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Abstract: The recent developments in the performance and miniaturization of uncrewed aircraft
systems (UAS) and multispectral imaging sensors provide new tools for the assessment of the spatial
and temporal variability of soil properties at sub-meter resolution and at relatively low costs, in
comparison to traditional chemical analysis. The accuracy of multispectral data is nevertheless
influenced by the anisotropic behaviour of natural surfaces, framed in the general theory of the
bidirectional reflectance distribution function (BRDF). Accounting for BRDF effects in multispectral
data is paramount before formulating any scientific interpretation. This study presents a semi-
empirical spectral normalization methodology for UAS-based multispectral imaging datasets of bare
soils to account for the effects of the BRDF, based on the application of an anisotropy factor (ANIF). A
dataset of images from 15 flights over bare soil fields in the Belgian loam belt was used to calibrate
a model relating the ANIF to a wide range of illumination geometry conditions by using only two
angles: relative sensor-pixel-sun zenith and relative sensor-pixel-sun azimuth. The employment of
ANIF-corrected images for multispectral orthomosaic generation with photogrammetric software
provided spectral maps free of anisotropic-related artefacts in most cases, as assessed by several
ad hoc indexes, and was also tested on an independent validation set. Most notably, the standard
deviation in the measured reflectance of the same georeferenced point by different pictures decreased
from 0.032 to 0.023 (p < 0.05) in the calibration dataset and from 0.037 to 0.030 in the validation dataset.
The validation dataset, however, showed the presence of some systematic errors, the causes of which
require further investigation.

Keywords: soil monitoring; proximal sensing; UAS; multispectral imagery; soil anisotropy; BRDF

1. Introduction

Diffuse reflectance soil spectroscopy provides a good alternative that may be used
to enhance or replace conventional methods of soil analysis, as it is rapid, timely, less
expensive, non-destructive, and allows for the simultaneous characterization of various
soil properties [1]. Soil spectroscopy is currently a mature discipline thanks to continuous
improvements since the mid-1960s [2]. The recent developments in uncrewed aircraft
systems (UAS) [3] and technological advancements in the performance and miniaturization
of lightweight spectrophotometers [4] provide a toolset for the flexible assessment of the
spatial and temporal variability of soil properties at a high resolution (<1 m). Hyper and
multispectral imaging sensors, in particular, have been successfully employed for the UAS-
based remote sensing of several soil properties in several studies [5–7]. The accuracy of
spectral remote sensing, however, is challenged by environmental conditions (illumination
and atmospheric interactions), measurement protocols, data-processing procedures, and
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specific sensor characteristics. It is thus critical to understand both the potential and the limi-
tations of this technology before using its data products to study earth system processes [8].

One of the biggest challenges for spectral sensing is that the reflectance of natural
surfaces shows anisotropic behaviour, i.e., measured reflectance varies with illumination
and viewing geometry. This results in spectral variability not only from different angular
measurements and times of the day, but also within the field of view of single images. The
theoretical framework for modelling the angular effects occurring between the illumination
source, sensor and measured surface has been formulated as the bidirectional reflectance
distribution function (BRDF) [9]. Several physical, empirical or semi-empirical models
have been developed in an attempt to normalize spectral data with the parametrization
of the BRDF [10]. Traditionally, BRDF model calibrations were obtained by performing
multi-angular reflectance measurements using complex goniometer setups, but currently,
aerial digital imaging provides an alternative platform to field goniometer systems for
performing multi-angular reflectance measurements [11]. The advantage in the employ-
ment of imaging setups lies in the fact that the field of view of each image can provide a
range of measurement geometries and, thus, spectral interactions between the illumination
source and the measured surface [12]. In this regard, several empirical methods were
developed to use the statistics of images taken on flat homogeneous surfaces to normalize
off-nadir reflectance values with those obtained at nadir, with the use of an anisotropy
factor (ANIF) [13,14].

Addressing BRDF-related issues in data from remote sensing and imaging spec-
troscopy is of primary importance to ensure their accuracy before attempting any further
analysis. For a few years, UAS multispectral data have been used to infer the spatial
variability of soil properties at very high spatial resolution. However, to the best of our
knowledge, a thorough understanding of the bias introduced by using uncorrected image
datasets is still very limited and a generally applicable workflow to construct and apply
bare soil BRDF models is not available. A preliminary analysis from our own bare soil
multispectral datasets that were not corrected showed that the resulting orthomosaics
exhibited prominent spectral aberrances in the form of “stripes” of different reflectance
intensities, which were parallel and coincided with the drone flight lines. The full potential
of multispectral imaging for bare soil applications has therefore not been fully reached.

The primary objective of this article is to elaborate a semi-empirical correction method-
ology for multispectral imaging datasets to account for the effects of the BRDF, based on
the calculation of an anisotropy factor (ANIF) calibrated from UAS-based hemispherical-
directional [6,14] bare soil reflectance measurements. A secondary objective is to evaluate
the beneficial effects of this correction method on the quality of structure from motion
(SfM)-based multispectral orthomosaics, using an elaborated UAS data collection campaign
of 15 flights conducted in the Belgian loam belt.

To accomplish this, sensor position and orientation data obtained from GPS mea-
surements and SfM-based bundle adjustment algorithms were used to relate observation
and illumination angles to soil anisotropy effects at the image level. The resulting data
were then used to test different modelling approaches and to provide a consistent image
correction workflow. Finally, the orthomosaic products obtained with commercial SfM
software using original and corrected images were analytically compared for an analysis
of the reduction/elimination of the “striping” artefact and the stability of the spectral
measurement when explicitly considering BRDF effects in bare soils.

2. Materials and Methods
2.1. Multispectral Imaging System

The multispectral imaging system used to collect data was a MicaSense RedEdge-M
(Micasense Inc., Seattle, WA, USA). This widely used system consists of an array of five
synchronized cameras, each with a distinct narrowband filter providing spectral bands centred
at 475, 560, 668, 717 and 840 nm wavelengths, with a bandwidth (full width at half maximum)
of 20, 20, 10, 40 and 10 nm, respectively. The image resolution is 1280 × 960 pixels with a
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3.75 µm pixel pitch, and the camera features a focal length of 5.4 mm, resulting in a 47.2◦

cross-track field of view (FOV) and a 36.2◦ along-track FOV. A diffuse irradiance sensor
array with similar spectral band characteristics (the so-called downwelling light sensor, or
DLS) is mounted on top of the drone in the same optical axis as the camera array and is
wired to the main unit to provide synchronized irradiance data. The DLS unit also includes
an on-board standalone L1 GPS and inertial measurement unit (IMU) to provide location
and orientation measurements (positioning accuracy of 2–5/10 m in xy/z and orientation
accuracy of 2–5/5–15◦ in roll, pitch/yaw). The multispectral imaging system stores a set
of five TIFF image files (corresponding to the spectral bands) for every image acquisition
point, for which their respective irradiance level and a common GPS position and IMU
orientation are saved in the image EXIF and XMP metadata. A calibrated reflectance panel
(CRP) of ca. 50% grey reflectance provided by the camera manufacturer was used to convert
raw image radiance values to reflectance.

2.2. Data Collection and Pre-Processing

A series of UAS flights with the Rededge-M rigidly mounted on a custom-made
quadcopter drone was conducted over bare soil fields in the Belgian loam belt between 2018
and 2021 (flight information is summarized in Table 1, locations are shown in Figure 1a,c).
The flights were conducted under clear sky conditions, on dry soil. The fields were in
seedbed conditions, with very low roughness (example provided in Figure 1b), very low
stoniness, no growing vegetation and very limited vegetation residue. Soils in the area are
classified as silt-loam by texture according to the USDA classification. Flight altitude was
ca. 45 m above ground level, resulting in ca. 3 cm ground sample distance (GSD). Flight
speed was set to 5–6 m/s to ensure a frontal image overlap of 80%, while interline distance
was set to obtain a lateral image overlap of at least 75%. Flight plans were designed with
GIS software and then executed using the DJI GSPro application (SZ DJI Technology Co.,
Ltd. Shenzhen, China [15]). The camera was mounted on the UAS in a fixed position, with
a frontal tilt (pitch) manually adjusted to provide an almost nadir position at the chosen
flight speed and with the UAS always turning the head in the flight direction. Flight lines
were oriented along the long edge of the field to provide maximum coverage efficiency,
resulting in variable solar azimuth angles (given in Table 1).

Table 1. General flight information of the UAS flight database: name, execution date, lateral
overlap %, flight line and sunlight direction and whether the dataset was used for ANIF model
calibration or validation. Names marked with an (*) represent datasets that in the original orthomo-
saic generation phase showed a prominent “striping” artefact effect. Flight altitude was ca. 45 m
above ground level in all cases.

Field Name Date Lateral
Overlap (%)

Flight Line
Azimuth (deg)

Sun Azimuth
(deg)

Sun
Zenith (deg)

Model
Calibration/
Validation

Seumoy 7 May 2018 80 60/240 220 38 Cal
Thorembais * 7 May 2018 75 40/220 150 37 Cal
Beuzet Sud 8 May 2018 75 127/307 240 46 Cal
Hostellerie * 2 September 2018 75 65/245 140 49 Cal

Geeste 1 2 September 2018 75 67/247–147/327 160 44 Cal
Geeste 3 2 September 2018 75 65/245 190 43 Cal
Ernage * 20 April 2019 75 35/215 140 44 Cal

Villeroux a1 * 27 August 2019 80 45/225 200 42 Cal
Villeroux a2 * 14 September 2019 80 45/225 190 47 Cal

Gembloux F2 * 23 April 2021 60 115/295 130 47 Cal
Gembloux F3 * 23 April 2021 60 115/295 190 38 Cal
Gembloux F4 * 23 April 2021 60 115/295 230 49 Cal
Marbaix West 6 May 2018 75 35/215 150 37 Val
Beuzet Nord 8 May 2018 75 140/320 230 42 Val

Sicy * 2 September 2018 75 150/330 130 52 Val
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Figure 1. Field locations contextualized within Belgian border (a), and in more detail within the
Belgian loam belt area (c), of the UAS flights used in this study. A close-up example of soil conditions
is reported in frame (b).

PIX4Dmapper (PIX4Dmapper SA. Prilly, Switzerland [16]) was the SfM photogram-
metric software used in this study for multispectral reflectance orthomosaic generation.
PIX4Dmapper organizes the image processing workflow in three phases: (i) initial pro-
cessing for key point identification and camera calibration (for both interior and exterior
orientation parameters); (ii) point cloud densification; (iii) DSM (digital surface model)
and multispectral orthomosaic generation. The first two phases were executed with the
same processing options with both the original and the corrected image datasets. The
first phase was of primary importance to obtain the adjustment of the camera orientation
parametersω, φ, κ (rotation with respect to the target projected coordinate system): since
the original camera inertial navigation measurements can feature inaccuracies of up to
about 5–20◦, more accurate values from a bundle adjustment algorithm were deemed
necessary for the calibration of our ANIF model. The third phase differed in the choice of
radiometric calibration, vignetting correction, black level compensation and final conver-
sion to reflectance: automatically managed by PIX4Dmapper for the original orthomosaics
versus manually pre-calculated on the input images for the corrected orthomosaics. In
this last case, radiometric calibration, vignetting correction, black level compensation and
final conversion to reflectance for the Rededge-M images were performed following the
procedure described on the manufacturer’s website [17] using R software (R core Team,
Vienna, Austria [18]).

2.3. ANIF Correction Model

An empirical correction methodology for spectral imaging is proposed to account
for the effects of the BRDF, based on the calculation of an anisotropy factor (ANIF) from
drone-based hemispherical-conical [19] reflectance measurements (in the context of this
study, given that the pixels of imaging spectrometers feature fairly small measuring cones,
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their measurements are treated as an approximation of directional measurements and the
resulting quantities as hemispherical-directional reflectance factors [12]). The ANIF repre-
sents the ratio between the reflectance measured at the nadir position and the reflectance
measured at other angular positions in an imaging sensor. The application of this factor
aims to normalize the reflectance values at each pixel position with those measured at
the nadir. Since reflectance anisotropy is related to the combination of viewing geometry
(sensor azimuth and zenith) and illumination geometry (solar azimuth and zenith), a linear
modelling approach of the relative sensor-pixel-sun angles was tested to model the ANIF.

For model calibration, and to isolate the effects of directional reflectance on soil images,
twelve flights (indicated in Table 1) were selected for the conjunction of high homogeneity
of soil colour, low roughness (seed-bed conditions), and low/no slope. Within the image
dataset of each flight, a subset of about 25–30 images (per spectral band) shot from the centre
of each field was selected to obtain images exclusively representing flat, homogeneous,
bare soil. These images served as the model calibration dataset. Radiometric calibration,
vignetting correction, black level compensation and final conversion to reflectance for the
Rededge-M images were manually performed, as indicated in the previous chapter. The
workflow then proceeded with the identification of the nadir pixels (Figure 2) and the
calculation of their relative sensor and sun angles (Figure 3). For each image, the distance
in pixel units between the image optical centre (provided by the manufacturer factory
calibration) and the pixel coordinates representing the surface point where the sensor was
at the nadir position were calculated as Equations (1) and (2):

u = F· tan(ϕ) (1)

v = F· tan(ω) (2)

where u is the pixel column number, v the pixel row number, F the camera focal distance in
pixel unit, ϕ the adjusted sensor Y orientation, ω the adjusted X sensor orientation. This
allowed to locate the nadir pixel coordinates (Figure 2). The ANIF map for each image was
then calculated as the ratio between average reflectance in a 5 degree diameter around the
nadir and each other pixel. The adjusted sensor azimuth κ and the solar azimuth from R
solar almanac package “suncalc” [20] were then used to calculate, for each image, the map
of the relative azimuth (Figure 3) between each image pixel, the nadir pixel, and the sun
azimuth (Rel_az). Relative azimuths were calculated in a 0–180 degree reference system
with 0 degrees coinciding with the direction of the solar rays and 180 degrees opposing the
sun. The sensor zenith angle (PS_zen) was calculated as the angle between each pixel, the
focal point, and the nadir pixel by applying the law of cosines in Equation (3):

PS_zen = arccos
(

FP2 + FN2 − NP2

2·FP·FN

)
(3)

from the reference system of the internal camera parameters, where FP is the distance
between the focal point and each pixel, FN the distance between the focal point and the
nadir, and NP the distance between the nadir pixel and each other pixel (all distances in
pixel units). Finally, image maps of the relative sensor-pixel-sun zenith (Rel_zen) was then
calculated as Equation (4):

Rel_zen = PS_zen· cos(Rel_az) + Sol_zen (4)

where Sol_zen is the solar zenith from the solar almanac, calculated from the vertical.
From the maps obtained in the image calibration dataset, the ANIF values were ex-

tracted and analysed in correlation to Rel_az, Rel_zen and PS_zen values. The calibration
data from the 12 selected flights were merged to represent the entire available range of
hemispherical illumination and observation angles (1000 regularly distributed ANIF values
per dataset, for a total of 12,000 calibration values). Based on the observed relationships,
several model equations with different combinations of input angles were tested and com-
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pared for the best ANIF prediction. The performance of the best model was then assessed
in the calibration procedure and subsequently on three validation datasets (1000 regularly
distributed ANIF values per dataset, for a total of 3000 calibration values), obtained in the
same way as for the calibration dataset. R2, Root Mean Square Error (RMSE) and Mean
Relative Error % (MRE) were used as model fit evaluators. The general workflow adopted
for the calibration and application of the ANIF correction is presented in Figure 4.
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2.4. Correction Evaluation

The optimal ANIF correction model was then applied to all available datasets, where
the datasets that were not used for calibration were used for validation (distinction marked
in Table 1, last column). Images were first converted to reflectance, then Rel_zen and PS_zen
angles were calculated to predict and apply the ANIF. The corrected images were then used
in PIX4Dmapper for corrected orthomosaic generation, bypassing the camera radiometric
calibration and reflectance calculation routine provided in the software. Two steps of
correction evaluation were then executed: the first (i) on the images of both calibration and
validation datasets, the second (ii) on a subset of orthomosaics, selected visually, which
showed distinct “striping” effects (indicated with an * in Table 1 names).

During step (i), to quantify the efficacy of reflectance normalization at the image level,
the change in reflectance of the same pixel location coordinates observed from different
contiguous images (overlapping FOV but with different shooting time, position, and
orientation) was studied before and after correction application. This was accomplished
by selecting a set of 220 sample pixels from the orthomosaics of the calibration dataset
(12 flights) and 80 sample pixels from the validation dataset (three flights) and tracking
their corresponding pixel in all their “parent” images. Between 8 and 20 parent images
were identified per pixel sample. The standard deviation (sd) of the reflectance of these
parent pixels across different images was then compared between original and corrected
images datasets. A substantial reduction in standard deviation after correction is then
assumed as indicative for an efficient ANIF correction.

In step (ii), to quantify the “striping” effect in each orthomosaic, before and after the
correction, spectral data were extracted from 8–10 transects positioned perpendicularly
to the stripes. In this way, the stripes were expected to appear as spectral peaks and
valleys along the transects. The positions of the drone flight lines were then overlaid on
the transects, and this made it possible to study the magnitude of the striping effect in
relation to the flight line positions. Two indexes were then extracted: a “spectral sinuosity”
index (SSin), and the correlation between the magnitude of spectral peaks/valleys and the
distance from the drone flight lines. SSin was calculated as Equation (5):

SSin =
∑N−1

p=1

√
(rp − rp+1)

2 + l2

N·l (5)

where N is the number of pixels along the transect, p the pixel index along the transect, r
the reflectance (0–100 scale) and l the average pixel length on the transect (m). It is the ratio
between the transect distance weighted by its pixel-by-pixel spectral variability and the
real planimetric distance, with domain SSin ≥ 1, where the minimum value of 1 means no
spectral variability across transect distance. The average SSin of all transects of a map is
then calculated.

To calculate the correlation between striping and distance from the flight lines, the
magnitude of the peaks/valleys was associated to the residuals of a linear interpolation
of the reflectance values along each transect. The correlation was then calculated between
these residuals and the horizontal distance to the closest flight line. The underlying assump-
tion is that, in an ideal multispectral image dataset free of anisotropic effects, reflectance
changes should not show correlation with distance from the image capture positions.

3. Results
3.1. Striping Issue

The effects of soil reflectance anisotropy on the products of our UAS-based multispec-
tral survey were evident both in the images and in the final products of the photogrammetric
orthomosaic reconstruction. A spectral gradient in apparent correlation with the direc-
tion of incoming sunlight was evident in all the images (e.g., in Figure 5a), in accordance
with previous observations on the differences between the forward- and back-scattering
reflectance of soil surfaces [21–24]. With the camera tilted forward in a fixed position to
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constantly aim at the nadir during cruising speed, this spectral gradient was invariant
from the changing drone heading. We therefore excluded any other major systematic effect
on measured reflectance (i.e., due to the camera orientation) than illumination direction.
The combination of this systematic gradient behaviour and the regular geometry of the
flight lines used for the image acquisition resulted in spectral artefacts in the final products
of the photogrammetric orthomosaic reconstruction. These artefacts (example presented
in Figure 5b) manifested as stripes with different spectral intensities, parallel and in con-
comitance with flight lines. When observed along transects perpendicular to the flight
lines (e.g., in Figure 6a), these stripes took the form of spectral peaks and valleys (e.g., in
Figure 6b).
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Figure 5. (a) Example of Micasense Rededge-M picture of flat soil, shot from 45 m above ground
level, after manual radiometric calibration, vignetting correction, black-level compensation and
conversion to reflectance. The rededge band is used as example in order to show how it is affected by
reflectance gradient due to back- and forward-scattering effects of incoming sunlight; (b) example of
PIX4Dmapper-generated spectral orthomosaic (rededge band as example) obtained from a dataset of
images non corrected for the soil anisotropy effects. The image positions, along the flight lines, are
presented (green dots) to show their correspondence with the “stripes” artefact. The rededge band
was arbitrarily chosen for display purposes only, as all spectral bands exhibited the same behaviour.
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3.2. Model Fit

The results of the calibration data extraction are summarized in Figure 7, where the
correlation plots show that both Rel_az and Rel_zen exhibited a stable behaviour with
the ANIF across all the sampled conditions of solar illumination. Different equation
arrangements of the Rel_az, Rel_zen, and PS_zen angles were tested for their overall ANIF
prediction capability and for their image correction capability. The chosen form of the final
model was Equation (6):

ANIF ~ a·Rel_zen1 + b·Rel_zen2 + c·Rel_zen3 + d·PS_zen (6)

with a, b, c, and d being the regression coefficients. The model was chosen for its high fit
(R2 = 0.81, RMSE = 0.07, MRE = 0% in Figure 8a) and after the assessment of the absence
of artefacts in the corrected images, and of the “flattening” of the spectral value across
the image field. The spectral “flattening” was visually examined through spectral data
extraction in transects, as shown in Figure 9, in a subset of two images per calibration
set (2 × 12). The model was tested on the three validation datasets, providing the results
summarized in Figure 8b. The validation results showed that the model seems to provide
stable and consistent ANIF predictions across the tested observation/illumination range
(0.81 < R2 < 0.91, 0.08 < RMSE < 0.1) but with a dataset-dependent bias, showed by a
noticeable positive or negative MRE (%) and evident in the observed vs. predicted plot
(Figure 8b).
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Figure 7. From a subsampling of the ensemble of the 12 calibration datasets: (a) correlation plot of
Rel_az (in radians) against the ANIF; (b) correlation plot of Rel_zen (in radians) against the ANIF, with
the 3rd order polynomial interpolation lines from the different datasets.

3.3. Correction Evaluation Results

Step (i) of our analysis showed that, on average, the measurement of the same pixel
location from different images was more spectrally stable after the proposed ANIF cor-
rection. In the calibration dataset, the standard deviation of the measured sample pixel
reflectance from the corrected images (mean = 0.023) was indeed lower (t [429] = 6.03,
p < 0.05) than in the original images (mean = 0.032). This is also supported by a comparison
of the density plots before and after correction (Figure 10). A comparable result was also
obtained with the validation dataset (density plots in Figure 10), were the sd of reflectance
in the corrected images (mean = 0.030) was significantly lower (t [172] = 3.58, p < 0.05) than
with the original images (mean = 0.037). The reflectance stability of the validation set was
generally lower (corrected images obtained the same mean and sd density distribution as
the original images in the calibration dataset) but the starting conditions were also worse
(starting from an sd of 0.037).
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Figure 9. Example of reflectance picture (rededge band) before (left) and after (right) ANIF correction.
The yellow lines represent the transect from which spectral data were extracted to check the result of
spectral normalization. The data extracted from the transects are plotted under the respective images,
in black for the original image and in orange for the corrected image.
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Figure 10. Results of step (i) analysis: density distribution for a calibration sample size n = 220 and
validation sample size n = 80 of the standard deviation sd of reflectance for same pixel observation
by different camera positions/angles (9–20 different camera observation per pixel), before and after
ANIF correction (black and orange lines, respectively).

Regarding the evaluation step (ii), the average SSin index calculated for the nine
selected sets (Figure 11) decreased in all cases except one (“Sicy”), showing that with
the proposed correction, the sinuosity is generally reduced by a minimum of 0.63% to a
maximum of 5.97%. A visual SSin reference example can be found in Figure 12, where the
original and corrected transect provided SSin values of 1.030 and 1.022, respectively, with a
decrease in sinuosity of 0.77%. Without a clear reference sinuosity index to discriminate
between a map affected by stripes and a corrected map, apart from a visual interpretation,
an analysis of the spectral data in relation to the drone flight lines was carried out to support
the positive effects of our correction methodology. The correlation between the magnitude
of the spectral peaks and valleys on the transect and the distance to the closest flight line
(sensor position) is provided in Figure 13 for the nine selected datasets. Generally, a higher
correlation (both positive and negative) was observed in the original maps, where the peaks
and/or valleys of the stripes seem to be either very close (as per the example in Figure 12) or
very far from the flight lines. On the other hand, a weaker or zero correlation was generally
observed on the corrected maps. The position of the sensor in the presence of the stripes
did not show consistent behaviour: in some cases, both peaks and valleys were associated
with high proximity to the flight lines, resulting in an overall negative correlation; in other
cases, only peaks or only valleys were close to the flight lines, resulting in either a positive
or negative correlation, depending on the local transect linear interpolation. In general, a
lower correlation associated with the corrected orthomosaics indicated that the striping
effect was effectively eliminated in most cases and at least reduced in some others. As a
visual example of the difference between the original and the corrected spectral orthomosaic
(e.g., rededge band) and of the elimination of the “striping” effect, the orthomosaic product
of the “Hostellerie” dataset is reported in Figure 14.
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Figure 14. Example of original (a) and ANIF-corrected (b) final spectral orthomosaic (rededge band
example) for the flight Hostellerie 2 September 2018.

4. Discussion

The results of analysis step (i) showed that the stability of the spectral measurement of
the same pixel location across different images sensibly improved after the application of
the ANIF correction. The relative improvement in sd (Figure 10) was almost the same for
the calibration and validation datasets, although the overall spectral stability was lower
in the validation dataset. This was probably due to the non-optimal terrain conditions
that prevented the initial choice of the three validation datasets for calibration purposes.
Contrary to the calibration dataset, the fields used for the validation data were characterized
by non-homogeneous soil colours, soil crusting (accumulation on the surface of finer
particles with high reflectance), vegetation residue and varying slope/aspect. In this regard,
the effects of the soil colour and vegetation residuals could probably be encompassed by a
richer calibration sampling. On the other hand, surface slope and aspect play much more
important roles in illumination geometry, which are generally tackled with topographic
correction methods [25,26], but their effect on soil anisotropy was not accounted for in the
context of this research. The specific ANIF model equation in this study was developed
using only relative observation/illumination angles, which are slope/aspect-invariant and
only dependent on sensor and sun orientation. This represents a limitation and calls for
further development of the proposed model. Moreover, the surface roughness and the
partial or total loss of radiometric signature caused by its shadows represent additional
issues in need of further scrutiny [27–29].

The two correction evaluation indicators adopted in step (ii) seem to show that, in
general, the specific “striping” artefact affecting the orthomosaics of the available dataset
was greatly reduced or eliminated following the proposed correction methodology. Some
uncertainties arose, such as the observation of the SSin analysis results (Figure 13), which
revealed the anomaly of higher SSin values in the “Sicy” dataset compared to the other
fields. For this specific case, it must be noted that the dataset was not used in model
calibration as its images were not sufficiently homogeneous due to the prominent presence
of tractor tracks in most of the images. Therefore, the interpretation of step (ii) indexes was
confined to this specific case study, as no other studies were found to tackle this specific
problem, and no proper comparison with other indicators could be drawn. Moreover,
we could not present completely objective evaluations of the correctness of the analysed
spectral orthomosaics, as no independent data with reference methods were available.
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5. Conclusions

This study provided an empirical correction methodology for UAS-based multispec-
tral imaging datasets of bare soils to account for the effects of the BRDF, based on the
application of an anisotropy factor (ANIF) correction. The dataset of the images available
for this study was sufficient to calibrate a simple model relating the ANIF to a wide range
of sensor-pixel-illumination conditions by using only two angles: relative sensor-pixel-
sun zenith and relative sensor-pixel-sun azimuth. The proposed correction was tested on
15 available datasets. As a result, the employment of ANIF-corrected images for multispec-
tral orthomosaic generation with photogrammetric software provided spectral maps free
of anisotropic-related artefacts in most cases, as assessed by several ad hoc indexes. The
validation with an independent image dataset, however, showed the presence of some sys-
tematic errors, the causes of which require further investigation. Plausible future directions
for model enhancement include the implementation of a topographic index to account for
the effects of slope and aspect, the consideration of soil roughness and its related shadows,
and/or an enrichment of the model calibration with different soil conditions (vegetation
residue, humidity, crusting).
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