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Abstract: Subsurface chlorophyll maxima (SCMs), commonly occurring beneath the surface mixed
layer in coastal seas and open oceans, account for main changes in depth-integrated primary pro-
duction and hence significantly contribute to the global carbon cycle. To fill the gap of previous
methods (in situ measurement, remote sensing, and the extrapolating function based on surface-ocean
data) for obtaining SCM characteristics (intensity, depth, and thickness), we developed an improved
deep neural network (IDNN) model using a Gaussian radial basis activation function to retrieve
the vertical profile of chlorophyll a concentration (Chl a) and associated SCM characteristics from
surface-ocean data. The annually averaged SCM depth was further incorporated into the bias term
and the Gaussian activation function to improve the estimation accuracy of the IDNN model. Based
on the Biogeochemical-Argo (BGC-Argo) data acquired for three regions in the northwestern Pacific
Ocean, vertical Chl a profiles produced by our improved DNN model using sea surface Chl a and sea
surface temperature (SST) were in good agreement with the observations, especially in regions with
low surface Chl a. Compared to other neural-network-based models with one hidden layer and a
sigmoid activation function, the IDNN model retrieved vertical Chl a profiles well in more eutrophic
subpolar regions. Furthermore, the application of the IDNN model to infer vertical Chl a profiles
from remote-sensing information was validated in the northwestern Pacific Ocean.

Keywords: subsurface chlorophyll maximum; deep neural network; Gaussian radial basis activation
function; BGC-Argo; northwestern Pacific Ocean

1. Introduction

The ocean plays an important role in the global carbon cycle, with marine phytoplank-
ton accounting for ~50% of the global primary production [1]. In particular, the subsurface
chlorophyll maximum (SCM) layer contributes up to 75% of the depth-integrated primary
production in open oceans and coastal seas [2–4]. Moreover, the phytoplankton carbon
content in the SCM layer is positively correlated with the downward flux of particulate
organic carbon (POC) to the deep sea [5]. Over the period of a year, 59–73% of the ocean is
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expected to have the SCM layers with vertical scales from a few meters to tens of meters,
where chlorophyll a concentration (Chl a) presents a peak value [6–8]. Therefore, character-
izing SCM (intensity, depth, and thickness) is important for understanding marine primary
production, the carbon cycle, and ongoing global warming trends.

Since the 1950s, based on in situ measurements, SCM characteristics have been ex-
amined from vertical distributions of Chl a concentration, which are either measured in
discrete samples typically taken at standard depths or estimated continuously using in vivo
fluorometry [9–12]. Cullen [7] summarized the observation of SCM characteristics since the
1940s based on the benchmark studies by Riley and Steele [13–15]. Anderson [9] reported
that the high values of Chl a measured by in vivo fluorometry are typically confined to a
layer between 55 and 65 m, with a peak value at 60 m in the northeast Pacific Ocean. In
comparison, a prominent SCM between 65 and 150 m was found during two cruises in the
western Pacific Ocean [16]. Taking the above as examples, SCM characteristics show spatial
heterogeneity. However, not all in situ measurements capture SCM characteristics continu-
ously and they depend on cruise lines or float trajectories, thus limiting the knowledge of
SCM complexity in global oceans.

Since the late 1980s, efforts have been made to statistically extrapolate SCM characteris-
tics from surface-ocean data, which can be detected by satellite. Morel and Berthon applied
a shifted Gaussian function to categorize ~4000 vertical profiles of pigments to define seven
Chl a hierarchies in open oceans and examine the associated SCM characteristics [17,18].
Uitz [19] upgraded the shifted Gaussian function for two ocean conditions that represent
vertically stratified and mixed cases. Focusing on coastal seas, Richardson et al. [20] estab-
lished a generalised linear model as a function of surface Chl a concentrations and surface
water temperatures to estimate SCM characteristics in the southern Benguela upwelling
systems. Xiu et al. [21] applied a blue-to-green band ratio algorithm and successfully re-
trieved SCM intensity from remote-sensing reflectance in the Bohai Sea of China. Although
the retrieving functions based on surface-ocean data can provide Chl a concentration data
for vast and continuous ocean areas, they show limitations in characterizing the SCM
complexity due to the inadequacy of statistical adaptability at finer temporal resolutions
(seasonal, daily, and smaller spatio-temporal scales).

Recently, neural-network-based algorithms have been regularly used to calculate
SCM from surface-ocean data [22–24]. An advantage of neural networks is that they
provide a near-real-time depiction of the SCM characteristics from remote-sensing data.
For instance, Sammartino et al. [24] trained an artificial neural network (ANN) model with
one hidden layer (also known as a shallow ANN) to infer Chl a vertical profiles in the
Mediterranean Sea via in situ measurements together with remote-sensing data (Chl a
and temperature). The shallow ANN model works well in the regions with low surface
Chl a concentrations, but its performance decreases for the area with high Chl a surface
concentrations [23,24]. It is known that the number of hidden layers in neural-network-
based algorithms are one important factor controlling the estimation accuracy [24–26].
More importantly, a neural-network-based algorithms’ estimation accuracy depends on
the the type of activation function [26,27]. Compared with the logistic (sigmoid) activation
function, a radial basis activation function is likely to produce better solutions for nonlinear
problems [26]. Generally speaking, the previous neural-network-based models work better
in retrieving SCMs than the traditional statistics-based models did. However, because
previous neural-network-based models used only one genu in the hidden layer with the
sigmoid activation function, their accuracy needs to improve for the vertical Chl a profiles.

In this study, we develop a deep neural network (DNN) model to retrieve the vertical
profiles of Chl a from surface-ocean data which are equivalent to the average value within
the first 20 m water depth [4]. Our DNN model has at least three hidden layers in the
algorithm. Compared to the shallow ANN, such an improvement theoretically helps to im-
prove performance for prediction capability [28]. Rather than using the sigmoid activation
function, we use a Gaussian radial basis activation function in the DNN model, which is
one of the most frequently used radial functions in the literature [26]. We train the DNN
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model by inputting sea surface temperature (SST) and surface Chl a from Biogeochemical-
Argo (BGC-Argo) floats. We apply the DNN model to the northwestern Pacific Ocean
and compare the estimated vertical Chl a profiles and associated SCM characteristics with
observations in different regions and seasons. Finally, we examine the prediction capability
of our DNN model in retrieving vertical Chl a profiles from remote-sensing data in the
northwestern Pacific Ocean.

2. Data and Methods
2.1. Improved DNN Model

The DNN model is an extension of a conventional ANN, with at least two hidden
layers between the input and output layers. Because each node in the hidden layer makes
both associations and grades of the input to determine the output, stacking more of these
layers upon each other benefits more from multiple hidden layers. Generally, the running of
a DNN model includes two steps: error forward and error backward propagation. Forward
propagation refers to the DNN receiving signals from the input layer and then passes the
signals to the hidden layer (Figure 1). After processing the signals by the neurons in the
hidden layer, the DNN passes them to the output layer. Then, by comparing and calculating
the output error with the target, backward propagation is used to adjust the weight of
signals in the hidden layers and further reduce the error using the optimization algorithm.
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Figure 1. Structure of the deep neural network (DNN). The input elements of DNN are longitude,
latitude, time, sea surface temperature (SST), sea surface Chl a, water depth. The output is the
vertical distribution of Chl a concentration over the water depth of 0–300 m. b is the bias term in the
hidden layer. The prior information of nonlinear activation function (f ) connects the hidden layers to
the output.

In the calculation of SCM characteristics, we improved the existing DNN model in
the following two aspects. First, we improve the capability of model for the calculation of
SCM depth by replaced the bias term b (that is, the intercept term) from random values to
annual mean of SCM depths (Equation (1)).

bSCM =
avg(zmax)

max(z)
, (1)

where z is the water depth, max(z) is set to 300 m by assuming that there is no Chl a below
300 m depth, and avg(zmax) is the annual mean of SCM depth (zmax).

In the second aspect, we improve the calculation accuracy of the model for the SCM
intensity and thickness. Considering the unimodal chlorophyll profiles, a Gaussian radial
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basis function is substituted for the sigmoid function as a nonlinear activation function
(f, Equation (2)) in the original DNN model to amplify the signals within the SCM layer.
The advantage of Gaussian radial basis activation function is that it is similar to quadratic
function for the center values of input variables, while the sigmoid activation function is
similar to linear function about the moderate inputs [26].

f = e−π(Xj−bSCM)2
, (2)

where Xj is the X value of the jth output in the hidden layer, and bSCM is the bias term
computed by the annual mean of SCM depth (Equation (1)). The Gaussian radial basis
activation function helps to absorb the information of the annually averaged SCM depth
and, hence, further extract the SCM features.

Consequently, a DNN model with at least two hidden layers was applied due to its
availability in capturing the nonlinear relationships, and the annual averaged SCM depth
is incorporated into both the bias term and the Gaussian radial basis activation function
to improve the capability in retrieving the SCM characteristics. We name this improved
model the IDNN model.

2.2. BGC-Argo Data for the IDNN Model

The in situ data for the IDNN model were collected from 16 BGC-Argo profiling floats
in the northwestern Pacific Ocean (https://biogeochemical-argo.org/, accessed on 19 April
2021). Figure 2 plotted the trajectories of the 14 BGC-Argo profiling floats within 123–180◦E,
12–48◦N, where a SCM feature was observed. Figure A1 showed the locations of vertical
Chl a profiles observed from 16 BGC-Argo floats in the absence of a SCM. The acquired
2409 vertical Chl a profiles, covering four seasons during the period from July 2017 to
April 2021, were used in our study after quality control to remove aberrant data caused by
electronic noise [29].
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Figure 2. Locations and measuring months of 14 BGC-Argo profiles with a subsurface chlorophyll
maximum (SCM) feature in the northwestern Pacific Ocean.

Most vertical profiles of Chl a showed a unimodal distribution, while the remaining
minors showed either increasing or decreasing Chl a with depth. Here, focusing on the
SCM patterns, we structure each BGC-Argo vertical profile based on a Gaussian function
assumption [30] (Equation (3)).

Chl(z) = Ae−
(z−zmax)2

2σ2 (3)

https://biogeochemical-argo.org/
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where σ is its standard deviation, A is the amplitude of the Gaussian curve, and zmax is the
location of the amplitude. To quantify the vertical scale of the SCM layer, 2σ was used to
represent the SCM thickness [2,31]. Because the upper layer of the SCM (zmax − σ) must be
inside the water, it is set as a nonnegative value. That is, if zmax − σ < 0, the upper layer of
the SCM is set to the sea surface (0 m). In addition, the SCM intensity refers to the peak
value of Chl a concentration (A).

The values of the Gaussian parameters (σ, A, and zmax) were obtained by fitting all
observed vertical Chl a profiles (Figure 3), which can be used to filter out Chl a profiles
with no significant SCM characteristics via the following three steps. First, profiles with the
values of parameter σ ranging from the lower limit of the data value to half of the upper
limit (0–48 m) (Figure 3a), are kept, thereby leaving 1676 profiles. Second, parameter A (the
peak values of Chl a obtained from Gaussian fitting) was assumed to be at least twice the
surface Chl a concentrations. Meanwhile, values larger than the upper limit (2.2 mg m−3)
were neglected as outliers (Figure 3b). This step excluded 328 profiles. Third, zmax values
are limited to depths above 200 m. Finally, after visually reviewing all the filtered profiles,
1342 out of the total 2409 profiles were retained in the following analysis. Consequently,
the remaining vertical Chl a profiles present significant SCM characteristics.
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Figure 3. Boxplot of three parameters (standard deviation (a); amplitude of the Gaussian curve (b);
location of the amplitude (c)) in the Gaussian function in the northwestern Pacific Ocean. In each box,
the orange horizontal line represents the median. The upper and lower horizontal lines of the box
represent the 75th and 25th percentiles (Q3 and Q1), respectively. The upper and lower horizontal
whiskers lines are the upper limit (U) and lower limit (L) of the data, respectively; the circles represent
the outliers.

The remaining 1342 profiles with SCM covered four seasons from February 2018
to April 2021 (Table 1, Figure 2), while those profiles that are excluded in the initial
quality control are mostly characterized by the absence of SCM during the winter season
(Figure A1). In general, vertical Chl a profiles with a SCM accompany higher SSTs and
lower surface Chl a concentrations in subtropical and subpolar areas, compared to the
profiles without SCM. For example, in subtropical area (BOX2 in Figure 2), for the profiles
with SCM, the average surface Chl a concentration is about 0.14 mg m−3, and the average
SST is about 24.3 ◦C; for the profiles without SCM, the average surface Chl a and SST is
0.72 mg m−3 and 19.6 ◦C, respectively. In tropical area (BOX1 in Figure 2), no significant
difference between profiles with and without SCM was found from averaged surface Chl a
concentration and SST.
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Table 1. Averaged intensity and depth of SCM in BGC-Argo database used (Year/Month/Day).

Region Float No.
(Number of Profiles) Data Duration SCM Intensity

(mg m−3)
SCM Depth

(m)

BOX1
(12–24◦N, 123–156◦E)

2902753 (118) 2019/3/30–2019/12/8 0.57 (0.37–0.85) 117 (88–166)
2902756 (184) 2019/3/25–2020/12/2 0.67 (0.34–0.73) 115 (88–150)
2902762 (82) 2020/8/16–2021/4/18 0.43 (0.29–0.77) 139 (90–175)
2902822 (37) 2021/1/12–2021/4/17 0.43 (0.29–0.53) 127 (97–149)
2902823 (30) 2021/1/17–2021/4/17 0.41 (0.19–0.55) 147 (129–183)
2902824 (30) 2021/1/20–2021/4/16 0.47 (0.39–0.55) 153 (127–176)

Seasonal average (Winter, Spring, Summer, Autumn) 0.44, 0.59, 0.58, 0.57 134, 124, 109, 128

BOX2
(26–38◦N, 132–173◦E)

2902748 (199) 2018/5/31–2021/4/17 1.23 (0.55–3.54) 76 (30–117)
2902749 (28) 2018/5/31–2018/9/8 1.07 (0.61–2.18) 79 (40–108)

2902750 (108) 2018/9/13–2019/5/31 0.85 (0.44–1.67) 89 (29–118)
2902754 (147) 2018/8/30–2021/4/16 1.1 (0.32–6.65) 76 (23–135)

2902755 (9) 2019/10/19–2019/11/28 0.65 (0.58–1.17) 40 (18–62)
2903213 (1) 2018/2/22–2018/2/22 0.91 (0.91–0.91) 68 (68–68)

2903394 (78) 2019/5/26–2020/12/8 0.79 (0.45–6.12) 65 (28–100)

Seasonal average (Winter, Spring, Summer, Autumn) 0.62, 1.18, 1.49, 0.91 74, 69, 74, 83

BOX3
(38–48◦N, 145–180◦E)

2902755 (204) 2018/9/3–2021/4/16 1.92 (0.50–5.70) 41 (12–96)
2903354 (87) 2018/7/25–2019/9/4 2.5 (0.24–7.07) 28 (6–49)

Seasonal average (Winter, Spring, Summer, Autumn) 1.09, 1.60, 2.40, 2.00 59, 39, 33, 40

Total area (1342) 2018/2/22–2021/4/18 1.14 (0.20–7.07) 85 (6–183)

Seasonal average (Winter, Spring, Summer, Autumn) 0.52, 0.88, 1.57, 1.17 115, 101, 72, 75

The average value of SCM depth and its intensity in each BGC-Argo float is shown in
Table 1. The averaged SCM intensity from profiles of each BGC-Argo float in tropical area
(12–24◦N) has ranges between 0.41–0.67 mg m−3 over depths of 115–153 m; the averaged
SCM intensity in subtropical (26◦N–38◦N) is about 0.65–1.2 mg m−3 with shallower SCM
depths over 40–89 m. At high latitudes (38–48◦N), the SCM exists at a depth <50 m with the
largest intensity larger than 1.5 mg m−3. Table 1 also presents the seasonal averaged SCM
depth and intensity. Compared with summer and autumn, the SCMs get deeper and weaker
in winter and spring, which is probably due to increased vertical mixing in winter and
spring. This indicates that physical entrainment may extract some of phytoplankton from
the SCM layer to the surface layer and thereby reduce the SCM intensity [2,32]. Generally,
the SCM characteristics differ among the three regions that range from tropical area to
subtropical area and then to subpolar area, with a weaker seasonal variation. Therefore,
based on spatial variations of SCM characteristics in the northwestern Pacific Ocean, the
remained 1342 vertical profiles of Chl a are classified into three BOXes (Table 1). In BOX1,
6 BGC-Argo floats contained 481 profiles span in the tropical Pacific. 570 profiles from
7 BGC-Argo floats near 30◦N belong to BOX2 in subtropical area, and the remaining
291 profiles from 2 BGC-Argo floats locate at BOX3 in subpolar Pacific.

2.3. Satellite Data for the IDNN Model

To evaluate the performance of IDNN reconstruction using remote-sensing data, the
MODIS Level 3 standard mapped image monthly Chl a and SST database with a 9 km
spatial resolution were downloaded from Asia-Pacific Data-Research Center (ARDRC, http:
//apdrc.soest.hawaii.edu/dods/public_data/satellite_product/MODIS_Aqua/, accessed
on 19 April 2021) and used to extract the input values for the IDNN model.

Each profile of the BGC-Argo database remained above was then matched up with
satellite data of surface Chl a and SST using the bilinear interpolation method [33]. This
matchup process led to keeping a number of 985 BGC-Argo profiles from 2017 to 2021. The
matchup file includes both training and test points.

http://apdrc.soest.hawaii.edu/dods/public_data/satellite_product/MODIS_Aqua/
http://apdrc.soest.hawaii.edu/dods/public_data/satellite_product/MODIS_Aqua/
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Before the training, SST and Chl a data from BGC-Argo profiles and satellite were
standardized to make them dimensionless and have the same order of magnitude. Thus,
for each point, all data are clustered around 0 with a variance of 1.

2.4. Training Process

In our IDNN model, SST, sea surface Chl a, associated geo-location (latitude, longitude)
and observation time, and water depth were selected as input variables (Figure 1), which
are similar to the study by Sammartino et al. [24]. The reason for choosing geo-location
and observation time is that the SCM characteristics varied with seasonality and spatiality
(Table 1). SST is related with vertical stratification of the water column, influencing SCM
characteristics. Moreover, the choice is supported by the potential capability of the network
to find the nonlinear relationship between the input variables and Chl a concentration at
different depths of the water column.

The IDNN model was trained in each BOX, respectively. Seventy-five percent of the
input data and vertical profiles of Chl a from BGC-Argo floats in each BOX (Table 1) were
segmented and fed into the IDNN model as the training set, which was selected randomly.
We conducted 10 experiments by selecting 75% of the input data randomly in each BOX.
The RMSEs ranged between 0.0033–0.0038 mg m−3 in BOX1, 0.036–0.044 mg m−3 in BOX2,
and 0.25–0.36 mg m−3 in BOX3. The results indicate the stability by randomly selecting
training data. Gradient descent was applied to reverse propagation of the IDNN model,
which was trained using an Adam optimizer. Moreover, to avoid over-fitting, we applied
the dropout technique to discard some neurons. During the training process, 15% of the
training set was randomly selected as a validation set to verify whether the IDNN model
was over-fitted. According to the performance of the validation set, the parameters of the
IDNN model were determined using a grid search. Overall, after stable network training,
three IDNN model frames were determined for each BOX region (Table 2). Based on the
best calculation performance, the parameters in BOX1 and BOX2 are equivalent to each
other, but differ from those in BOX3.

Table 2. Parameters of the IDNN model in three BOXes.

Network Parameter
Parameters

BOX1 BOX2 BOX3

Hidden layer depth 3 3 4
Number of hidden neurons 64, 64, 64 64, 64, 64 64, 128, 128, 64

Momentum 0.9 0.9 0.9
Epoch 115 115 150

Learning rate 0.01 0.01 0.01
Dropout rate 0.1 0.1 0.1

To evaluate the errors between the IDNN output and the observed value, the deter-
mination coefficient (R2), correlation coefficient (ρ), root mean square error (RMSE), mean
absolute percentage error (MAPE), and mean bias error (MBE) are introduced as evaluation
indicators. Their formulas are shown in Table A1. The R2 and RMSE values were used as
performance indicators to evaluate the effectiveness of the developed models. MAPE and
MBE capture the average difference between the estimated and observed values.

3. Results and Discussion
3.1. IDNN-Retrieved Vertical Chl a Profiles

After evaluating the IDNN performance on a training set, we applied the IDNN model
to a test set. Here, the test set contains 25% of the total BGC-Argo surface Chl a and SST
datasets. In the testing phase of the IDNN model, a trained network was used for forward
estimation. The data on the test set are normalized in a similar manner to that in the
training set, with the network output being inversely normalized to the original unit.
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As shown in Figure 4a–c, the modeled Chl a concentrations from the test set are closely
comparable with the observed values for the upper 300 m in each BOX. Most of the data are
close to the bisector (the black dashed line in Figure 4a–c), especially for Chl a concentration
of ~0.1 mg m−3. Owing to the high noise/signal ratio, the low Chl a concentration shows a
relatively higher offset [25]. Compared with the BGC-Argo profiles of Chl a in each BOX,
our IDNN modeling results show smaller fluctuations in the surface and SCM layers, except
for the place close to the SCM depth in the BOX3 where the standard variances of the model
results are larger than those from observations (Figure 4d–f). The variability in the shapes
of vertical Chl a profiles between 0–50 meters in the in situ observations of BOX2 (green
shade in Figure 4e) is mainly caused by two out of 16 profiles, which present the SCM
depth above 50 m with the intensity over 4 mg m−3. After removing these two profiles, the
green shaded regions between 0–50 meters in BOX2 show smaller fluctuations (Figure A2).
This result suggests that, even with some episodic signals, the network model has good
robustness and can infer the shapes of vertical Chl a profiles from surface data only.
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axis) in BGC-Argo test set in BOXes 1–3. The black dashed line is the bisector of the first quadrant, 
Figure 4. (a–c) Scatter plot of observed Chl a concentration (x-axis) and estimated Chl a value (y-axis)
in BGC-Argo test set in BOXes 1–3. The black dashed line is the bisector of the first quadrant, i.e.,
y = x. (d–f) The mean of observed value (blue line) and the mean of IDNN predicted values (orange
line) in each BOX. The pink and green shades are the standard variance of the model results and
observations, respectively, which overlap and form the brown shade. (g) The mean relative bias as a
function of the adjusted depth between observed and the IDNN predicted Chl a in the test set for the
three BOXes. The adjusted depth is defined as the difference between the observed SCM depth and
the modeled one.

Statistically, the relative biases show that maximal bias (8–10%) occurs at about
10–20 m shallower than the SCM depth in BOX1 and BOX2, while in BOX3 there are
large relative biases (about ±10%) at the SCM depth and about 20 m above (Figure 4g). The
relative biases in BOX1 and BOX2 are retrieved by smaller values compared to those in
BOX3, indicating that the performance of the IDNN model is better for BOX1 and BOX2.

The statistical indices calculated for the IDNN assessment from the test set are listed
in Table 3. For all three BOXes, high R2 values suggest that input variables (the surface
Chl a, SST, acquisition date and geo-location) can explain over 71% of Chl a variability
at different depths. Here, the calculated R2 values are consistent with those reported by
Sammartino et al. [24], owing to similar input variables. Moreover, the high correlation
coefficient (ρ > 0.87) suggests the goodness of IDNN model performance, with a slight
underestimation of the observed Chl a in BOX3. Statistically, RMSEs less than 0.11 mg m−3
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and MAPEs from 0.036 to 0.13 in three BOXes reveal a small divergence between the
predicted values and observed values. The statistical results indicate a robust prediction
capability of the IDNN in three BOXes.

Table 3. Statistical results of the comparison between the observed Chl a values and the predicted
Chl a concentration by the IDNN models using BGC-Argo data. R2 refers to the Determination
Coefficient, ρ to the Pearson’s correlation coefficient, RMSE denotes the root mean square error, and
MAPE represent the mean absolute percentage error.

Index
Region

BOX1 BOX2 BOX3

R2 0.77 0.72 0.71
ρ 0.89 0.88 0.87

RMSE 0.0040 0.025 0.11
MAPE 0.036 0.073 0.13

3.2. IDNN-Retrieved SCM Characteristics

We apply the IDNN model to calculate the seasonality of SCM characteristics. As
shown in Figure 5, the regionally averaged Chl a profile predicted by the IDNN model
from surface data is comparable to the observations for four seasons. In general, the
predicted Chl a concentrations fluctuated within the observation variances. Moreover, the
IDNN retrieves the vertical Chl a profile with better performance for the area with low
surface Chl a values than the area with high surface Chl a values. For instance, the IDNN
presents the best estimation for spring to autumn in BOX1 (Figure 5c). In Figure 5f–g,
large standard variances of observed profiles occurred between 0–50 m (green shades),
which is similar to those in Figure 4e. Therefore, we removed the two profiles with an
episodically stronger SCM within 0–50 m in BOX2 during summer and autumn, and then
the two variance spikes in 0–50 m disappear (Figure A2). These results highlight the
capability of a deep neural algorithm to extend the surface-ocean information to SCM layer
with seasonal variation. For the non-standard bell-shape of vertical Chl a profiles with
higher surface Chl a values (Figure 5h–k), the IDNN predictions close to SCM depths are
slightly overestimated or underestimated with respect to the observed values, especially
in BOX2 Winter and in BOX3 Spring. The high variance in surface Chl a (e.g., the green
shaded area in Figure 5h–k) is related to dissimilar shapes of vertical Chl a profiles, and
thus reduce the network prediction accuracy on SCM characteristics. However, beyond the
SCM layer, the two lines (red and blue) coincide during four seasons, especially in summer
and autumn (Figure 5h–k). Here, we attribute the relatively high estimation offset for the
area with high surface Chl a values to a non-standard bell-shape of vertical Chl a profiles
and seasonal inconsistency.

As shown in Table 4, the seasonally averaged SCM characteristics from the test set
agree well with the observations in each BOX. The SCM thickness can be estimated by fitting
vertical Chl a profiles using the generalized Gaussian function (Equation (3)). Since recent
studies have developed the curve fitting of vertical Chl a profiles by superimposing the
generalized Gaussian function onto a linearly [19] or exponentially decreasing background
Chl a concentration [34], we compared the curve-fitting performance of the three approaches
in three BOXes. The results show that the generalized Gaussian function has a higher
goodness of fit than other two functions. For example, for the non-standard bell-shape of
vertical Chl a profiles in BOX3 (Figure 5i–k), the generalized Gaussian function has the
goodness of fit of 90%, following by the function combined an exponentially decreasing
background (88%) and the function combined a linearly decreasing background (about 76%).
Based on our statistical results, we estimate the SCM thickness by using the generalized
Gaussian function (Equation (3)).
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Figure 5. Aggregated chlorophyll vertical profiles from the test set in terms of seasons in BOX1 (a–d),
in BOX2 (e–h), and in BOX3 (i–k). The blue and red solid lines represent the mean of observed
value and the mean of IDNN predicted Chl a, respectively. The pink and green shades are the
standard variance of the model results and observations, respectively, which overlap and form the
brown shade.

Generally, MAPEs of all three SCM parameters are less than 35%, with an average
value of 21%; MAPE of the SCM depth was the smallest (18% on average), which was
followed by that of SCM intensity and thickness (Table 4). In addition, the averaged
absolute relative bias is small in BOX1 (18%) and BOX2 (22%) but slightly larger in BOX3
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(25%) due to the differences in SCM intensity during spring and SCM thickness in summer.
Overall, these results indicate that our model captures the SCM characteristics well.

Table 4. Comparison of seasonal averaged SCM characteristics of three BOXes from test set with
observations. Winter is defined as from December to February, and so on.

Region Season
SCM Depth (m) SCM Intensity (mg m−3) SCM Thickness (m)

Obs. Model MAPE Obs. Model MAPE Obs. Model MAPE

BOX1

Winter 136 136 9% 0.45 0.37 20% 70 73 21%
Spring 126 126 10% 0.59 0.52 19% 75 85 25%

Summer 120 125 19% 0.62 0.50 21% 75 78 31%
Autumn 110 115 8% 0.58 0.47 19% 75 80 15%

BOX2

Winter 76 75 14% 0.62 0.54 21% 80 76 21%
Spring 69 73 25% 1.04 0.78 21% 65 70 32%

Summer 71 75 16% 1.13 1.01 28% 43 56 22%
Autumn 80 82 12% 0.94 0.65 27% 54 64 26%

BOX3
Spring 40 35 35% 1.80 1.70 30% 69 56 20%

Summer 34 32 21% 2.48 2.49 29% 43 42 31%
Autumn 42 44 24% 2.12 1.80 15% 39 41 22%

In addition to the seasonally averaged SCM characteristics in a region, our IDNN
also successfully retrieved pixel-by-pixel variations along with the trajectory of a BGC-
Argo float (Figure 6). The reconstructions of SCM characteristics in the test set show high
consistency with the in situ observations along the BGC-Argo float No. 2902756 in BOX1,
except for the SCM depth upwards during July and August 2020 (Figure 6a). In BOX2,
the modeled SCM depth and thickness agree with observations along BGC-Argo float No.
2902748, while the SCM intensity was slightly overestimated during summer in 2018 and
2019 (Figure 6b). Similar to BOX2, the IDNN estimation shows relatively higher summer
SCM intensities in BOX3 (e.g., BGC-Argo float No. 2902755) compared to the observations
(Figure 6c).

3.3. Role of the Gaussian Activation Function in Enhancing Estimation Accuracy

As explained in Section 2.1, our IDNN model has two improvements compared to
previous DNN model: the bias term and the Gaussian activation function. To anatomically
determine the contribution of each modification in our IDNN model, we conducted two
additional experiments with each stand-alone improvement.

(i) DNN model using a sigmoid activation function with bias improvement by incorpo-
rating SCM depth (Equation (1)) (hereafter, referred to as DNN-b);

(ii) DNN model using random bias values with a Gaussian activation function, rather
than a sigmoid function (Equation (4)) (hereafter, referred to as DNN-G).

f = e−π(Xj−b)2
; (4)

where Xj is the X value of the jth output in the hidden layer, b is the bias term with
random values.

As shown in Figure 7, the DNN-b failed to reproduce the SCM characteristics, espe-
cially in BOX2. Compared to the observations, the SCM intensities predicted by the DNN-b
in BOX1 and BOX3 were smaller, and the SCM depth in BOX3 was shallower. The DNN-G
applied the Gaussian activation function to retrieve the SCM characteristics successfully,
although the estimated SCM depth in BOX3 was slightly shallower than the observed
one (Figure 7). Thus, we deduce that the application of the Gaussian activation function,
rather than the sigmoid function, significantly improves the capability of the DNN model
in estimating SCM characteristics.
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Furthermore, towards BOX3 in the subpolar areas with high surface Chl a concentra-
tion, we conducted two other experiments to explore the role of the Gaussian activation
function in learning the SCM characteristics in based on:

(iii) DNN-G model in which the bias term b was set as 0 (Equation (5)) (hereafter, referred
to as DNN-G-b0),

f = e−πXj
2
; (5)

(iv) DNN-G model in which the bias term b was set as 1 (Equation (6)) (hereafter, referred
to as DNN-G-b1),

f = e−π(Xj−1)2
. (6)

The predicted chlorophyll values in DNN-G-b0 and DNN-G-b1 were similar to the
IDNN results, especially for BOX1 and BOX2 (Figure 7a,b). In BOX3, the SCM intensity
captured by these two experiments varied slightly from the values of bias, while the SCM
depths remained generally constant (Figure 7c). Our results indicate that the improvement
in model learning using different bias values based on the Gaussian activation function
is gentle.

3.4. Comparison with Shallow ANNs

Studies have used shallow ANN models to estimate the vertical distribution of Chl a in
open oceans and coastal seas [22–24]. The shallow ANN model is a multi-layer perceptron
(MLP), which consists of input layers, output layers, and one hidden layer between them.
In the northwestern Pacific Ocean around Japan, Osawa et al. [22] applied a shallow
ANN model with six input variables (SST, surface Chl a, mixed layer depth, geo-location,
and Julian days), 50 nodes in the hidden layer to output four Gaussian parameters for
estimating vertical profiles of Chl a. In the Mediterranean Sea, Sammartino et al. [24]
reconstructed vertical profiles of Chl a by employing a shallow ANN model in which input
variables included SST, surface Chl a, geo-location, and day of the year. The shallow ANN
model works well in the regions with low surface Chl a concentrations but its performance
decreases for the area with high Chl a surface concentrations [23,24].

To test the advantages of including more hidden layers, we perform calculations by
two ANN models with one hidden layer (MLP-1 thereafter) and three hidden layers (MLP-3
thereafter), respectively. Both MLP models are input the same data. Moreover, the MLP
models were trained using the same training and test sets that were employed to train the
IDNN model. The comparison was carried out on the test sets.

The relative deviation between MLP models and the IDNN model were plotted side
by side in Figure 8. Compared to our IDNN model results, the mean value of R2 and ρ
obtained by the MLP-1 and MLP-3 decrease in all three BOXes, while RMSE and MAPD
increase significantly in BOX2 and BOX3 (>55%), especially obtained by the MLP-1 model
(86–196%). This suggests that the IDNN model exhibited a better performance, and the
MLP-3 model has a similar capability with the IDNN model in the tropical sea area (BOX1).

In terms of SCM intensity and thickness, the MLP-3 model performed better than the
MLP-1, although the mean values were underestimated by the MLP models in BOX1 and
BOX2 (Figure 9a,b). While in the BOX3, both the MLP-1 and MLP-3 models failed to reveal
the presence of SCM in the vertical Chl a profiles (Figure 9c). Therefore, the MLP-3 model
is more capable of predicting SCM characteristics than the MLP-1 model; however, both
MLP models are not adapted to the subpolar sea areas.

3.5. Application of the IDNN Model to Satellite Data

To evaluate the IDNN prediction capability using remote-sensing data, the Chl a
concentrations retrieved by the IDNN model were compared with BGC-Argo observations
at the matchup stations.
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Statistically, the determination coefficients ranged within 0.47–0.79, with the average
R2 = 0.64 on the test set (Table 5). Analogous result was obtained by Sammartino et al. [24]
by using remote-sensing data with an R2 = 0.63. Here, the average value of R2 was lower
than that obtained by the IDNN using BGC-Argo data (the average of 0.73) (Table 3), im-
plying a possible influence of the satellite retrieval uncertainties on the prediction accuracy,
especially for the BOX3. The other statistical indexes, ρ > 0.86, RMSE < 0.14 mg m−3 and
MAPE% < 15%, are almost the same as those obtained from BGC-Argo input (Table 3). The
statistical results indicate that the IDNN model is robust for the remote-sensing data, with
slightly less accuracy in the subpolar region.



Remote Sens. 2022, 14, 632 15 of 19

Table 5. Statistical results of the comparison between the observed Chl a values and the predicted
Chl a concentrations by the IDNN models using remote-sensing data. R2 refers to the determination
coefficient, ρ to the Pearson’s correlation coefficient, RMSE denotes the root mean square error, and
MAPE represents the mean absolute percentage error.

Index
Region

BOX1 BOX2 BOX3

R2 0.79 0.66 0.47
ρ 0.91 0.86 0.89

RMSE 0.0046 0.026 0.14
MAPE 0.037 0.076 0.15

Figure 10 shows that the mean vertical Chl a profile inferred by the IDNN from remote-
sensing data agrees well with the mean BGC-Argo profile in each BOX, validating the
good prediction accuracy of the IDNN model in the northwestern Pacific Ocean. In detail,
the two mean profiles (orange and blue lines) are almost overlapped in the BOX1, except
for a slightly overestimation below the SCM depth (110–140 m) (Figure 10a). The Chl a
concentrations above the SCM depth in the BOX2 (<80 m) are relatively overestimated
(Figure 10b). The scope of overestimation enlarges from the upper SCM layer to the lower
part (20–80 m) in the BOX3 (Figure 10c).
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Moreover, the performance of IDNN is compared with the MLP-1 method by using
remote-sensing data as input variables (Figure 10a–c). In the BOX1 and BOX2, the MLP-1
model captures weaker SCMs than the observed one, especially in the BOX1. While in the
BOX3, no SCM phenomenon is presented in the predicted profile by the MLP-1 model.
Similar results are obtained to those inferred from the BGC-Argo reported in Section 3.4.
In general, the comparisons between the observed and the predicted profiles confirm the
applicability of our IDNN model to extend the remote-sensing-based surface information
to the subsurface layer.

4. Conclusions

In this study, for the first time, we developed and applied an improved DNN model
with Gaussian radial basis activation function, to retrieve the vertical structure of Chl a
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concentration and the associated SCM characteristics in the northwestern Pacific Ocean.
The annually averaged SCM depth was incorporated into the bias term and the Gaussian
radial basis activation function via the training process of the DNN model, which improved
the prediction capability of model from surface-ocean Chl a data and SST. The vertical
structure of Chl a concentration and SCM characteristics, which were estimated by our DNN
model, showed a good agreement with observations in different seasons and along the
trajectory of BGC-Argo floats. Compared to a series of neural network methods, our IDNN
model with Gaussian radial basis activation function captured the SCM characteristics
in the northwestern Pacific Ocean, especially in subpolar areas with high surface Chl a
concentrations. Moreover, the SCM characteristics were reproduced well by our IDNN
model inputting remote-sensing surface data.

This study used surface-ocean Chl a and SST as input variables for the IDNN model
to reconstruct the non-uniform vertical Chl a profiles. A future improvement of our model
involves employing additional input variables—such as photosynthetically active radiation,
light attenuation coefficient, and oceanographic parameters (e.g., sea surface height and
wind components)—that potentially affect SCM characteristics. Meanwhile, the training
process of present IDNN is pixel-to-pixel without considering temporal variations of
neighboring pixels, which is similar to other shallow ANN models. Thus, a deep learning
technique with a combination of convolution neural network (CNN) and a long short-term
memory (LSTM) neural network will be adopted to predict the target by considering the
time series of the most correlated surrounding pixels.
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Appendix A

Table A1. Basic statistical evaluations used for the assessment of the IDNN performance.

Determination Coefficient R2 = 1 − ∑n
i=1 (xi−pi)

2

∑n
i=1 (xi−x)2

Pearson’s Correlation Coefficient ρ =
∑n

i=1 (pi−p)(xi−x)√
∑n

i=1 (pi−p)2
√

∑n
i=1 (xi−x)2

Root Mean Square Error RMSE =
√

1
n ∑n

i=1 (pi − xi)
2

Mean Absolute Percentage Error MAPE = 1
n

n
∑

i=1

∣∣∣ pi−xi
xi

∣∣∣
Mean Bias Error MBE = 1

n ∑n
i=1 (pi − xi)

Mean Relative Bias Error MRBE = 1
n ∑n

i=1
pi−xi

xi

Note: n is the amount of data number, pi is the model estimated values and xi is the observed Chl a.

https://argo.ucsd.edu
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https://www.ocean-ops.org
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