscale (256), and H(z) is the histogram of the
depth values for all objects. This histogram is calculated as Equation (11)

H(zi) = p(z = zi) =
nzi

n
, zmin < zi < zmax (11)

where n is the number of all objects and nzi is the number of objects with depth zi.

3.2. Two-Branch Pedestrian Detection Network
3.2.1. Network Overview

The structure of the proposed RGB-D data-based pedestrian detection network is
shown in Figure 6. The network inputs the RGB images and HHA images encoded by the
improved method. Two parallel ResNet50 [47] networks are employed to extract features
from each input separately. Since it is a detection task, the average pooling and fully
connected layer of the ResNet50 are removed. Then the feature maps FRGB

n ∈ RH×W×C

and FHHA
n ∈ RH×W×C output from the same layers are fused (excluding the first layer).

Where H, W, and C are the output feature map’s height, width, and channel number. N
is the index of layers. The fusion method is the multimodal fusion and attention module
(MFAM) described in the next. Then the fusion result FFused

n is used as the input of the
feature pyramid network (FPN). Finally, existing detection head modules such as FCOS [34]
and Faster RCNN [24] can be directly connected to the FPN to detect people. We next select
the head modules of Faster RCNN.
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Figure 6. The structure of our pedestrian detection network.

The structure of MFAM is shown in Figure 7, which consists of two main parts: the
TFFEM and the attention module. Each of them is described below.

Batch Normalization(BN)

C

WH

W H C 

× +×

×+ Element-wise Multiple Element-wise AddConvolution ReLU

TFFEM

Channel 

Attention

Spatial 

Attention

FRGB

n

FHHA

n

FFused

n

Figure 7. The structure of our proposed MFAM.

3.2.2. Two-Branch Feature Fusion Extraction Module

The main idea of TFFEM is to learn the global and local features of two modalities
to enhance the ability of networks for interpreting multimodal features. The structure is
shown in Figure 8. Since the detection object is a single class and to improve the module
efficiency, we first reduce the channel number of the input feature maps (FRGB

n , and FHHA
n )

by 50% using 1× 1 convolution to obtain the new feature maps ((F̂RGB
n , F̂HHA

n ) ∈ RH×W× C
2 ).

Then two branches are constructed to extract the global feature map F̂Glob
n ∈ RH×W× C

2

and local feature map F̂Loc
n ∈ RH×W× C

2 from the new feature maps. Finally, the output
feature map FTFF

n ∈ RH×W×C of TFFEM is obtained by concatenation of the global and
local feature maps as Equation (12)

FTFF
n = Cat(F̂Glob

n , F̂Loc
n ) (12)

The process of extracting global features is first to concatenate F̂RGB
n and F̂HHA

n . Then
a standard 3× 3 convolution is used to obtain the global feature map. Since the standard
convolution is employed, each channel in the output feature map is acquired by the joint
calculation of all channels in the input feature map. So it can get the global features.

The local features are extracted by our proposed ACCF block. First, each channel
in feature maps F̂RGB

n and F̂HHA
n with scale W × H × C

2 is cross-arranged to generate a
new feature map with size W × H × C. The new feature map is then processed by group
convolution with a kernel size of 1× 1. The number of groups and output channels are
all C

2 . After group convolution, the local feature map F̂Loc
n is obtained. Each channel of

F̂Loc
n is computed from the channels corresponding to F̂RGB

n and F̂HHA
n without involving

other ones. So ACCF can extract the local features. Furthermore, the group convolution
can be seen as assigning a weight to each channel of both feature maps, which is more
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flexible than the direct add. ACCF is also better than the hard threshold adding operation
proposed in [48], where all channels are multiplied by the same weight. Obviously, it is
more reasonable to make the network learn the weights of each channel by itself.

 Local Feature Map

Global Feature Map

Cross ConcatenationConcatenation

ACCF

1 1Conv 

3 3Conv 

 1 1Group Conv 

C

Cr

FRGB
n

FHHA
n

F̂RGB
n

F̂HHA
n

F̂Loc
n

F̂Glob
n

FTFFn

Figure 8. The detail of the proposed TFFEM. It contains two branches: (1) concatenating two
modalities and learning the global channel features, and (2) learning local channel features by the
ACCF block proposed in this paper.

3.2.3. Attention Module

The fused feature map obtained by TFFEM contains both global and local features
between two modalities, and this feature map can continue to be fed into the attention
module. It is different from the CW or ACW fusion module proposed in [4,13]. They refer
to the idea of the attention module to calculate the weights of each channel.

The convolutional block attention module (CBAM) [49] is chosen in our network,
which includes channel attention and spatial attention. In addition, a standard convolution
module is added before the CBAM for preprocessing the input feature maps. Finally,
the output feature map FFused

n by the MFAM is computed according to Equation (13)

FFused
n = Ws � (Wc � Conv(FTFF

n )) + FTFF
n (13)

where Wc, Ws represents the weights of channel and spatial attention module. � represents
the element-wise multiplication. Conv denotes a standard convolution, including the 3× 3
convolution, batch normalization (BN), and activation function ReLU. FTFF

n is the feature
map obtained by the TFFEM.

4. Experiments

The experiments consist of four parts. The first two parts evaluate the performance of
our proposed pedestrian detection method on two publicly-available datasets. The third
part compares our improved HHA encoding method with the original one from the metrics
of accuracy and speed of the gravity directions estimation. The last part is the ablation
study, which first verifies the superiority of improved HHA encoding in RGB-D data
based pedestrian detection and then demonstrates the advantages of our proposed fusion
module TFFEM.

4.1. Evaluation of Pedestrian Detection on KITTI Dataset
4.1.1. The Dataset and Evaluation Metrics

We first evaluate our pedestrian detection algorithm on the KITTI [15], a widely used
and challenging dataset for autonomous driving. KITTI contains 7481 training samples and
7518 test samples. Each sample includes up to 30 pedestrians. The metrics we evaluated
are consistent with the official comparision, which uses the average precision (AP) with an
IOU threshold of 0.5 for pedestrians. The AP also contains three difficulty levels, i.e., easy,
moderate and hard levels, based on the target height, occlusion and truncation.
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4.1.2. Implementation Detail

In experiments, we divide all samples into a training set (3712 samples) and a valida-
tion set (3769 samples) according to [50]. The KITTI dataset does not provide depth images,
so we convert the LiDAR point cloud to the camera coordinate system and generate depth
images. Afterward, depth images are recovered according to [51] and encoded to HHA
images. Our network uses the FasterRCNN detection head and replaces its ROIPooling
with ROIAlign [52]. Except for the TFFEM, the network is initialized with pretrained
weights on the CrowdHuman [53] and Citypersons [54] datasets. Furthermore, the TFFEM
cannot be pretrained only on RGB data, so its weights are initialized as [55]. The network
is trained for 17.6 K iterations with a batch size of 2. The SGD gradient descent algorithm
is used. The initial learning rate (LR) is set to 0.01, the momentum to 0.9, and the weight
decay to 0.0001. The LR increases from 0.001 to 0.01 in the beginning of 0.5 K iterations and
decreases to 10% at the 15.4 K and 16.5 K iterations. The input image resolution is kept
constant while the image is padded to ensure that the width and height are multiples of 32.
The entire training process takes about 5.5 h on a single GTX1080Ti GPU.

When training RGB and HHA images, the data augmentation is specially designed.
Color augmentation, such as illumination, transparency and gamma, is only for RGB be-
cause pixel values of the HHA image contain geometric information. Moreover, all images
are randomly translated by only −5∼5%, rotated by 0∼5 degrees, and scale transformed
by 0.9∼1.1 times. Furthermore, the random horizontal flip is adopted.

We also utilize some tricks to improve the detection performance. For example,
the pixel value of the DontCare region on RGB and HHA images is set to 0 according
to [35]. Moreover, the width of each prediction bounding box is extended by 0.1 times.
It is particularly useful for AP with an IOU threshold of 0.5. Besides, many samples of
the KITTI dataset do not contain pedestrians, e.g., only 955 of 3712 training samples have
pedestrians. So, training all the samples would reduce the network’s ability to discriminate
pedestrian targets. Therefore, for each epoch, we randomly select 100 samples from the
pedestrian-free samples and together with all samples containing pedestrians to training.

4.1.3. Comparison with State-of-the-Art Approaches

Table 1 shows the pedestrian detection results of our method and other state-of-the-art
methods on the KITTI test dataset. The input of these methods includes single-modal
and multimodal. In Table 1, D represents the depth image, P represents the LiDAR point
cloud, and F represents the optical flow. It can be seen that our method outperforms other
methods on moderate and hard metrics and has reached the state-of-the-art on the easy
metric. In addition, although we use two-modal data, the inference speed of our network is
faster than that of many single-modal methods.

We select the model that performs best on the validation set to process the test set.
The results are submitted to the official benchmark (http://www.cvlibs.net/datasets/kitti/
eval_object.php?obj_benchmark=2d, (accessed on 18 December 2021)) for 2D pedestrian
detection and ranked third among all published methods. Figure 9 shows the detection
results in several challenging scenarios on the KITTI test set. These scenarios include
insufficient light, occlusion, small-scale objects and dense crowds.

4.2. Evaluation of Pedestrian Detection on the EPFL Dataset
4.2.1. The Dataset and Evaluation Metrics

To further verify the robustness of our proposed pedestrian detection method, we
also evaluate pedestrian detection performance on the EPFL dataset. This dataset employs
Kinect V2 to capture RGB-D data in two scenes, i.e., a laboratory (EPFL-LAB) and a corridor
(EPFL-CORRIDOR) in a university building. A total of 5140 samples were collected. EPFL-
CORRIDOR is recognized as one of the most complex datasets [23]. EPFL contains various
degrees of occlusion, and the distance between people is very close. We divide the EPFL
dataset into a training set (1650 samples), a validation set (970 samples) and a test set
(1570 samples) according to [23].

http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=2d
http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=2d
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Table 1. Comparison with the state-of-the-art approaches on the KITTI test set for pedestrian detection.

Method Easy Moderate Hard Input Time (s)

MM-MRFC (2017, [56]) 83.79 70.76 64.81 RGB-D-F 0.05
SubCNN (2017, [57]) 84.88 72.27 66.82 RGB 2

RRC (2017, [58]) 85.98 76.61 71.47 RGB 3.6
ECP (2018, [59]) 85.96 76.25 70.55 RGB 0.25

FRCNN+Or (2018, [60]) 71.64 56.68 51.53 RGB 0.09
TAFT (2018, [36]) 67.62 53.15 47.08 RGB 0.2

F-ConvNet (2019, [61]) 83.63 72.91 67.18 RGB-P 0.47
VMVS (2019, [62]) 82.80 71.82 66.85 RGB-P 0.25

HotSpotNet (2020, [63]) 71.43 62.31 59.24 RGB 0.04
FII-CenterNet (2021, [64]) 81.32 67.31 61.29 RGB 0.09

WSSN (2021, [5]) 84.91 76.42 71.86 RGB-D 0.37
HHA-TFFEM (Proposed) 85.32 77.12 72.69 RGB-D 0.14

(a) Insufficient Light

(b) Occlusion

(c) Small Scale

(d) Dense Crowds

Figure 9. Visualization of our proposed detection result in some challenging scenarios on the KITTI
test dataset.

The metrics are adopted with the AP. The EPFL data set does not distinguish the
difficulty level of targets, so we only calculate the AP50, i.e., the IOU threshold is 0.5.
In addition, we also compute the AP75, i.e., the IOU threshold is 0.75 and APCOCO [65] to
verify our method comprehensively. In addition, Ophoff et al. relabeled the EPFL dataset
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to add the bounding box of severely obscured pedestrians that are not included in original
annotations. Thus, we use their annotation information.

4.2.2. Comparison with State-of-the-Art Approaches

We compared the detection performance of our proposed pedestrian detection al-
gorithm with nine state-of-the-art approaches with different strategies. They included
four classical RGB-based target detection algorithms [24,30,31,66] and five of the newest
RGB-D-based pedestrian detection algorithms [1–5]. FasterRCNN, SSD and YOLOV3 are
trained and tested utilizing the algorithms provided in the MMDetection toolbox [67],
and YOLOV5 utilizes the officially-offered code. The five methods of Ophoff [1], Zhang [2],
Linder [3], AAFTSNet [4], and WSSN [5], have inconsistent settings for training and testing
sets (e.g., Ophoff uses 70% of the data for training and 20% for testing). Therefore, we
cannot directly use the test results provided in their papers. Finally, we reimplemented
these methods according to their paper and recorded the test results.

Table 2 shows the detection performance of all methods on the EPFL dataset. It can be
seen that our method outperforms other methods in all three metrics. In the AP50 metric,
our method is the only one that exceeds 90%. In addition, the SSD-based method [2,31] has
better performance on the AP50 metric but is lower on AP75 and APCOCO metrics, while
the FasterRCNN has much lower scores in AP50 than SSD, YOLOV3, and YOLOV5 but
exceeds them in the AP75. Figure 10 shows the Precision-Recall curves of AP50, where the
dashed line indicates the method using only RGB data.

Table 2. Comparison with the state-of-the-art approaches on the EPFL dataset for pedestrian detection.

Method AP50 AP75 APCOCO Input

FasterRCNN (2015, [24]) 78.1 59.1 50.2

RGBSSD (2016, [31]) 80.0 45.8 44.6
YOLOV3 (2018, [30]) 82.3 52.7 47.8
YOLOV5 (2021, [66]) 86.8 55.5 51.5

Ophoff (2019, [1]) 84.0 51.6 49.0

RGB-D

Zhang (2020, [2]) 86.7 54.2 51.2
Linder (2020, [3]) 86.5 65.4 57.2

AAFTSNet (2021, [4]) 87.7 61.4 55.3
WSSN (2021, [5]) 88.4 64.1 55.8

HHA-TFFEM (Proposed) 90.2 66.0 57.4

Figure 10. Precision-Recall curves of each approach for pedestrian detection on the EPFL dataset,
where the dashed line indicates that the approach uses only RGB information.
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4.3. Evaluation of Improved HHA Encoding
4.3.1. Datasets and Evaluation Metrics

We validated our proposed improved HHA encoding method under four commonly
used RGB-D detection datasets, including UNIHALL [38,68], KTP [69,70], and two subsets
of EPFL, i.e., EPFL-LAB and EPFL-COR (captured in different scenarios). To improve
the validation efficiency, we selected the data captured by the first camera in UNIHALL,
the first subset of EPFLCOR, and the subset of KTP named Still. Another reason for this
choice is that each subset is captured with a fixed camera. Thus, the ground truth for
gravity orientation is also fixed. It is worth mentioning that we did not choose the KITTI
dataset for validation because the camera position of each sample on the KITTI is changed.
So it is hard to obtain the ground-truth gravity orientation of all samples.

The validation metrics refer to the angle judgment proposed in [46] which judges the
angle between the estimated and ground-truth gravity direction. A smaller angle indicates
a better estimation. However, only the EPFL dataset provides the ground-truth gravity
direction, So we manually calibrate the other two datasets to obtain the ground-truth
gravity direction. The manual estimation process is first to select a depth image with
the largest ground area. Then five ground points are manually marked and fitted by the
least-squares algorithm to obtain the gravity direction and calculate the fitting error. Lastly,
this process is repeated five times and selects the parameters with the smallest error as the
ground truth.

4.3.2. Comparison of Gravity Direction Estimation

Figure 11 shows the angle of gravity direction for our improved (blue) and the original
(red) methods on four datasets. In each subplot, the estimated angles of all images are listed,
where the horizontal coordinates indicate the image number and the vertical coordinates
indicate the angle.

Figure 11. Comparison of the gravity direction estimation accuracy between our improved and
original methods on four RGB-D datasets.

As can be seen, the overall angle of our improved method is smaller than the original
method, especially on the UNIHALL. The scene of UNIHALL contains a staircase whose
points are miss-classified to the vertical set, thus seriously affecting the gravity estimation
of the original method. In contrast, the improved method is less affected because many
irrelevant points are removed at each iteration.
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In addition, both methods estimate larger angles on the UNIHALL and KTP than on
the EPFL. This is because these two datasets are captured by Kinect V1, and their depth
information quality is lower than that of the EPFL captured with Kinect V2.

4.3.3. Comparison of Encoding Speed

Since the improved HHA encoding method reduces the number of iterations from
ten to three and removes a part of the points in each iteration when estimating the gravity
direction, the running speed is significantly promoted. Table 3 shows the HHA encoding
times of our improved and original methods on five datasets. The time for each dataset is
averaged over all images, and the unit is in seconds. As can be seen, our improved method
is more than twice as fast as the original method. The statistics experiment uses an ordinary
desktop computer with Intel Core I7-409 8700K, 16 GB of RAM and Win10. The software
used is the MatLab platform, which is consistent with the official HHA encoding code. It is
worth mentioning that this time it will run faster on platforms such as C++.

Table 3. HHA encoding times of our improved and original methods on five datasets.

KTP [70] UNIHALL [38] EPFL-LAB [16] EPFL-COR [16] KITTI [15] Avg.

Runtimes (s) Original 0.630 0.618 0.438 0.433 1.102 0.644
Improved 0.267 0.263 0.182 0.172 0.471 0.271

Image Resolution 640× 480 640× 480 512× 424 512× 424 1242× 375

4.4. Ablation Study

In this section, we execute comparative experiments to demonstrate the effectiveness
of these two parts.

4.4.1. Study on Different Depth Encoding Methods

Table 4 shows the detection performance of four types of depth information encoded
images and our improved HHA images on the KITTI val dataset with RGB-D as input.
These encoding methods include grayscale, surface normals, jet colormap and the original
HHA. There are two main aspects to our improvement of HHA encoding. One is more
efficient ground parammeter extraction (GE) and the other is DEM. Therefore, Table 4
lists two of our detection results, which are HHA + GE, i.e., only the effect after the GE is
employed, and HHA + GE + DEM, when the two improvements are contained. Moreover,
except for the original metrics provided in the KITTI dataset, we calculated the AP50 and
APCOCO results for a more comprehensive comparison. As can be seen, our encoding
method outperforms other encoding methods in all metrics.

Table 4. Comparison of depth encoding methods on the KITTI val dataset for RGB-D pedestrian detection.

Depth Encoding Method Easy Moderate Hard AP50 APCOCO Input

Grayscale 85.78 78.41 71.39 66.9 31.7

RGB-D

Surface Normals 87.86 79.42 72.53 69.7 34.4
Colormap Jet 87.58 79.72 73.05 68.5 33.4
HHA Orginal 87.26 80.25 72.96 68.9 32.9

HHA + GE (Proposed) 87.44 80.84 74.00 70.6 33.5
HHA + GE + DEM (Proposed) 88.90 82.14 75.33 71.5 34.5

4.4.2. Study on Different Fusion Methods

We first compared our multimodal fusion module with common fusion methods
on the KITTI val dataset as shown in Table 5. The compared methods include element
summation and concatenation. Since concatenation increases the channel number, we
reduced the channel number using 1 × 1 convolution after concatenation. We also compare
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the detection results after using the attention module CBAM for each fusion method.
From Table 5, we can see that the detection results of our fusion method are better than the
other approaches in all metrics, both in direct fusion and followed by the attention module.

Table 5. Comparison of fusion methods on the KITTI val dataset for RGB-D pedestrian detection.

Fusion Method Easy Moderate Hard AP50 APCOCO Input

Summation 86.76 79.02 72.83 68.4 31.6

RGB-D

Concatenation 87.79 80.33 73.19 69.5 33.7
TFFEM (proposed) 88.00 80.76 74.58 70.1 34.0

Summation + CBAM 87.42 79.86 73.83 70.3 33.9
Concatenation + CBAM 87.74 80.62 73.74 71.1 33.4

TFFEM + CBAM (proposed) 88.90 82.14 75.33 71.5 34.5

5. Discussion

The above experiments fully demonstrate the effectiveness of the proposed method.
In this section, the proposed method will be further analyzed.

(1) The improved HHA encoding method obtains more accurate gravity directions,
thus improving the precision of the encoded height information. At the same time, height
information is a very discriminated but noise-sensitive feature to the pedestrian detection
task compared to other tasks such as scene understanding [9] and salient object detec-
tion [10]. Therefore, the HHA images obtained by the original encoding method perform
poorly in the pedestrian detection task but well in other tasks [11,12].

(2) The result in Table 4 shows that using the DEM is better than mean mapping. DEM
allows depth regions containing more targets to be mapped to a wider color space, which
increases the dissimilarity between targets and thus can improve detection performance.

(3) The proposed TFFEM extracts local and global features of two modalities, which
increases the richness of the network features and thus improves the pedestrian detection per-
formance. In addition, the attention model is also beneficial to RGB-D pedestrian detection.

(4) The improved HHA encoding method is twice as fast as the original method but still
does not run in real-time. In addition, the complexity of the proposed RGB-D pedestrian
detection network is high. Therefore, our subsequent work will involve improving the
detection speed to satisfy the application requirements.

6. Conclusions

In this paper, we address two key issues in the RGB-D pedestrian detection task,
i.e., utilizing depth information and fusing the two modalities’ information. Firstly, we
analyze the reasons for the low detection performance of HHA encoded images carrying
more information and improving the HHA encoding. Secondly, we propose the TFFEM
and design a new RGB-D detection network based on this module.

Through the experiments, we first validate the effectiveness of the proposed RGB-D
detection network on two datasets, followed by the advantages of our improved HHA
encoding on four datasets. Finally, the superiority of the proposed improved HHA encoding
over other encoding methods and the excellence of the proposed TFFEM are demonstrated.
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