
����������
�������

Citation: Gyawali, B.; Murgulet, D.;

Ahmed, M. Quantifying Changes in

Groundwater Storage and Response

to Hydroclimatic Extremes in a

Coastal Aquifer Using Remote

Sensing and Ground-Based

Measurements: The Texas Gulf Coast

Aquifer. Remote Sens. 2022, 14, 612.

https://doi.org/10.3390/rs14030612

Academic Editors: Jolanta Nastula

and Monika Birylo

Received: 17 December 2021

Accepted: 25 January 2022

Published: 27 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Quantifying Changes in Groundwater Storage and Response to
Hydroclimatic Extremes in a Coastal Aquifer Using Remote
Sensing and Ground-Based Measurements: The Texas Gulf
Coast Aquifer
Bimal Gyawali * , Dorina Murgulet and Mohamed Ahmed

Center for Water Supplies Studies, Department of Physical and Environmental Sciences, Texas A & M
University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA;
dorina.murgulet@tamucc.edu (D.M.); mohamed.ahmed@tamucc.edu (M.A.)
* Correspondence: bgyawali@islander.tamucc.edu; Tel.: +1-361-825-2309

Abstract: With the increasing vulnerability of groundwater resources, especially in coastal regions,
there is a growing need to monitor changes in groundwater storage (GWS). Estimations of GWS
have been conducted extensively at regional to global scales using GRACE and GRACE-FO obser-
vations. The major goal of this study was to evaluate the applicability of uninterrupted monthly
GRACE-derived terrestrial water storage (TWSGRACE) records in facilitating detection of long- and
short-term hydroclimatic events affecting the GWS in a coastal area. The TWSGRACE data gap was
filled with reconstructed values from multi-linear regression (MLR) and artificial neural network
(ANN) models and used to estimate changes in GWS in the Texas coastal region (Gulf Coast and
Carrizo–Wilcox Aquifers) between 2002 and 2019. The reconstructed TWSGRACE, along with soil
moisture storage (SMS) from land surface models (LSMs), and surface water storage (SWS) were
used to estimate the GRACE-derived GWS (GWSGRACE), validated against the GWS estimated from
groundwater level observations (GWSwell) and extreme hydroclimatic event records. The results of
this study show: (1) Good agreement between the predicted TWSGRACE data gaps from the MLR
and ANN models with high accuracy of predictions; (2) good agreement between the GWSGRACE

and GWSwell records (CC = 0.56, p-value < 0.01) for the 2011–2019 period for which continuous
GWLwell data exists, thus validating the approach and increasing confidence in using the recon-
structed TWSGRACE data to monitor coastal GWS; (3) a significant decline in the coastal GWSGRACE,
at a rate of 0.35 ± 0.078 km3·yr−1 (p-value < 0.01), for the 2002–2019 period; and (4) the reliable
applicability of GWSGRACE records in detecting multi-year drought and wet periods with good
accuracy: Two drought periods were identified between 2005–2006 and 2010–2015, with significant
respective depletion rates of −8.9 ± 0.95 km3·yr−1 and −2.67 ± 0.44 km3·yr−1 and one wet period
between 2007 and 2010 with a significant increasing rate of 2.6 ± 0.63 km3·yr−1. Thus, this study
provides a reliable approach to examine the long- and short-term trends in GWS in response to chang-
ing climate conditions with significant implications for water management practices and improved
decision-making capabilities.

Keywords: groundwater storage; GRACE; Texas; coastal terrestrial water storage; hydroclimatic
extreme events

1. Introduction

Groundwater is the main source of freshwater for almost half of the world’s population;
it provides a major resource for irrigation and plays a key role in ecosystem health [1,2].
Yet, groundwater resources are under extreme threat due to rapid depletion [3–6], a serious
global issue affecting groundwater resource sustainability and ecosystem health. Global
groundwater storage (GWS) decreased by 4500 km3 (~42 km3·yr−1) between 1900 and 2008,
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with a significant acceleration in the depletion rate since 1950. The depletion rate more
than tripled (~145 km3·yr−1) between 2000 and 2008 [7]. During the same period, in the
United States (U.S.) GWS decreased by 1000 km3 (~9.3 km3·yr−1) and the rate doubled
after 2000 (~24 km3·yr−1) [8].

Groundwater is often the only source of freshwater in coastal areas. This source, how-
ever, is vulnerable to climate and anthropogenic variabilities. Coastal regions are among the
most densely populated areas that place an increasing demand on coastal aquifers [9–11]
associated with ever-growing agricultural irrigation and industrial needs. Seawater in-
trusion, for example, could result from excessive pumping [3,12–14], storm surge [14–16],
and/or sea level rise [17,18]. Coastal aquifers are more vulnerable to depletion due to ex-
cessive groundwater extraction when compared to sea level rise [19]. Where groundwater
extraction is high, coastal areas experience seawater intrusion, also exacerbated by the sea
level rise, and coastal land subsidence [17,20]. Storms may lead to an increase in water table
levels and flooding because of either high surge or larger volumes of precipitations [15].

Historically, groundwater monitoring relied mainly on field observations of ground-
water levels (GWL) from monitoring wells. Estimations of GWS from field observations
have shown significant seasonal and annual variations in areas where observations are rela-
tively dense [21,22]. However, in many parts of the world spatial and temporal coverage of
groundwater level measurements are sparse [23,24]. While the U.S. has a relatively dense
well observation network, more monitoring sites are required for improved understand-
ing of the GWS spatial and temporal patterns in relation to groundwater extraction [25].
In addition, monitoring GWS using in situ measurements is a relatively expensive and
labor-intensive process [26]. When in situ measurements are not adequate for temporal
and spatial coverage, satellite observations play a significant role in GWS monitoring
(e.g., recharge, discharge, and storage changes) [6,27–29]. Data from the Gravity Recov-
ery and Climate Experiment (GRACE; 2002–2017) and its successor GRACE-Follow On
(GRACE-FO; 2018–present) missions [30,31] have been shown to overcome the above-
mentioned limitations.

GRACE, a joint U.S.–German satellite mission, was launched, in March 2002, to moni-
tor the spatial and temporal variations in the Earth’s gravity field [30]. These variations
have been converted to changes in terrestrial water storage (TWS), after removing atmo-
spheric mass variations and ocean tides. Storage components of the TWS are soil moisture,
surface water, snow/ice, and groundwater [32]. GRACE-derived TWS (TWSGRACE) to-
gether with land surface models (LSM) and ground-based measurements (e.g., GWL) have
been widely used to monitor GWS around the world, including the Mississippi River
basin [33], the Central Valley of California [12], northwestern India [34], Africa [6,35–38],
Asia [39], and northern China [40,41]. These studies also have shown a good agreement
between GRACE-derived GWS (GWSGRACE) and GWL-derived GWS (GWSwell) in different
geologic and hydrogeologic settings [27,28,40,42].

After the GRACE mission ended in June 2017, the next generation of GRACE, GRACE-
FO mission, launched in May 2018 [31]. As with its predecessor, the GRACE-FO observa-
tions have been successfully applied in TWSGRACE estimations. However, there are tempo-
ral gaps between the GRACE and GRACE-FO missions (11 months; 7/2017 to 5/2018) as
well as within TWSGRACE record (22 months: 06/2002, 07/2002, 06/2003, 01/2011, 06/2011,
05/2012, 10/2012, 03/2013, 08/2013, 09/2013, 02/2014, 07/2014, 12/2014, 06/2015, 10/15,
11/2015, 04/2016, 09/2016, 10/2016, 02/2017, 08/2018, and 09/2018) due to failure in
battery performance of the GRACE satellites [43].

Effective planning and management of groundwater resources is largely dependent on
the analysis of TWS and GWS temporal changes. However, the precision of short- and long-
term spectral and statistical analysis of these timeseries depends on their continuity [43–45].
Temporal data gaps in TWS could increase the error and uncertainty in the analysis of
seasonal and annual cycles as well as the short- and long-term trends [43,46,47]. Therefore,
bridging gaps in TWSGRACE data helps enhance performance of TWS and GWS monitoring
and the outcomes that inform and improve groundwater management practices.
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Several studies have used outputs of LSMs and global hydrologic models to fill
gaps in TWSGRACE [48–50]. However, these models cannot fully simulate influences from
anthropogenic factors that affect the TWSGRACE such as deep groundwater extraction
and cropland irrigation [51]. Machine learning-based models have been widely used to
predict hydrological variables [51–56]. Recently, reconstruction of TWSGRACE data gaps on
regional to global scales has been conducted using simple regression and machine learning
techniques [43,57–59]. These techniques have also been used to fill gaps in, and downscale,
TWSGRACE records [60–63]. However, none of the previous studies have used a gap filled
TWSGRACE record to examine TWS and GWS temporal variability over the Texas Gulf Coast
region (Figure 1).
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Figure 1. Study Area: (a) Location of the study area, (b) location of groundwater wells used in this
study, and (c) precipitation climatology (1980–2010) [64].

In this study, a complete GRACE and GEACE-FO record (2002–2019) is used to
characterize the temporal variability in TWSGRACE and GWSGRACE over the Texas Gulf
Coast region (Figure 1). Specifically, the TWSGRACE was first reconstructed using multi-
linear regression (MLR) and artificial neural network (ANN) techniques to fill the data
gaps within GRACE mission and between GRACE and GRACE-FO missions. Second, the
complete TWSGRACE data along with soil moisture storage (SMS) from LSMs, and surface
water storage (SWS) were used to derive the GWSGRACE timeseries. The GWSwel was also
estimated using GWLs and used to validate the GWSGRACE estimates. Our short-term
and long-term trend analysis of complete TWSGRACE and GWSGRACE datasets provided
a quantitative means to identify the short and multi-year drought and wet periods with
significant accuracy, thus enabling enhanced decision-making processes of a broad set of
water planning groups and stakeholders.
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2. Material and Methods
2.1. Study Area

Nearly 40% of Texas’s population live in the Gulf Coast region [65]. The Gulf Coast
Aquifer (GCA) and Carrizo–Wilcox Aquifer (CWA), extending from South Texas northeast-
ward into East Texas (approximate four corner coordinates: (29, −100.6), (26, −97.6), (33.5,
−94), and (30, −93.5)), are among the major aquifers of Texas (Figure 1). These two aquifers
provide an important source of freshwater for agriculture, municipal, and domestic uses.

The GCA encompasses approximately 110,000 km2 and is composed of multiple
aquifer units comprised of a series of discontinuous sand, silt, clay, and gravel beds of
Miocene to Holocene age [66,67]. Groundwater in GCA is mostly unconfined and semi-
confined. Freshwater saturated thickness ranges from 213 m (to the south) to 396 m (to the
north) with an average of about 305 m. The hydraulic conductivity of the aquifer is about
0.3 m·day−1 in the southern area and as much as 2.1 m·day−1 in the northeast [68]. Because
of smaller saturated depth and lower hydraulic conductivity, aquifer transmissivity is lower
in the south and maximum in the northeast. The specific yield ranges from 0.05 to 0.005,
which is relatively low compared to the typical specific yields of sedimentary formations in
unconfined aquifers [69].

The CWA, encompassing approximately 95,000 km2, extends from the Louisiana
border to Mexico to the northwest of GCA. The CWA consists of sand locally interbedded
with gravel, silt, clay, and lignite with average saturated freshwater thickness of about
204 m. The aquifer is unconfined in the outcrop area and confined down deep towards the
coast where it is overlaid by low-permeability layers. The transmissivity and hydraulic
conductivity of the CWA are highly variable spatially, with a geometric mean of 28 m2·d−1

and 1.8 m·d−1, respectively [70].
The study area encompasses a significant climate gradient from east to west, with an

average annual precipitation over 140 cm, in the east, to less than 76 cm, in southwest Texas.
The rate of annual gross lake evaporation increases from 127 cm, in the east, to more than
165 cm, in southwest Texas [71]. The mean annual potential evapotranspiration (ET) exceeds
precipitation by 2–5 times. Thornthwaite’s water-balance system [72] classified the climate
of this region as moist subhumid in the east and subtropical semiarid in the southwest.

2.2. Data

Multiple datasets from different sources were used to fill gaps in the TWSGRACE
record, extract and validate GWSGRACE timeseries, and characterize temporal variabilities
in TWSGRACE and GWSGRACE data over the study area (Figure 1). Below is a detailed
description of datasets used in this study.

2.2.1. Terrestrial Water Storage
Terrestrial Water Storage from GRACE (TWSGRACE)

The 2002–2019 TWSGRACE data used in this study were derived from the GRACE
and GRACE-FO spherical harmonic (SH) and mass concentration (mascon) solutions
provided by NASA’s Jet Propulsion Laboratory (JPL), Center for Space Research (CSR),
and GeoForschungsZentrum (GFZ). The five different solutions were used to check if
the temporal variabilities in TWS and GWS and associated drought/flood signals were
represented in all of them. The level-3 release 6 (RL06) SH solutions from CSR (CSR SH),
JPL (JPL SH), and GFZ (GFZ SH) are provided at a spatial resolution of 1◦ × 1◦ [73]. The
RL06 mascon solution is provided by CSR (CSR-M) and JPL (JPL-M) [74,75] with a spatial
resolution of 0.25◦ × 0.25◦ and 0.5◦ × 0.5◦, respectively.

The GRACE mission provides a scale factor for the SH and JPL-M solutions. This scale
factor was used to rescale the individual TWSGRACE data to minimize the signal attenuation
during post-processing [73,76]. The gridded TWSGRACE GRACE products were averaged
over the study area to generate the TWSGRACE timeseries. The average TWSGRACE time-
series was calculated by taking an average of all five TWSGRACE SH and mascon solutions.
This average tends to minimize the noise in the individual TWSGRACE solutions within
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the available scatter of the solutions [77]. The gaps in the average TWSGRACE timeseries
(missing months and the gap between GRACE and GRACE-FO missions) were filled with
the reconstructed TWS from the ANN and MLR models (refer to the “Methods” section).

Terrestrial Water Storage from Land Surface Model (TWSLSM)

The TWS data was also derived from the North American Land Data Assimilation
System (NLDAS)-NOAH model (TWSLSM). The TWSLSM from NLDAS-NOAH and Global
Land Data Assimilation System (GLDAS)-NOAH in the study region looks similar; there-
fore, we only used the TWSLSM record derived from NLDAS-NOAH. This estimate was
used as one of the MLR and ANN model’s inputs. In this model, the TWSLSM is represented
as the sum of soil moisture storage (SMS), plant canopy water storage, and accumulated
snow. The TWSLSM was provided at a spatial resolution of 0.125◦ × 0.125◦. The NLDAS
model details are explained in Section 2.2.2 below.

2.2.2. Soil Moisture Storage (SMS)

The SMS data were extracted from the Global Land Data Assimilation System (GLDAS)
and NLDAS. These two LSMs were developed jointly by the National Aeronautics and
Space Administration [14] and the National Oceanic and Atmospheric Administration
(NOAA). GLDAS and NLDAS simulate satellite and ground-based measurements to pro-
duce an optimal field of land surface statistics using advanced land surface modeling and
data assimilation techniques [78,79]. Both models provide SMS data for different layer
structures extending from the ground surface up to 3 m depth. The NLDAS derived SMS
has a higher spatial resolution (i.e., 0.125◦) than GLADS (i.e., 1◦). Timeseries of SMS were
extracted from the NOAH [80], Mosaic [81], and variable infiltration capacity (VIC) [82]
model versions.

The gridded SMS data were averaged over the study area to generate SMS timeseries
from each of the six model versions. Like TWSGRACE, the SMS anomaly was calculated by
removing the 2004–2009 temporal mean. The average of all six SMS products and their
respective monthly standard deviations were used to estimate the monthly SMS timeseries
and associated errors, respectively [33,83].

2.2.3. Surface Water Storage (SWS)

The SWS data extracted from the Texas Water Development Board (TWDB) (available
at https://waterdatafortexas.org/reservoirs/statewide; accessed on 10 March 2020), im-
plemented herein, provide daily lake and reservoir levels within Texas. To calculate SWS
timeseries, first, the available lake and reservoir levels (total: 29) within the study region
were compiled into individual monthly timeseries (i.e., for each lake/reservoir). Then, the
2004–2009 mean was removed from each timeseries. Finally, all storage anomalies were
added and divided by the study area to derive the average SWS timeseries. The monthly
uncertainty was estimated using a conservative approach, which is 10% of the monthly
SWS [83,84].

2.2.4. Groundwater Level Observations (GWLwell) and Groundwater Extraction Rates

Groundwater level data from the U.S. Geological Survey (USGS) and the TWDB
(available at https://waterdatafortexas.org/groundwater; accessed on 15 March 2020)
were used in this study to derive the GWLwell. For this purpose, water level data from
wells screened only in the unconfined or semi-confined portion of the GCA and CWA
were selected as representative of the local water table [33]. Well hourly GWLwell data was
aggregated into monthly timeseries. Since most of the GWLwell are available starting 2011,
the temporal mean of the 2012–2016 period was removed from each timeseries. To ensure
consistency for comparison purposes, the same time mean was removed from TWSGRACE,
SMS, and SWS data when compared with GWLwell.

https://waterdatafortexas.org/reservoirs/statewide
https://waterdatafortexas.org/groundwater
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The annual groundwater pumping data by county, available up to 2018, was extracted
from the TWDB (available at http://www.twdb.texas.gov/waterplanning/waterusesurvey/
historical-pumpage.asp; accessed on 20 March 2020).

2.2.5. Precipitation and Temperature

Precipitation and temperature data were used as one of the MLR and ANN model
inputs. Precipitation data was derived from the Integrated Multi-satellite Retrievals for
Global Precipitation Measurement Mission (IMERG) data products (available at https://
disc.gsfc.nasa.gov/datasets/GPM_3IMERGM_06/; accessed on 1 April 2020). The IMERG
provides globally half-hourly, daily, and monthly precipitation products, on a 0.1◦ × 0.1◦

grid scale [85] and is available beginning with 2000 until present.
The monthly 2-m air temperature data from the European Centre for Medium-Range

Weather Forecasts (ECMWF) Re-Analysis (ERA5-Land) project was used in this study. The
ERA5-Land data, available from 1950 to the present (at https://cds.climate.copernicus.eu/;
accessed on 1 April 2020), are produced by the replay of the land component of the ECMWF
ERA5 climate reanalysis, forced by meteorological fields from ERA5. The ERA5-Land
global data have a temporal and spatial resolution of 1 h and 0.1◦ × 0.1◦, respectively [86].

2.3. Methods

Three main steps were utilized in this study (Figure 2). First, we filled the TWSGRACE
data gap using predictions from the ANN and MLR models. Secondly, the complete
TWSGRACE, SWS, and SMS timeseries were used to extract GWSGRACE timeseries over the
study area. The third step included validation of the generated GWSGRACE timeseries using
GWSwell data. The temporal variability in TWSGRACE and GWSGRACE was characterized
over the Texas Gulf Coast region using short- and long-term trend analyses.
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2.3.1. Terrestrial Water Storage Reconstruction

The predicted values from the ANN and MLR models were used to fill in the gaps in
the average TWSGRACE timeseries using the following reasoning. The MLR model performs
best when there is a linear relationship between target and input variables. This model has

http://www.twdb.texas.gov/waterplanning/waterusesurvey/historical-pumpage.asp
http://www.twdb.texas.gov/waterplanning/waterusesurvey/historical-pumpage.asp
https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGM_06/
https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGM_06/
https://cds.climate.copernicus.eu/
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been used widely in hydrology and meteorology [43,57,87,88] because of its simplicity. The
MLR model can be explained by the following equation:

Y = a0 + a1x1 + a2x2 + a3x3 + . . . . . . . . . . . . . . . . . . + anxn (1)

where Y is the target variable; x1, x2, x3, and xn are the input variables; a0 is a constant; and
a1, a2, a3, and an are the regression coefficients.

The ANN model development is inspired by the function of biological neural net-
works. Such systems are trained to perform by considering examples, generally without
task-specific programming [89]. The ANN model consists of input, hidden, and output
layers. The number of hidden layers depends on the relationship between target and input
variables. ANNs have been widely used in hydroclimatic predictions because they can
handle large, non-linear, and complex datasets [43]. In this study, the number of hidden
layers in the ANN model was selected by a trial-and-error method. The model was run for
hidden layers from 1 to 8. The number of layers at which the model performed best (i.e., 5)
was selected.

Both MLR and ANN models require target and input variables. The average TWGRACE
from five different solutions was used as a target variable while the precipitation, tempera-
ture, and TWSLSM were selected as input variables. The input variables were normalized
to ensure that all variables receive equal consideration using Equation (2):

x̂i =
xi − xmin

xmax − xmin
(2)

where x̂i is normalized value for xi and xmin and xmax are minimum and maximum value
for the timeseries, respectively.

The ANN and MLR models were trained, tested, and validated using randomly
selected data sets. The data were randomly divided into training (70%), testing (15%), and
validation (~15%), with the missing months in the GRACE data and the gap between the
two used for prediction purposes. To ensure the model stability, identify the associated
uncertainty, and enhance model generalization, 100 simulations were run for the ANN
model. The median and the standard deviation of these simulations were used as the ANN
model output and as a measure of model uncertainty, respectively.

The performance of both ANN and MLR models was tested using a number of
statistical criteria such as: The root mean square error (RMSE), the normalized RMSE
(NRMSE), the correlation coefficient (CC), and the Nash–Sutcliffe efficiency coefficient
(Equations (3)–(6)). RMSE was used to measure the global fitness of a predictive model and
the optimal value is 0. The NRMSE was calculated as the normalized RMSE by the standard
deviation of actual values. The cross-correlation between actual and predicted values was
measured by the CC. The NSE is a normalized statistical coefficient that measures the
relative magnitude of residual variance to the variance of actual/measured data [90]. The
NSE value ranged from −∞ to 1 with an optimal value of 1. These statistical measures
were calculated as follows:

RMSE =

√
∑n

i=1(yi − xi)

n
(3)

RMSE∗ =
RMSE

σ
(4)

CC =
∑n

i=1(yi − y)(xi − x)√
∑n

i=1(yi − y)2
√
(xi − x)2

(5)

NSE = 1 − ∑n
i=1(yi − xi)

2

(xi − x)2 (6)

where y and x represent the predicted and actual timeseries; y and x represent the average
of y and x; n is the number of data used; and σ is the standard deviation of actual timeseries.
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2.3.2. Groundwater Storage Estimation

GWSGRACE timeseries were estimated, over the investigated area, using the complete
TWGRACE record, SMS, and SWS timeseries (since the study area gets negligible amounts
of snow, the snowpack component was ignored in the process of groundwater estimation)
using Equation (7):

GWSGRACE = TWSGRACE − SMS − SWS (7)

The errors in GWSGRACE were estimated using the following equation:

δGWS =
√

δ2
TWS + δ2

SMS + δ2
SWS (8)

where δGWS, δGRACE, δSMS, and δSWS are the errors associated with GWSGRACE, TWGRACE,
SMS, and SWS, respectively.

The spatial trends in TWSGRACE, SMS, SWS, and GWSGRACE were calculated using the
same method that was adopted for temporal trends. To analyze changes in the spatial distri-
bution of GWSGRACE, the TWSGRACE and SMS data were resampled at 0.25◦ × 0.25◦ spatial
grid scale. The SWS trend was estimated for each reservoir/lake area and interpolated to
0.25◦ × 0.25◦ grid area.

2.3.3. Validation of Groundwater Storage

Thiessen polygon and simple average approaches were used to calculate the GWSwell
timeseries used to validate GWSGRACE timeseries. In both approaches the specific yield
(Sy) values by well were extracted from the TWDB groundwater availability models (GAM)
as well as the available literature [68,91–95]. In the first approach, the Thiessen polygons
were constructed for the study area to estimate the area weighted GWSwell timeseries using
the following equation [96,97]:

GWSwell =
∑n

i SiWi∆hi

∑n
i Wi

(9)

where Si is the Sy for each Thiessen polygon i, n is the total number of polygons, Wi is the
area of each polygon, and ∆hi is the average change in groundwater level in each polygon.

In the second approach, the GWLwell anomaly was calculated for individual wells and
then the average GWLwell timeseries was calculated for the entire study area. Then, the
GWSwell was calculated using the following equation [98]:

GWSwell = Averaged GWLwell ∗ Sy ∗ Total Area (10)

2.3.4. Trend Calculations and Error Analysis

Short- and long-term trends in the TWSGRACE and GWSGRACE were calculated to
characterize spatiotemporal variabilities. First, the annual cycle was calculated and re-
moved from each timeseries before calculating the trend. This step is necessary as extreme
events (i.e., flooding and drought) can lead to abrupt changes in the TWSGRACE that are
not directly related to changes in the GWS. The trend in TWSGRACE and GWSGRACE was
then calculated using the breakpoint detection algorithm described in detail in previous
studies [38,99–101].

The TWSGRACE timeseries errors and trend were calculated as described by Ahmed
and Abdelmohsen [28]. Briefly, the timeseries was first fitted using annual, semi-annual,
and trend terms, and the residuals were smoothed using a 13-month moving average and a
second set of residuals was calculated. The error in monthly timeseries was calculated as
a standard deviation of the second set of residuals. A Monte Carlo simulation approach
was used to calculate the trend error [102,103]. This approach simulated multiple synthetic
timeseries, each with a Gaussian-distributed population and a standard deviation similar
to that of the second set of residuals. The standard deviation of the synthetic trends
was assigned as an error in the TWSGRACE trend. Leakage errors in SH data over the
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study area was estimated to be less than 90% of the error bar calculated for the average
TWSGRACE timeseries.

3. Results
3.1. Terrestrial Water Storage Reconstruction Results

Overall, the ANN and MLR models show similar results and good performance in
training, testing, and validation phases (Figure 3; Table 1). The ANN model shows better
performance for the training and testing sets, while the MLR model performs best for the
validation set (Table 1). Predicted TWSGRACE data from both models are highly correlated
with the actual TWSGRACE for both testing and validation datasets (Figure 3b,c). Both
models agree very well for the prediction of all TWSGRACE data gaps (Figure 3d). The MLR
model output was used to fill the TWSGRACE data gaps and create a continuous data set
since it outperformed the ANN model during the validation phase.
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Figure 3. ANN (red) and MLR (black) model prediction results and associated model uncertainty
for (a) training, (b) testing, (c) validation, and (d) prediction data. The “actual” observed data are
represented by a black line. The error bars represent uncertainties in ANN model results calculated
as standard deviation of 100 simulations.

Table 1. ANN and MLR model performance matrix.

Model RMSE NRMSE CC NSE

Training ANN 3.19 0.34 0.94 0.88
MLR 3.79 0.57 0.92 0.83

Testing ANN 5.00 0.53 0.88 0.71
MLR 5.17 0.55 0.87 0.69

Validation
ANN 4.98 0.59 0.84 0.64
MLR 4.29 0.51 0.85 0.73

3.2. Temporal Variation in Tresstrial Water Storage, Soil Moisture Storage, and Surface
Water Storage

While we used the averaged TWSGRACE solution generated from three SH and two
mascon solutions, we also examined the agreements of the individual solutions (Figure 4a).
Examination of temporal variations in TWSGRACE shows that all five GRACE solutions
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show a similar trend with slightly different amplitude during the investigated period
(Figure 4a). The TWSGRACE trends resulting from the CSR M, JPL M, GFZ SH, JPL SH, and
CSR SH solutions are estimated to be −0.04 ± 0.07 km3·yr−1 (p-value: 0.85), −0.04 ± 0.09
km3·yr−1 (p-value: 0.87), −1.12 ± 0.09 km3·yr−1 (p-value: <0.01), −0.54 ± 0.08 km3·yr−1

(p-value: 0.02), −0.58 ± 0.08 km3·yr−1 (p-value: 0.01), and −0.46 ± 0.08 km3·yr−1 (p-value:
0.04), respectively.
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Figure 4. (a) Averages of temporal variations in JPL-SH, CSR-SH, GFZ-SH, JPL-M, CSR-M, and all
solutions. (b) Complete TWSGRACE timeseries after the data gaps ware filled with model predicted
values. The black and red lines denote the actual and “predicted” values, respectively. The shaded
regions represent errors of the respective timeseries. Extreme wet and dry periods are marked by the
black ellipses.

All GRACE solutions captured very well the extreme hydroclimatic events (i.e., ex-
treme wet and drought periods) that impacted the coastal area (Figure 4a). For instance,
for the investigated period, there were three multi-year drought events (e.g., 2005–2006,
2007–2009, and 2010–2015). The lowest TWSGRACE reached during the 2005–2006 and
2007–2009 droughts was estimated to be −29.35 km3 and −24 km3, respectively. All
solutions show the maximum decline in TWSGRACE after mid-2011 (average storage:
−52.02 km3), in September 2011, the driest year on record [104] (Figure 4a,b). The highest
TWSGRACE occurred at the beginning of 2005 following two hurricanes (Javier and Ivan)
and one tropical storm (Matthew) that hit the Texas coastal region in fall 2004 [105]. Other
extreme wet events are also captured in the TWSGRACE, including the 2015 heavy rain and
flooding (that ended the 2010–2015 drought), the 2016 severe weather and flooding, the
2018 south Texas heavy rain and flooding and the 2019 Tropical Depression Imelda.

No obvious seasonal changes in the TWSGRACE were observed (Figure 4b), which is
contrary to other studies that suggest distinct seasonality in TWSGRACE in many basins
across the world, with highs in winter and lows in summer [38,106]. Long et al. [83] noted
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that the peak precipitation in Texas during spring and fall and low winter precipitation
causes the absence of such distinct seasonal cycle in TWSGRACE. For the Texas coastal area,
a decreasing trend in TWSGRACE is estimated from the complete timeseries at a rate of
−0.43 ± 0.18 km3·yr−1 (−0.2 ± 0.08 cm·yr−1) with a p-value 0.06 (Figure 4b). Spatially,
the entire area experiences depletion or no change in TWSGRACE (Figure 5a). The highest
depletion rate in TWSGRACE for the 2002–2019 period (−0.6 to −0.4 cm·yr−1) peaks in
the central area of the study area, south of San Antonio and Austin (Figure 5a), an area
experiencing increasing water demand and declining groundwater levels, particularly
beginning with 2011, the driest year on record. Minimum to no changes in the TWSGRACE
characterize the rest of the study area to the east and west of the central area.
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Figure 5. Spatial distribution of (a) TWSGRACE, (b) SMS, (c) SWS, and (d) GWSGRACE temporal trends.
The cold colors in the figure represent an increasing (positive) trend and warm colors represent
decreasing (negative) trends. The TWSGRACE, SMS, and GWSGRACE maps were interpolated to a
0.1◦ × 0.1◦ grid scale.

The SMS and SWS timeseries show large monthly variations (Figure 6a,b) that gen-
erally follow the TWSGRACE patterns (Figure 4). However, there is a notable difference
between SMS extracted from different LSMs and those extracted from different versions
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within the same model, especially during the extreme hydroclimatic periods. The observed
variations between LSMs are attributed to the use of different forcing data, model param-
eters, and model structures [83]. The highest variability in SMS is associated with the
NLDAS-Noah and GLDAS-Noah models, and the lowest with the VIC model, particularly
during the extreme hydroclimatic time periods. Overall, average SMS declines significantly
during the 2010–2015 drought period, with the most negative change in 2011 (−27.35 km3),
the driest year on record. During the 2005–2006 and 2007–2009 droughts, the lowest SMS
storage was estimated at −7.2 km3 and −23.2 km3, respectively. The highest SMS storage
was observed in 2005 and 2019 due to heavy rain and flooding, similar to the TWSGRACE
(see Section 3.1). For the duration of the record, average SMS decreases at a rate of
−0.09 ± 0.13 km3·yr−1 (0.04 ± 0.06 cm·yr−1). Temporal variations in SWS are similar in
trend to the TWSGRACE and SMS. The lowest SWS (−5.48 km3) was also observed during the
most extreme drought year (i.e., 2011) and it decreases at a rate of −0.002 ± 0.01 km3·yr−1

(0.004 ± 0.02 cm·yr−1) over the study period.
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Spatially, the SMS closely follows the climatic gradient (Figure 1c). An overwhelming
majority of minimum to largest increases in SMS are characteristic of the northern half
of the study area and to the east (0.35 to 0.15 cm·yr−1), where the highest precipitation
depths are observed. The highest depletion rates occur in the western half of the study
area (Figure 5b), where precipitation rates are about twofold lower than to the east, while
evaporation rates are greatest. Surface water reservoirs are mainly concentrated in the
northeast half of the area, with 24 out of 29 reservoirs (Figure 5c) showing no change or
an increase in the SWS over the study period. As with SMS, the largest increases in the
SWS occur to the east (0.4 to 0.1 cm·yr−1), including the greater Houston area. While
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very limited in number, two out of five reservoirs located in the western half of the area
experience the largest depletion rates in the SWS (−0.71 to −0.3 cm·yr−1).

3.3. Temporal Variations in Groundwater Storage

Trend analyses indicate that the Texas coastal region experienced an overall decline
in GWSGRACE at −0.35 ± 0.08 km3·yr−1 (0.15 ± 0.04 cm·yr−1) (p-value < 0.01) for the
investigated period, with large month-to-month variations (Figure 7). The lowest aquifer
storage (−28.07 km3) was observed immediately after the end of the longest drought (i.e.,
in September 2015) (Figure 7). During the 2005–2006 drought event, the aquifer storage
reached a low of −14 km3. Similar to the other storage compartments discussed above,
the highest groundwater storage (i.e., 17 km3) occurred in 2005, following downpours
from tropical storms. During the 2007–2009 drought, the lowest storage was estimated at
−7.4 km3.
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The most significant decline in the GWSGRACE occurred during the prolonged
2010–2015 drought period with a rate of −3.38 ± 0.43 km3·yr−1 (1.54 ± 0.2 cm·yr−1). How-
ever, a very small declining trend in TWSGRACE (−0.1 ± 0.9 km3·yr−1) was observed over
the entire drought period. It is expected that the difference in GWSGRACE and TWSGRACE
trends is due to a quick response in SMS and SWS following the precipitation events
that ended the drought and initiated the groundwater recharge. Conversely, the similar
TWSGRACE and GWSGRACE response to drought is explained by depletion in SMS accom-
panied by an increase in groundwater extraction as the SWS resource was depleted (from
0.75 km3 to −5.5 km3) by drought and excessive use.

Inspection of the GWSGRACE spatial trends (Figure 5d) shows an overall decreasing
trend, except along the western border of the study region. This is the opposite to the
SMS trend that shows the largest depletion rate in this region (Figure 5b). As with the
TWSGRACE, the largest depletion rate of the GWSGRACE is in the central coastal region
(−0.9 to −0.45 cm·yr−1), an area where the change in SMS is minimum to none during the
investigated period. Thus, the depletion in groundwater storage is captured with accuracy
in the TWSGRACE in this area.

3.4. Validation of GWSGRACE

The GWLwell data has been used by a handful of studies to analyze changes in GWS
and/or to validate GWSGRACE [33,96,97,107]. In this study, the estimated GWSwell was
used to validate the GWSGRACE timeseries over the study area. The GWSwell from both
Thiessen polygon and general average approaches show an overall significant increasing
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trend (4.6 ± 0.19 km3·yr−1 and 2.23 ± 0.14 km3·yr−1, respectively; with p-value < 0.01) for
the 2011–2019 period (Figure 8). Comparatively, the GWSGRACE also shows an increasing
trend, but at a lower rate (1.05 ± 0.22 km3·yr−1, Figure 8).
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(blue), and TWSGRACE (red). Since most comprehensive GWLwell records are available beginning
with 2012, the time mean of 2012–2016 was removed before GWS calculation.

The major differences in trend, and the time of the lowest storage peaks, between
GWSGRACE and GWSwell, occur during the drought period (i.e., 2010–2015). The lowest
GWSwell using the Thiessen polygon and the general average methods is observed in 2011
(coinciding with the dip seen in the TWSGRACE) and 2013, respectively. Comparatively the
GWSGRACE drops at the end of the drought period, in 2015. These differences may arise
from the lack of even distribution of the groundwater level monitoring locations within
the study area. Most of the groundwater monitoring stations are located in the central
part of the region and only a few in the eastern and western parts, potentially leading to
more bias in the estimated GWSwell towards conditions in the area with more coverage
(e.g., central area). Additionally, in the absence of measured/calculated Sy data throughout
the investigated area, the use of modelled Sy may also lead to larger uncertainties in the
estimated GWSwell. Further discussions that aid explaining these discrepancies between
different estimates of GWS are included in the discussion section. Regardless of slight
discrepancies between the two records, there is a significant positive correlation between the
GWSGRACE and GWSwell (CC = 0.48; p-value < 0.01) generated from the Thiessen polygon
approach. Additionally, a stronger correlation was observed between the GWSGRACE and
GWSwell records (CC = 0.56, p-value < 0.01) using the general average approach.

3.5. TWSGRACE and GWSGRACE Temporal Trend Analysis

The overall long-term TWSGRACE trend is not statistically significant (trend:
−0.43 ± 0.18 km3·yr−1; p-value: 0.06). However, there are short-term wet and dry periods
throughout the investigated timeseries record with significant wetting and depletion trends.
This is important to recognize since short-term variations in TWSGRACE and GWSGRACE
could affect the groundwater management plans. Four short-term periods are revealed
by the piecewise trend analysis of TWSGRACE timeseries (Figure 9a, Table 2): Periods 1
(4/2002–5/2005) and 2 (6/2005–10/2010) show a significant TWSGRACE wetting trend
(7.73 ± 1.5 km3·yr−1 and 2.96 ± 1 km3·yr−1; p-value < 0.01); and periods 3 (11/2010–
2/2015) and 4 (3/2015–12/2019) show no significant trend (0.74 ± 0.84 km3·yr−1; p-value:
0.40 and 0.61 ± 1.3 km3·yr−1; p-value = 0.64).
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Table 2. Piecewise analysis of trends in TWSGRACE and GWSGRACE over the Texas coastal aquifers.

Variables Parameters Period 1 Period 2 Period 3 Period 4 Period 5 Entire Period

TWS

Periods 4/2002–5/2005 6/2005–10/2010 11/2010–2/2015 3/2015–12/2019 – 4/2002–6/2019
Trend

(km3·yr−1) 7.73 ± 1.5 2.96 ± 1 0.74 ± 0.84 0.61 ± 1.3 – −0.43 ± 0.18

p-value <0.01 <0.01 0.40 0.64 – 0.06

GWS

Periods 4/2002–10/2004 11/2004–5/2007 6/2007–8/2010 9/2010–9/2015 10/2015–12/2019 4/2002–6/2019
Trend

(km3·yr−1) 1.39 ± 0.71 −8.9 ± 0.95 2.6 ± 0.63 −2.67 ± 0.44 0.27 ± 0.74 −0.35 ± 0.078

p-value 0.18 <0.01 <0.01 <0.01 0.70 <0.01

For the GWSGRACE, trend analyses also reveal five short-term periods that are distinct
from those of the TWSGRACE timeseries. The record begins with a weak wetting trend,
period 1 (14/2002–10/2004; 1.39 ± 0.71 km3·yr−1; p-value: 0.18), followed by period 2
(11/2004–5/2007), a strong drying trend (−8.9 ± 0.95 km3·yr−1; p-value < 0.01), period 3
(6/2007–8/2010), which is a moderate wet period (2.6 ± 0.63 km3·yr−1; p-value ≤ 0.01),
and period 4 (9/2010–9/2015), a significant dry or depletion trend (−2.67 ± 0.44 km3·yr−1;
p-value: <0.01). The end of the record shows an insignificant increasing trend of the
GWSGRACE (period 5, trend: 0.27 ± 0.74 km3·yr−1; p-value: 0.7; period 5: 10/2015–12/2019).

4. Discussion and Conclusions

The short-term changes in TWSGRACE and GWSGRACE trends observed in this study
are attributed mainly to climatic variabilities, which when compounded by anthropogenic
stressors result in different response times in the storage compartments. Overall, the
TWSGRACE shows an increasing tendency, while the GWSGRACE experiences multiple
increasing and decreasing trends. These discrepancies are mainly due to the different
response time to precipitation and evapotranspiration of the two types of storages. For
instance, precipitation and evapotranspiration are the main driver of TWS changes in low
latitudes [108,109], particularly because of the relatively quick response of SMS to climatic
factors. To exemplify this, in this study the lowest TWSGRACE (−26.87 km3) was observed
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during the peak of the extreme drought (i.e., 2011) (Figure 10) with the lowest total annual
precipitation (57.2 cm; Figure 10) that represented only 55% of the average total annual
precipitation observed during the investigation period (103.9 cm).

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 22 
 

 

Table 2. Piecewise analysis of trends in TWSGRACE and GWSGRACE over the Texas coastal aquifers. 

Variables Parameters Period 1 Period 2 Period 3 Period 4 Period 5 Entire Period 

TWS 
Periods 4/2002–5/2005 6/2005–10/2010 11/2010–2/2015 3/2015–12/2019 – 4/2002–6/2019 

Trend (km3·yr−1) 7.73 ± 1.5 2.96 ± 1 0.74 ± 0.84 0.61 ± 1.3 – −0.43 ± 0.18 
p-value <0.01 <0.01 0.40 0.64 – 0.06 

GWS 
Periods 4/2002–10/2004 11/2004–5/2007 6/2007–8/2010 9/2010–9/2015 

10/2015–
12/2019 

4/2002–6/2019 

Trend (km3·yr−1) 1.39 ± 0.71 −8.9 ± 0.95 2.6 ± 0.63 −2.67 ± 0.44 0.27 ± 0.74 −0.35 ± 0.078 
p-value 0.18 <0.01 <0.01 <0.01 0.70 <0.01 

For the GWSGRACE, trend analyses also reveal five short-term periods that are distinct 
from those of the TWSGRACE timeseries. The record begins with a weak wetting trend, pe-
riod 1 (14/2002–10/2004; 1.39 ± 0.71 km3·yr−1; p-value: 0.18), followed by period 2 (11/2004–
5/2007), a strong drying trend (−8.9 ± 0.95 km3·yr−1; p-value < 0.01), period 3 (6/2007–
8/2010), which is a moderate wet period (2.6 ± 0.63 km3·yr−1; p-value ≤ 0.01), and period 4 
(9/2010–9/2015), a significant dry or depletion trend (−2.67 ± 0.44 km3·yr−1; p-value: < 0.01). 
The end of the record shows an insignificant increasing trend of the GWSGRACE (period 5, 
trend: 0.27 ± 0.74 km3·yr−1; p-value: 0.7; period 5: 10/2015–12/2019).  

4. Discussion and Conclusions 
The short-term changes in TWSGRACE and GWSGRACE trends observed in this study are 

attributed mainly to climatic variabilities, which when compounded by anthropogenic 
stressors result in different response times in the storage compartments. Overall, the TWS-
GRACE shows an increasing tendency, while the GWSGRACE experiences multiple increasing 
and decreasing trends. These discrepancies are mainly due to the different response time 
to precipitation and evapotranspiration of the two types of storages. For instance, precip-
itation and evapotranspiration are the main driver of TWS changes in low latitudes 
[108,109], particularly because of the relatively quick response of SMS to climatic factors. 
To exemplify this, in this study the lowest TWSGRACE (−26.87 km3) was observed during 
the peak of the extreme drought (i.e., 2011) (Figure 10) with the lowest total annual pre-
cipitation (57.2 cm; Figure 10) that represented only 55% of the average total annual pre-
cipitation observed during the investigation period (103.9 cm).  

 
Figure 10. Annual averaged TWSGRACE (black), GWSGRACE (red), and groundwater pumping rate 
(green). The annual precipitation is presented (blue) as vertical bars. 

While highly dependent on the region’s hydrogeologic characteristics (i.e., aquifer 
permeabilities) and water use practices (i.e., groundwater extraction for irrigation and/or 

Figure 10. Annual averaged TWSGRACE (black), GWSGRACE (red), and groundwater pumping rate
(green). The annual precipitation is presented (blue) as vertical bars.

While highly dependent on the region’s hydrogeologic characteristics (i.e., aquifer
permeabilities) and water use practices (i.e., groundwater extraction for irrigation and/or
human consumption), GWS is expected to have a delayed response to changing climatic
conditions. The highest groundwater extraction rate (3 km3·yr−1; Figure 10) for the study
period occurred in the driest year on record (e.g., 2011), likely a result of increased ground-
water usage for irrigation as precipitation amounts and surface water resources have been
steadily declining since the beginning of the drought period in 2010. Nonetheless, the
lowest annual average GWSGRACE (−12 km3) was observed at the end of the prolonged
drought, in 2015 (Figure 10). The effects of groundwater abstractions on groundwater
storage are not always straightforward and are a function of time following the initiation
of stress [110] and the density of pumping wells. Initial stages of pumping cause a quick
depletion in storage (e.g., year 2011 in this study), as a cone of depression forms to fulfill the
pumping volumes [111]. In an area with dense network of pumping wells (e.g., the greater
Houston area; Figure 1b), prolonged pumping may cause cones of depression to fuse with
each other; thus, further pumping will result in an overall depletion of the area. If pumping
rates remain fairly constant, an equilibrium is generally achieved as time progresses, and
the change in the cone of depression and GWS is very small concerning its observation
by GRACE.

During prolonged drought periods, pumping likely exceeds natural recharge, thus
violating the quasi-equilibrium condition of the cone of depression. Rather, dewatering of
the aquifer increases with time in the near vicinity of pumping, thus the lower GWSGRACE
years after the most severe precipitation drought. Thus, GWSGRACE captures responses
linked to climate-induced groundwater depletion.

Some areas within the Texas coastal region have had groundwater elevations substan-
tially below sea level throughout the investigated period. For example, Jasechko et al. [17]
found that 25% of the groundwater elevations within 10 km of the coast in the GCA are be-
low sea level. Within the greater Houston area, average groundwater elevations from nine
wells ranged between 30 m (early 2011) and 35 m (late 2011–early 2012) below mean sea
level between 2011 and 2020. This confirms that changes in GWS in certain areas may not
be significant if aquifer depletion has occurred before the beginning of this study’s record.

Groundwater elevations below mean sea level are an indication that sea water intru-
sion may have occurred and, given the hydrogeologic makeup of the area (e.g., fine sand
and clay formations with low permeabilities) and the observed land subsidence (i.e., the
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Greater Houston area and other areas along the coast) [20], changes in these conditions
are expected to be insignificant over the duration of the study [112,113]. However, storage
depletion in other areas that have not been historically impacted by overproduction of
aquifers (e.g., the central portion of the study area where groundwater elevations fluctuate
between 34 m (late 2011) and 42 m (mid 2019) above mean sea level between 2011 and 2020)
is expected to be captured within the study time frame. In systems like this, accelerated
aquifer depletion is expected, particularly in periods of prolonged drought when the stress
on groundwater is initiated in the early stages and increases over time with equilibrium
likely attained in the later stages of the drought. In consequence, these systems are likely
to weigh more significantly into the observed GWSGRACE changes. Additional research
on the spatial changes of GWS in areas affected by sea water intrusion versus those that
are impacted during drought conditions, like a regional groundwater flow and transport
model, is necessary to further understand how GWSGRACE may be impacted.
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