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Abstract: Deep learning-based fusion of spectral-spatial information is increasingly dominant for
hyperspectral image (HSI) classification. However, due to insufficient samples, current feature fusion
methods often neglect joint interactions. In this paper, to further improve the classification accuracy,
we propose a dual-attention-guided interactive multi-scale residual network (DA-IMRN) to explore
the joint spectral-spatial information and assign pixel-wise labels for HSIs without information
leakage. In DA-IMRN, two branches focusing on spatial and spectral information separately are
employed for feature extraction. A bidirectional-attention mechanism is employed to guide the
interactive feature learning between two branches and promote refined feature maps. In addition, we
extract deep multi-scale features corresponding to multiple receptive fields from limited samples via
a multi-scale spectral/spatial residual block, to improve classification performance. Experimental
results on three benchmark datasets (i.e., Salinas Valley, Pavia University, and Indian Pines) support
that attention-guided multi-scale feature learning can effectively explore the joint spectral-spatial
information. The proposed method outperforms state-of-the-art methods with the overall accuracy
of 91.26%, 93.33%, and 82.38%, and the average accuracy of 94.22%, 89.61%, and 80.35%, respectively.

Keywords: hyperspectral image classification; interaction; dual-attention mechanism; multi-scale
spectral/spatial residual block

1. Introduction

With the advances of imaging technology, HSIs are able to capture the full optical
spectrum simultaneously for all pixels in a single acquisition. The abundant spectral
information enables HSIs to distinguish different materials. There has been increasing
research interest in combining machine learning and HSIs [1,2], and great progress was
reported in precision agriculture, environmental monitoring, military, mineralogy, etc. In
these applications, HSI classification, which aims to assign a unique label to each pixel, is a
fundamental problem in HSI analysis [3–5]. However, due to the limited sample size and
the spatial variability [6], there are remaining major challenges for HSI classification: First,
the dimensionality concern is inevitable with the increase of feature size for limited samples;
Second, due to changes in factors such as illumination, environment, atmosphere, and time
conditions, spatial variations of spectral characteristics may signify the phenomenon of
“same matter with different spectrum” and “distinct matter with similar spectrum” [7].

Both spectral and spatial information are meaningful in HSI classification, whereas
early HSI classification methods primarily focused on spectral information [8,9]. Numerous
feature extraction methods were proposed to extract discriminating spectral features, while
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ignoring the spatial relationship between adjacent pixels [10]. Traditional classifiers include
random forest [11], support vector machines (SVM) and their variants [12]. However, such
methods may be unsatisfying for missing the complementary spatial information. The high
spatial resolution provides abundant spatial structure information of the targeted objects.
Methods based on spatial features, such as gray level co-occurrence matrix (GLCM) [13] and
Gabor filter [14] were exploited. Currently, the spectral-spatial analysis is the main stream
for HSI classification. For instance, Kang et al. used Edge Preserving Filtering (EPF) as a
post-processing technique to optimize the probability results of SVM [15]. Methods such as
morphological profile [16] and composite kernels [17] also took advantage of spectral and
spatial features. They generally provide improved HSI classification performance when
compared with the methods based on only spectral features.

The above-mentioned HSI classification methods include two major steps: feature
extraction and classification. They mainly focus on designing effective feature represen-
tations, whereas such shallow handcrafted features limited power in representing the
abundant spectral-spatial information and cannot fully explore the complicated nature
of HSIs. Recently, deep learning has achieved remarkable performance in various fields,
such as intelligent speech [18], object detection [19], image segmentation [20] and med-
ical image analysis [21,22]. Benefiting from their ability to extract high-level, semantic
features, deep learning methods revolutionized HSI classification, and are becoming a
new trend in HSI analysis. Stacked autoencoders (SAEs) and the variants were employed
to extract high-level features. For instance, Chen et al. used stacked autoencoders to
extract high-level features after feature dimensionality reduction [23]. Tao et al. employed
a stacked sparse auto-encoder network to directly learn an incomplete sparse spectral
feature representation from the original hyperspectral data, which solved the redundancy
problem of high-dimensional data without any dimensionality reduction technique [24]. To
extract spectral-spatial information, Ma et al. proposed an improved SAE, namely spatial
updated deep autoencoder, and updated the features in consideration of the contextual
information [25]. Moreover, Chen et al. also verified the eligibility of deep belief networks
(DBN) in the HSI spectral-spatial analysis [26].

However, both SAE and DBN only accept one-dimensional input, and thus may
overlook the spatial pattern and deteriorate the classification performance. To address
this concern, Yue et al. [27] introduced the deep convolutional neural network (DCNN)
into remote sensing for the first time. They used the DCNN to extract spectral and spatial
features hierarchically and fine-tune the model by adding logistic regression to the classifier
to improve the classification accuracy. By considering the spatial information, the CNN-
based approach has become somewhat mainstream for HSI classification. However, the
earlier several methods exploited the spectral and spatial information separately, neglecting
the correlations between them. For instance, Wenzhi et al. employed a local discriminant
embedding algorithm to extract spectral features and used a CNN-based framework to
extract high-level spatial features. Such features were then fused for HSI classification [28].
Although fusion of spectral and spatial features provides performance improvement over
the fully connected SAE and DBN models, there are still spectral-spatial information loss.
Considering the intrinsic 3D characteristic of HSIs, it is reasonable to exploit spectral-spatial
features simultaneously via 3D-CNN [1,29]. These features were demonstrated to be useful
for better and robust HSI classification. For instance, Wang et al. introduced the Jeffries-
Matusita distance to select effective bands and employed a 3D-CNN to mine spectral and
spatial features [30]. Ma et al. proposed a two-branch network to extract these two types of
features simultaneously, and then fused them for classification [31]. Furthermore, Zou et al.
exploited the spectral-spatial information by the fusion of 3D-FCN and 1D-FCN, and
demonstrated that the spectral information might be more powerful in analyzing HSIs with
low spatial resolution [32]. Similarly, a few recent two-branch 3D-CNNs could be found
in [33,34]. However, most of these methods only fused the spectral and spatial features via
concatenation prior to the final classification.
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Although the 3D-CNN-based methods achieved promising performance, there are
remaining concerns to be addressed. First and foremost, how to learn discriminative
spectral-spatial features is critical, especially for the cases with limited samples. In HSI
classification, accurately labeled samples are rather limited, whereas the number of param-
eters in a 3D-CNN is huge. This is a serious obstacle to fully exploit the spectral-spatial
information via 3D-CNN. Secondly, although a 3D-CNN extracts spectral and spatial fea-
tures simultaneously, its power to learn the joint interactions between these two types
of features is limited. Most existing methods for spectral-spatial learning did not realize
such information interactions in feature learning. They just extracted the spectral/spatial
features independently and stacked them. Thirdly, the patch-wise classification methods
based on CNNs generally predict the label of a central pixel with the help of neighbour
information, and then predict all the labels via the sliding window strategy. However, the
reported results might be over-optimistic due to the potential training-testing information
leakage [4,5]. Although the pixel-wise classification provides an effective alternative of the
patch-wise classification [35], there is still much space to improve the performance without
information leakage. Those methods only extract single-scale features from fixed-size
image patches and cannot guarantee to capture the optimal spatial context information.

To address the above concerns, we propose a dual-attention-guided interactive multi-
scale residual network to predict the label of each pixel in given HSIs. The main contribu-
tions are summarized as follows:

• We propose a dual-attention-guided interactive feature learning strategy, including the
spatial and channel attention module (SCAM) as well as the spectral attention module
(SAM). We interpret the problem of assigning label to each pixel as the pixel-to-pixel
classification task, rather than the traditional patch-wise classification. The proposed
network interactively extracts joint spectral-spatial information and performs feature
fusion to enhance the classification performance. By adjusting the weights of feature
maps from three different dimensions, the bidirectional attention can guide feature
extraction effectively.

• We introduce a multi-scale spectral/spatial residual block (MSRB) for classification.
It uses different kernel sizes at the convolutional layer to extract the features corre-
sponding to multiple receptive fields, and provides abundant information for pixel-
level classification.

• We evaluate the proposed modules and report their performance over three popular
benchmark datasets. Extensive experimental results demonstrate that the proposed
DA-IMRN outperforms state-of-the-art HSI classification methods. The related codes
are publicly available at the following website: https://github.com/usefulbbs/DA-
IMRN (accessed on 21 January 2021).

2. Methodology
2.1. Proposed Framework

With limited samples, in order to exploit spectral-spatial interactions and extract
multi-scale features, we proposed a dual-attention-guided interactive multi-scale residual
network for HSI classification, as shown in Figure 1. In general, the proposed network
consists of three key parts. First, two branches are used to extract the joint spectral and
spatial features of HSIs, providing stronger feature extraction capabilities than the single-
branch serial network. Second, inspired by the success of the multi-attention mechanism in
computer vision [36], the dual-attention module, including the SCAM and SAM, is designed
to adjust the weights of feature maps and exploit the joint information for improving
classification performance. In contrast to traditional multi-branch networks, which mostly
only use feature stacking at the end of the feature extraction stage, we employ SCAM and
SAM to interactively update the feature information between two branches. Third, MSRB is
constructed to extract deep multi-scale features corresponding to multiple receptive fields
from limited samples.

https://github.com/usefulbbs/DA-IMRN
https://github.com/usefulbbs/DA-IMRN
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Figure 1. The architecture of the proposed DA-IMRN network. DA-IMRN consists of two branches,
and the dual-attention mechanism is used for feature interaction between two branches. MSpaRB
represents the multi-scale spatial residual block; MSpeRB represents the multi-scale spectral residual
block; SCAM represents the spatial & channel attention module and SAM represents the spectral
attention module.

2.2. Dual-Attention Mechanism

Inspired by the human visual attention process, various attention-based models
achieved remarkable performance in semantic segmentation, pattern recognition, target
detection, and other fields [37–39]. In RGB image segmentation tasks, spatial attention
mechanism and channel attention mechanism are usually used after feature extraction to
redistribute feature weights and achieve the refined segmentation results. The channel-
wise attention determines the importance of feature channels and adjusts their weights
in network propagation. Similarly, the spatial-wise attention is to generate a probabil-
ity map for each pixel in the area to strengthen the correlation between adjacent pixels.
Compared to RGB images, HSIs have a higher spectral resolution and provide abundant
information of the land cover. Therefore, it is necessary to introduce the spectral-wise
attention to select important bands and enhance the distinguish ability of spectral fea-
tures. In this paper, we propose a dual-attention mechanism, which consists of SCAM
and SAM. The dual-attention mechanism comprehensively considers the joint interactions
between spatial-channel-spectral dimensions in the feature learning process and adjusts
their weights dynamically.

2.2.1. Spatial-Wise & Channel-Wise Attention Module

The environmental factors such as light, temperature, and humidity have a great
influence on hyperspectral imaging. Intra-class inconsistency and inter-class homogeneity
greatly affect the classification performance. The way which is able to effectively explore
the spatial information and the corresponding contextual dependencies is the key to solve
this problem [40]. In addition, in the process of feature extraction, different channels in each
convolutional stage can be regarded as different feature representations [40,41], whereas
many of them are meaningless feature channels. Therefore, we need to adjust the channel
weight, increasing the weight of useful channels and weakening the weight of useless
channels. In this paper, we combine the channel attention with the spatial attention, and
propose the SCAM, as shown in Figure 2a.
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Figure 2. The architecture of the proposed dual-attention model. (a) The spatial & channel attention
module (SCAM); (b) the spectral attention module (SAM). GAP, FC, K, S, P represent the global
average pooling, the fully connected layer, the kernel size, the stride and the patch-width/height,
respectively. ReLU and Sigmoid denote the activation functions. The total weight is generated by
aggregating the weights of three (or four) ramifications.

After being fed into the SCAM, the feature map will be sent to four different ram-
ifications simultaneously, including one for channel attention and the others for spatial
attention. The size of the input feature map is denoted by P× P× B×C, where P, B, and C
represents the width/height, bands, and channels of feature maps. In the channel attention
ramification, the input feature map is first sent into a global average pooling (GAP) layer
to aggregate spectral-spatial information into a 1× 1× 1× C feature vector. Then, this
vector passes through a fully connected (FC) layer and a ReLU activation layer to exploit
the non-linearity and learn complex structures in the data. Subsequently, another FC layer
is employed to adjust the dimension of the vector back to 1× 1× 1× C, and a Sigmoid acti-
vation function maps the feature vector to a probability vector, which is a channel weight
of the original feature maps. In the spatial attention ramifications, we incorporat different
convolution kernel sizes to downsample the original feature map in three ramifications,
and obtain spatial attention feature maps of different scales. In these three ramifications, we
employ convolution with only one filter to aggregate channel information, and then apply
the Sigmoid activation function to generate probability maps. Ramification-spatial-one
employs a convolutional layer whose kernel size and stride are both (1, 1, 1) and generates
a probability map with the same size of spatial dimension as the input feature map. The
difference is that the input of ramification-spatial-two first passes through a convolutional
layer whose kernel size and stride are both (P/2, P/2, 1). Thus, the pixels in the 2× 2 region
share the same weight, therefore increasing the probability that adjacent pixels belong to
the same class. The kernel size and the stride of ramification-spatial-three are halved in
comparing with the previous one. After the convolutional layer, the probability results of
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ramification-spatial-two and ramification-spatial-three are upsampled to P× P× B× 1.
In the case that the input patch-width equals to 4 or is not a multiple of 4 (for example,
width/height = 6, 10. . . ), we will discard the ramification-spatial-three. Finally, the original
feature map is multiplied with the average weight obtained in the channel-wise attention
and spatial-wise attention, and the product is added to the input feature map. This attention
mechanism is able to regulate the weight of each value in the three-dimensional feature
map, which can be expressed as:

WCha(x) = σSigmoid( fFC2(σReLU( fFC1( fGAP(x)))) (1)

WSpa1(x) = σSigmoid(σReLU( fConv(x))) (2)

WSpa2(x) = fResize(σSigmoid(σReLU( fConv(x)))) (3)

where x is the P× P× B× C input feature map and fGAP is the global average pooling
function. fFC1 and fFC2 is the first and the second FC layers, respectively. σReLU is the ReLU
function, and σSigmoid is the Sigmoid activation layer. fConv is the convolution function,
fResize denotes upsampling.

The final output of SCAM can be computed as:

FSCAM(x) = x + x ∗ Average(WCha(x), Wspa1(x), Wspa2(x)) (4)

where x is the P× P× B× C input feature map.

2.2.2. Spectral-Wise Attention Module

As to the spectral-dimension, it can be expressed as a continuous spectral curve
containing each spectral value. Mostly, hundreds of spectral bands are directly used as
input of the convolutional layer, whereas the noisy bands among them might deteriorate the
classification performance. Therefore, we propose a spectral attention module that enables
the network to recalibrate the importance of different spectral bands and enhance useful
spectral features, as shown in Figure 2b. The input feature with the size of P× P× B× C
is sent to the convolutional layer and the ReLU layer, and only one filter is used to fuse
information from different channels. The kernel size and stride of the convolutional layer
are set to (P, P, 1) without padding. This operation combines the spatial information and
produces a vector of 1× 1× B× 1. Subsequently, the output of the convolutional layer
is sent to the Sigmoid function to obtain the probability vector. For convenience, the
probability vector is upsampled to the size of the input feature map. The weighted feature
map is obtained by multiplying the input feature with the probability map. Then, the
product is added to the input feature map, and the result is the output of the SAM module.
Mathematically, the SAM can be expressed as:

FSAM(x) = x + x ∗ fResize(σSigmoid(σReLU( fConv(x)))) (5)

where x is the P× P× B×C input feature, fConv is the convolution function, fResize denotes
upsampling, σReLU is the ReLU function, and σSigmoid is the Sigmoid activation layer.

2.3. Multi-Scale Residual Block (MSRB)

To avoid potential information leakage, the authors of [32,35] interpreted the problem
of HSI classification as an semantic segmentation problem, which is able to fully use the
limited annotations. To further improve the performance, especially on small HSIs, we
introduce the multi-scale residual network to deepen the network and extract multi-scale
spectral/spatial features.

2.3.1. Residual Learning

Compared with shallow networks, deep networks demonstrated stronger learning
capabilities and feature expression capabilities, and are able to learn more abstract fea-
tures [42,43]. However, if the network becomes too deep with too many parameters, it will
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require huge amount of data to be well tuned. Otherwise, it will most probably perform
well on the training set but poorly on the test set (degradation problem). To address this
concern, He et al. [43] proposed residual learning, as shown in Figure 3, where fRes(x)
represents a residual function. In the forward propagation process, after the shallow layer
completes feature extraction, residual learning enables the deep network to implement
identity mapping. Therefore, it can propagate gradients directly to initial layers and trains
deeper networks. In particular, He et al. pointed out that the shortcut connection is more
economical and practical than the non-shortcut connection with dimension adjustment [43].
A few recent residual-network-based methods for HSI classification which achieved signifi-
cant performance improvement can be found in [44,45].

2.3.2. Multi-Scale Spectral/Spatial Residual Block

Although the recent HSI classification methods based on deep learning achieved remark-
able performance, most of them only considered the features under single scale. Previous
studies demonstrated the effectiveness of multi-scale features in HSI classification [46,47].
To extract spectral/spatial features at different scales, we introduce a novel multi-scale
spectral/spatial module into a residual block, and employ the combination in solving
classification problems. The MSRB is realized by replacing the convolutional layers with a
branch structure containing three convolution kernels with different sizes. As shown in
Figure 4, unlike the conventional residual unit, we employ a 1× 1× 1 convolutional layer
and a batch normalization layer as the first component of the MSRB to unify the number
of channels, downsample spectral bands, and combine information. Then, a multi-scale
residual convolution group is applied to improve feature extraction. These multi-scale
residual convolution groups with three convolution kernels of different sizes are used to
construct feature representations of different scales. Furthermore, we employ the concate-
nate operation to merge the output feature maps corresponding to three scales and obtain
the fused feature. Then the feature maps are passed to 1× 1× 1 convolutional layer to
obtain consistent dimension.

The detailed structure of the proposed multi-scale spectral residual block (MSpeRB)
and multi-scale spatial residual block (MSpaRB) is shown in Figure 4a and Figure 4b,
respectively. The main difference between these two blocks is the sizes of the convolution
kernels in the multi-scale learning stages. As to the MSpeRB, we select the kernel size
as 1× 1×m (m1 = 3, m2 = 5, m3 = 7). As to the MSpaRB, the corresponding kernels are
with the sizes of m×m× 1 (m1 = 3, m2 = 5, m3 = 7). With the aid of these two blocks, the
network is able to capture different levels of spectral/spatial features corresponding to
multiple receptive fields in each channel, and therefore obtain more abundant information
to enhance the classification performance.

Figure 3. The structure of the basic residual unit. BN and Conv represent the batch normalization
layer and convolutional layer, respectively, and ReLU is the activation function.
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Figure 4. The architecture of the proposed multi-scale spectral/spatial block. (a) The multi-scale
spectral block (MSpeRB); (b) the multi-scale spatial block (MSpaRB). Conv and BN represent the con-
volutional layer and the batch normalization, respectively, and ReLU means the activation function.

3. Experiment Result and Analysis

In this section, we evaluate the effectiveness of the proposed DA-IMRN on three
benchmark datasets, including Salinas Valley (SV), Pavia University (PU) and Indian
Pines (IP). We compare the proposed method with five state-of-the-art HSIs classification
algorithms without information leakage. In addition, we refer the interested readers to [4,5]
for further details and discussions about the potential information leakage from the overlap
between training set and testing set in traditional patch-wise HSI classification.

3.1. Dataset Partition

Nalepa et al. showed in [4] that the traditional patch-based classification methods in
tandem with the corresponding data partitioning strategies, which aim to predict the label
of the central pixel, might lead to potential information leakage. In HSI classification, the
division of training/testing sets greatly affects the performance and fairness of the compar-
ison. Therefore, a dataset partitioning strategy, which enables fair validation of new and
existing algorithms without training-testing data leakage, is highly desired. Several data
partitioning methods that will not lead to information leakage were proposed [4,32,35].
Among them, the dataset partition in [35] not only provides a benchmark dataset, but
also avoids the loss of samples of certain classes in the training/testing sets. It divides
the original image into training/validation/testing blocks and then subdivides the train-
ing/validation/testing sets, making the division method more reasonable and more suitable
for practical applications. In this work, we apply the same data partition strategy as in [35]
to avoid information leakage. Specifically, as show in Figure 5, we apply the same sliding
window strategy in [32] to training blocks and testing blocks (which are divided from the
original images) to obtain more training/validation/testing patches. Then we continue to
expand our training and testing patches by using classical data enhancement methods (flip
up/down, flip right/left, rotate with an angle of π or π/2). We only use two of these three
augmentation methods for each patch to guarantee the randomness of the expanded data.

3.2. Dataset Description

In the experiments, in order to reduce the influence of randomness, we employ hold-
out test and repeat for 25 times to obtain the average performance. Each round of hold-out
test is independent of the other ones, and the training pixels for 5-round of them are shown
in Figure 6, including (a1–a5), (b1–b5) and (c1–c5) corresponding to three datasets. The
details of three datasets and related settings are as follows:

(1) Salinas Valley: This dataset was captured by the AVIRIS sensor in Salinas Valley
of California USA with a resolution of 3.7 m/pixel. It is composed of 512× 217 pixels,
204 bands after discarding 20 water absorption bands. This dataset contains 16 classes of
ground truth, shown in Figure 6(a0). In total, there are 2017.2 pixels used for training on
average, accounting for 3.73% of all the labeled pixels.

(2) Pavia University: This dataset was obtained by the ROSIS sensor over the Univer-
sity of Pavia with a high resolution of 1.3 m/pixel. It is composed of 610× 340 pixels and
103 spectral bands after discarding 12 noisy bands. This dataset consists of 9 classes of
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ground truth, shown in Figure 6(b0). 6.31% of the labeled pixels (around 2701.4 pixels) are
used for training.

(3) Indian Pines: This dataset was captured by the AVIRIS sensor over Indian Pines
region in North-western Indian in 1992. It contains 145× 145 pixels and 204 spectral bands
after removing 20 water absorption bands. It contains 16 classes of ground truth. The
ground truth, shown in Figure 6(c0). There are about 1187.8 pixels on average are used for
training, accounting for 11.59%.

Figure 5. The partition process of the training/validation/testing datasets. The sliding window
strategy is adopted from Training Block to Training Patch, and the methods for obtaining Validation
Patch and Testing Patch are similar.

3.3. Evaluation Matrices

To evaluate the robustness and effectiveness of the proposed method, the overall
accuracy (OA), average accuracy (AA), and Kappa coefficient are employed in this study.
Specifically, the OA metric refers to the ratio of the total number of the correctly classified
pixels over all test pixels [48]. The AA metric is the average classification accuracy of all
classes [48]. The Kappa coefficient measures the degree of agreement between the predic-
tions and the ground-truth [48]. These three evaluation matrices collectively reflect the
performance of HSI classification, and the higher value represents the better performance.
Let M ∈ Rn×n represents the confusion matrix of the classification results, n denotes the
number of land cover categories and the value of M in (i, j) position indicates the number
of ith category samples that are classified to the jth category. The three evaluation metrics
can be expressed as:

OA = sum(diag(M))./sum(M)) (6)

AA = mean(diag(M)./sum(M, 2)) (7)
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kappa =
OA− (sum(M, 1)sum(M, 2))/sum(M)2

1− (sum(M, 1)sum(M, 2))/sum(M)2 (8)

where diag(M) ∈ Rn×1 is a vector of diagonal elements of M, sum(·) ∈ R1 is the sum
of all elements, sum(·, 1) ∈ R1×n is the vector of the sum of elements in each column,
sum(·, 2) ∈ Rn×1 is the vector of the sum of elements in each row, mean(·) ∈ R1 is the mean
of all elements, and ./ represents the element-wise division.

Figure 6. Training pixels in (a) Salinas Valley dataset, (b) Pavia University dataset, and (c) Indian
Pines dataset. Here the sub-Figure 0 in each dataset is the corresponding ground truth for the dataset,
and other sub-figures represent the training pixels for 5-round hold-out test.

3.4. Parameter Setting and Network Configuration

Given the network architecture, the model performance depends on two important
hyperparameters, including the block-patch size in dividing different datasets and the
learning rate. We select the block size as 10× 10, and the patch size as 8× 8 for the SV
& PU dataset, to ensure the balance between the number of samples and the maximum
receptive field, and avoid the increase of computational cost due to a larger patch. This
setting also enables generating enough training patches via the sliding window operation.
Considering the spatial size of IP dataset is relatively small, we set the block size as 6× 6,
and patch size as 4× 4.

Regarding to the learning rate, it controls the speed of the gradient descent during
the training process, and the proper value facilitates the loss function to converge at an
appropriate speed. In this work, we employ the grid search method to determine the best
learning rate in 0.01, 0.005, 0.001, 0.0005 and 0.0001. The experimental results demonstrate
that the optimal learning rate is 0.001 over all three datasets. In addition, we employ the
learning rate decay strategy in the training process, and the learning rate is reduced to 1/10
of the previous value after every 15 epochs.
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As to the network structure, most of the hyperparameters are same in terms of the
kernel size and the number of filters across three datasets. The difference exists in the
network for IP dataset due to its small block-patch size. We only keep two different
scales with m1 = 1, m2 = 3 in multi-scale spatial residual block for IP dataset, and other
settings are consistent across three datasets. The DA-IMRN is composed of two branch
networks, and each branch network is divided into six stages. The successive two stages
are connected by MSRB to extract multi-scale spectral-spatial features corresponding to
multiple receptive fields. Taking the network for SV dataset as an example, the detailed
kernel size of the MSRB and the output size of the feature maps in each stage are shown in
Table 1. In addition, either branch interact with the other one through the dual-attention
mechanism, including the SCAM and SAM. The spatial, channel and spectral information
are re-weighted through the attention-guided feature learning.

The DA-IMRN is implemented in Python 3.6, Keras 2.3.1 and Tensorflow 1.14.0. To
effectively improve memory use, the batch size was set to 16. We use focal loss as the loss
function, designed to solve the class imbalance problem [49]. In addition, the loss function
is optimized using the Nadam with beta_1 as 0.9, beta_2 as 0.999, and epsilon as 1× 10−8.
All the experiments were performed with the same configuration on the platform with Intel
i7-6850K, 64GB RAM and NVIDIA GeForce GTX 1080ti GPU.

Table 1. Kernel size and feature size information in the networks (taking the SV dataset as an example).

Stage Input Stage1 Stage2 Stage3

Sub-Network1:

1× 1× 3 1× 1× 3 1× 1× 3 1× 1× 3
Kernel Size 1× 1× 5 1× 1× 5 1× 1× 5 1× 1× 5

1× 1× 7 1× 1× 7 1× 1× 7 1× 1× 7
Feature Size 8× 8× 204× 1 8× 8× 100× 64 8× 8× 50× 64 8× 8× 24× 128

Sub-Network2:

3× 3× 1 3× 3× 1 3× 3× 1 3× 3× 1
Kernel Size 5× 5× 1 5× 5× 1 5× 5× 1 5× 5× 1

7× 7× 1 7× 7× 1 7× 7× 1 7× 7× 1
Feature Size 8× 8× 204× 1 8× 8× 100× 64 8× 8× 50× 64 8× 8× 24× 128

Stage Stage4 Stage5 Stage6 Stage7

Sub-Network1:

1× 1× 3 1× 1× 3 / /
Kernel Size 1× 1× 5 1× 1× 5 / /

1× 1× 7 1× 1× 7 / /
Feature Size 8× 8× 12× 128 8× 8× 6× 256 8× 8× 3× 256 8× 8× 3× 256

Sub-Network2:

3× 3× 1 3× 3× 1 / /
Kernel Size 5× 5× 1 5× 5× 1 / /

7× 7× 1 7× 7× 1 / /
Feature Size 8× 8× 12× 128 8× 8× 6× 256 8× 8× 3× 256 8× 8× 3× 256

4. Experimental Result

We compare the performance of DA-IMRN with several state-of-the-art CNN-based
methods which adopt suitable data partition strategies without information leakage. The
backbone structure and the ratio of pixels used for training over SV/PU/IP datasets are
summarized in Table 2. In addition, in order to intuitively reflect the role of the modules
we designed, we evaluate the performance of the two sub-networks of DA-IMRN.

VHIS [4]: To the best of our knowledge, ref. [4] was the first paper discussing the
potential information leakage in the patch-wise classification. The authors proposed a
new routine for generating classification benchmarks, and constructed a 1D-CNN-based
network to extract spectral features and classify pixels without information leakage.

DA-VHIS [5]: Three data augmentation methods were proposed on the basis of [4]
to improve generalization capabilities. We report the best performance of these three data
augmentation methods in the comparison.
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Table 2. The backbone structures and the dataset partitioning of state-of-the-art HSI classifica-
tion methods.

Backbone Structure Pixels for Training over SV/PU/IP Datasets (%)

VHIS 1D-CNN 8.91%/6.31%/19.00%
DA-VHIS 1D-CNN + Data augmentation methods 8.91%/6.31%/19.00%
AutoCNN 1D-AutoCNN 5.91%/4.20%/25.20%
SS3FCN 1D-FCN + 3D-FCN 3.76%/6.64%/11.02%
TAP-Net Parallel network + Triple-attention mechanism 3.73%/6.36%/11.59%

DA-IMRN Multi-scale residual network + Interactive attention-guided feature learning 3.73%/6.31%/11.59%

AutoCNN [50]: 1D AutoCNN was applied to optimize the classifier, and the prob-
lem of information leakage was also avoided. In addition, the authors introduced the
simple but effective regularization strategy, namely cutout, to further enhance the HSI
classification performance.

SS3FCN [32]: The authors interpreted the problem of assigning labels to all pixels
as a semantic segmentation problem, where all label information was fully exploited.
They employed a 3D fully convolutional network to jointly explore the spectral-spatial
information, and introduced the other branch based on a 1D fully convolutional network to
focus on spectral information. Then they fused these two branches to make the predictions
via concatenation. In addition, the authors introduced a data partition strategy without
information leakage.

TAP-Net [35]: A hyperspectral image classification network based on triple-attention
mechanism and parallel network was designed in this work. They applied a triple-attention
mechanism, including channel-wise, spectral-wise and spatial-wise attention to obtain
stronger spectral-spatial representations. In addition, they introduced a more balanced
dataset division strategy, which can effectively avoid information leakage and the class
imbalance issue.

DA-IMRN (sub-net1): As was shown in Figure 7a, it is a serial network with the same
number of stages as in the proposed DA-IMRN. The MSpaRB is employed for feature
extraction. In addition, the corresponding parameter setting and network configuration are
the same as DA-IMRN.

DA-IMRN (sub-net2): As shown in Figure 7b, similar to DA-IMRN (sub-net1), there
are six stages within the serial network. The MSpeRB is applied for extracting features. The
corresponding parameter setting as well as network configuration remain unchanged.

Figure 7. The structure of (a) DA-IMRN (sub-net1) and (b) DA-IMRN (sub-net2). MSpaRB represents
the multi-scale spatial residual block; MSpeRB represents the multi-scale spectral residual block.

4.1. Classification Result on Salinas Valley

We first conduct a comparative study on the SV dataset. The average classification
results of five independent repetitions over the SV dataset are shown in Table 3. It can be
seen from the table that the proposed DA-IMRN achieved the state-of-the-art performance
compared with recent HSI classification methods. From Table 2, we known that the ratio
and number of training pixels used by DA-IMRN are same as those of TAP-Net, and are less
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than those of VHIS, DA-VHIS, SS3FCN and AutoCNN. The OA is significantly improved
via exploring multi-scale spectral-spatial joint information, in comparing with traditional
spectral-based classification methods. For instance, the OA of VHIS is 64.20%, whereas
the OA of the proposed DA-IMRN over five experiments is 91.26%. Although the SS3FCN
and TAP-Net employed the 3D kernels to extract the joint spectral-spatial information, the
representation power is still limited. Compared with these two networks, the OA & AA
of DA-IMRN increases from 81.32% & 86.13%, 90.31% & 93.18% to 91.26% & 94.22%. In
addition, DA-IMRN achieves the highest Kappa.

Regarding to the single branch of DA-IMRN, the OA of DA-IMRN (sub-net1) and
DA-IMRN (sub-net2) are only slightly lower than TAP-Net, whereas significantly higher
than SS3FCN and traditional classification methods. The AA of the DA-IMRN (sub-net2)
even surpasses TAP-Net. Compared with these two separate sub-networks DA-IMRN
(sub-net1) and DA-IMRN (sub-net2), DA-IMRN employs the dual-attention mechanism
to guide the feature learning and realizes information interaction between two branches.
The OA & AA & Kappa of DA-IMRN increased accordingly by 2.14% & 2.21% & 0.6% and
1.42% & 0.3% & 0.2%. The proposed framework is more robust even with less number
of training samples. Figure 8 shows classification maps by SS3FCN, TAP-Net, DA-IMRN
(sub-net1), DA-IMRN (sub-net2) and the DA-IMRN. The results of other methods are not
described here due to insufficient details to reproduce the classification maps. As we can
see, the classification results of the SS3FCN are not satisfactory. Especially for the upper
left corner, most of the Grapes_untrained (C8) are misclassified into Vinyard_untrained
(C15). Although there are a few noisy points, the results of DA-IMRN are much better than
that of other counterparts.

Table 3. Salinas Valley dataset: Classification results in terms of per-class accuracy, OA, AA (in %),
and the Kappa scores. In the last four columns, the results are displayed in the form of mean ±
standard deviation.

Class

Method

VHIS DA-VHIS AutoCNN SS3FCN TAP-Net DA-IMRN
(sub-net1)

DA-IMRN
(sub-net2) DA-IMRN

C1 85.91 96.36 96.75 92.36 98.73± 1.03 96.90± 2.08 99.23± 0.52 98.44± 1.65
C2 73.88 94.71 99.26 92.58 99.71± 0.34 95.68± 5.07 99.67± 0.26 98.37± 2.58
C3 33.72 49.95 79.46 66.35 91.29± 7.74 85.31± 12.45 96.55± 2.06 97.75± 2.28
C4 65.92 79.62 99.09 98.13 98.78± 0.58 96.00± 1.71 98.64± 0.69 97.22± 1.64
C5 46.42 64.30 97.21 95.63 96.27± 2.22 92.45± 6.91 97.37± 1.53 92.34± 3.87
C6 79.63 79.89 99.68 99.30 99.26± 0.59 99.24± 0.76 99.59± 0.16 99.34± 0.38
C7 73.59 79.62 99.35 99.43 99.35± 0.32 99.23± 0.43 99.29± 0.32 99.05± 0.51
C8 72.16 74.54 75.82 69.72 84.76± 3.62 86.33± 8.34 83.84± 2.08 87.27± 4.59
C9 71.87 96.10 99.05 99.67 98.13± 1.23 99.07± 0.77 98.75± 0.68 99.38± 0.43

C10 73.11 87.28 87.54 84.07 88.56± 4.41 87.33± 4.52 92.04± 2.16 89.14± 4.62
C11 72.51 73.08 89.15 85.31 84.59± 8.04 94.43± 1.82 94.39± 3.50 93.82± 3.25
C12 71.06 98.25 96.99 97.98 99.02± 1.48 97.50± 1.08 99.38± 0.44 97.28± 2.11
C13 75.80 97.67 98.36 98.45 98.07± 1.93 97.21± 3.12 97.27± 2.97 97.60± 2.09
C14 72.04 88.07 90.61 87.32 94.59± 5.59 94.51± 7.21 93.69± 9.64 95.12± 8.28
C15 45.03 62.92 63.47 52.31 69.09± 8.00 62.74± 9.62 60.57± 2.30 68.86± 10.81
C16 22.54 45.39 89.26 59.97 90.71± 6.87 88.22± 4.88 92.48± 5.65 92.55± 4.41

OA 64.20 77.52 87.15 81.32 90.31± 1.27 89.12± 1.75 89.84± 1.02 91.26 ± 0.89
AA 64.70 79.24 91.32 86.13 93.18± 1.27 92.01± 0.64 93.92± 1.26 94.22 ± 0.90

Kappa / 0.749 0.857 / 0.881± 0.03 0.879± 0.02 0.883± 0.01 0.885 ± 0.03
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Figure 8. Classification maps of different models for Salinas Valley dataset: (a) false-color composite
image; (b) ground truth; (c) SS3FCN; (d) TAP-Net; (e) DA-IMRN (sub-net1); (f) DA-IMRN (sub-net2);
(g) DA-IMRN.

4.2. Classification Result on Pavia University

The OA, AA, Kappa and class-specific accuracy obtained by different methods over
the PU dataset are shown in Table 4. Similar to the results over the SV dataset, the proposed
DA-IMRN is significantly better than VHIS, DA-VHIS, AutoCNN, SS3FCN and TAP-Net,
with an average OA of 93.33%, AA of 89.61% and Kappa of 0.923. As we can see, VHIS and
its variant DA-VHIS, fail to predict C7 in the testing set. The main reason is that no pixels
of C7 was selected in the training process. In this work, more balanced data partitioning
contributes the improvement of prediction accuracy. The accuracy of DA-IMRN over C6
increased from 84.17% of TAP-Net to 93.99%, owing to the exploration of the multi-scale
joint information. In addition, different from the results over SV dataset and IP dataset, the
performance of DA-IMRN (sub-net2) is worse than that of (sub-net1). This can be ascribed
to the lack of spectral information for the PU dataset, which only owns 103 spectral bands.
The detailed classification maps corresponding to one of five-time experiments are shown
in Figure 9. Similar to the results on SV dataset, the noise is obvious in the classification
result of SS3FCN. The major reason is that SS3FCN only adopted fixed kernel size, and
neglected the information from multiple receptive fields. In addition, it should be noticed
that the AutoCNN [50] only used 4.20% of the labeled pixels for training. To make a fair
comparison, we also evaluate the performance when same number of labeled pixels are
used for training. As shown in the Supplementary Table S1, the proposed DA-IMRN
outperforms AutoCNN in terms of OA, AA and Kappa.

Figure 9. Classification maps of different models for Pavia University dataset: (a) false color com-
posite image; (b) ground truth; (c) SS3FCN; (d) TAP-Net; (e) DA-IMRN (sub-net1); (f) DA-IMRN
(sub-net2); (g) DA-IMRN.
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Table 4. Pavia University dataset: Classification results in terms of the per-class accuracy, OA, AA (in
%), and the Kappa scores. In the last four columns, the results are displayed in the form of mean ±
standard deviation.

Class

Method

VHIS DA-VHIS AutoCNN SS3FCN TAP-Net DA-IMRN
(sub-net1)

DA-IMRN
(sub-net2) DA-IMRN

C1 93.40 93.42 83.40 97.48 95.67± 1.43 95.16± 4.33 94.16± 1.08 95.16± 2.58
C2 86.20 86.52 93.32 90.86 97.61± 1.39 98.77± 0.55 95.53± 1.47 98.43± 1.15
C3 47.58 46.88 61.52 58.75 73.08± 11.00 73.27± 9.83 87.51± 4.36 77.94± 11.83
C4 86.89 92.21 78.86 84.81 94.23± 1.38 93.14± 1.27 83.23± 3.07 94.45± 2.17
C5 59.81 59.74 98.25 94.82 99.48± 0.35 98.56± 1.66 99.43± 0.27 99.06± 1.57
C6 27.14 27.68 73.34 23.59 84.17± 10.26 87.98± 11.17 84.42± 10.92 93.99± 5.61
C7 0 0 64.56 61.61 59.92± 12.76 71.06± 9.32 46.73± 20.72 65.82± 11.98
C8 78.46 78.32 76.86 88.84 83.60± 7.42 82.02± 6.72 58.67± 10.24 83.43± 8.03
C9 79.27 79.60 97.69 88.68 99.33± 0.44 98.59± 1.03 99.09± 0.55 98.22± 2.22

OA 73.26 73.84 84.63 79.89 91.64± 1.08 92.42± 0.68 87.20± 1.17 93.33 ± 1.00
AA 62.08 62.71 80.87 76.60 87.45± 3.09 88.73± 1.34 83.20± 2.60 89.61 ± 1.12

Kappa / 0.631 0.800 / 0.892± 0.02 0.905± 0.01 0.834± 0.01 0.923 ± 0.02

4.3. Classification Result on Indian Pines

As to the IP dataset, the spatial size is relatively small, with 145× 145 pixels. Therefore,
we set the patch size as 4× 4, and only keep two different convolution kernels in the
multi-scale residual blocks. The comparison results over this dataset are shown in Table 5.
The number of pixels corresponding to each class is quite imbalanced and the number
of patches is significantly less than that of SV/IP dataset, both of which deteriorate the
overall performance. Although the proposed DA-IMRN outperforms the state-of-art HSI
classification without information leakage, the average OA & AA & Kappa is only 82.38%
& 80.35% & 0.791. It is worth mentioning that for some classes that are difficult to classify
using other methods, such as C1, C4, and C15, the performance of DA-IMRN is mostly
better than other methods. Figure 10 shows the classification maps by various methods
under comparison. Although there is scattered noise within the resulted classification maps
of DA-IMRN, most pixels still present a dense block distribution.

Figure 10. Classification maps of different models for Indian Pines dataset: (a) false color composite
image; (b) ground truth; (c) SS3FCN; (d) TAP-Net; (e) DA-IMRN (sub-net1); (f) DA-IMRN (sub-net2);
(g) DA-IMRN.



Remote Sens. 2022, 14, 530 16 of 22

Table 5. Indian Pines dataset: Classification results in terms of the per-class accuracy, OA, AA (in %),
and the Kappa scores. In the last four columns, the results are displayed in the form of mean ±
standard deviation.

Class

Method

VHIS DA-VHIS AutoCNN SS3FCN TAP-Net DA-IMRN
(sub-net1)

DA-IMRN
(sub-net2) DA-IMRN

C1 17.68 15.89 19.58 40.4 70.98± 22.75 32.25± 37.37 62.75± 16.41 73.71± 12.19
C2 56.89 70.41 60.16 77.89 76.54± 5.92 71.66± 6.32 75.31± 8.93 73.72± 7.70
C3 51.55 61.44 44.12 60.74 75.62± 7.62 71.20± 8.44 72.06± 13.42 79.09± 5.94
C4 36.27 42.28 25.35 11.8 46.83± 17.89 43.84± 21.96 49.39± 21.80 62.59± 13.84
C5 69.02 73.02 77.80 67.5 69.78± 14.82 68.70± 19.25 76.90± 10.40 70.97± 15.39
C6 92.35 92.13 90.99 91.95 94.77± 3.96 91.21± 4.53 93.27± 2.61 94.36± 3.67
C7 0 0 35.63 20.14 80.40± 27.43 69.18± 18.42 50.18± 32.68 63.70± 17.72
C8 86.95 86.44 95.87 81.71 98.95± 1.58 95.33± 5.86 97.34± 3.05 97.94± 1.83
C9 19.55 21.28 5.31 31.67 70.03± 23.60 77.06± 8.98 52.85± 25.61 78.85± 7.95

C10 60.05 67.47 55.93 78.15 84.59± 5.99 84.75± 5.71 83.62± 2.16 83.87± 8.35
C11 74.05 65.24 68.73 69.32 80.39± 4.36 76.82± 7.24 77.46± 2.92 79.72± 4.02
C12 43.71 49.56 36.96 40.81 76.84± 6.18 75.84± 7.14 79.31± 8.15 79.28± 8.03
C13 94.15 96.01 87.33 93.43 97.13± 2.53 95.82± 4.35 94.82± 3.80 95.66± 2.38
C14 91.18 92.68 84.90 91.77 94.83± 1.92 93.70± 4.24 94.78± 3.17 94.06± 3.69
C15 43.39 52.79 39.02 37.93 51.70± 10.20 41.58± 16.53 48.53± 7.84 53.68± 9.82
C16 45.04 44.78 48.02 75.19 92.27± 5.12 93.66± 2.83 88.41± 4.74 94.42± 4.81

OA 67.11 65.97 65.35 71.47 81.35± 1.53 78.35± 3.32 80.32± 1.94 82.38 ± 2.04
AA 55.11 54.06 54.73 60.65 78.85± 3.18 73.91± 4.01 74.81± 3.35 80.35 ± 2.69

Kappa / 0.653 0.600 / 0.787± 0.02 0.753± 0.03 0.775± 0.02 0.791 ± 0.02

5. Analysis and Discussion

The comparisons in Section 4 demonstrate that the proposed attention guided multi-
scale residual feature learning provides the best results in HSI classification, especially for
SV and PU dataset. Herein, we explore the effect of various factors on the model perfor-
mance, especially for the block-patch size, the attention modules, the multi-scale residual
blocks, the number of labeled pixels for training and different information fusion strategies.

5.1. Effect of Block-Patch Size

The block-patch size is a crucial factor for the classification results. We first divide
the dataset into a few blocks with same size, including the training blocks, validation
blocks and testing blocks without overlap. We slide a window with a fixed patch size
within each blocks and obtain the training patches, validation patches and testing patches,
corresponding to training dataset, validation dataset and testing dataset. Although the
patches within one dataset might intersect with each other, there is no overlap between
the patches in two different datasets, avoiding the potential information leakage as in
the traditional patch-wise classification. The value of block-patch size directly affects the
number of training samples and the maximum receptive field. In this study, we evaluate
the performance corresponding to different block-patch sizes across three datasets. For
simplicity, we empirically set the difference between block size and patch size to be 2. We
evaluate the performance when the block-patch size increases from 6–4 to 14–12 for SV
and PU dataset. Considering the spatial size of the IP dataset is relatively small, we set the
block-patch size to vary from 4–2 to 8–6. The results in terms of OA and AA are shown
in Figure 11. As we can see, over the SV dataset, when the block-patch size gradually
increases from 6–4 to 14–12, the performance of the model generally increases first and then
decreases. The highest accuracy is achieved with an OA/AA of 91.26%/94.22% when the
block-patch size is 10–8. Given smaller block size, there would be more training samples,
whereas the spatial information in the training patches might be limited, and vice versa.
The optimal performance is a trade-off between sample number and receptive field. Similar
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results are achieved over PU/IP datasets. The optimal block-patch size is 10–8/6–4 with
OA & AA of 93.33% & 89.61% and 82.38% & 80.35%, respectively.

Figure 11. Effects of the block-patch size on OA and AA (%): (a) Salinas Valley, (b) Pavia University,
and (c) Indian Pines.

5.2. Impact of the Attention-Guided Feature Learning

To verify the effectiveness of the SCAM and SAM, we removed them from DA-IMRN
for comparison, separately. Table 6 shows the experimental results in terms of OA & AA
over three datasets. As we can see, adding the proposed two attention modules to the
network separately, either the SCAM or the SAM, is able to improve the performance in a
certain extent. They are indispensable and complementary units to achieve the final optimal
result. The DA-IMRN with dual-attention guided feature learning outperforms its sub-
networks without attention mechanism. For instance, over SV dataset, the average OA &
AA increase by 1.46% & 1.12% in comparing the network without attention. The advantage
of the dual-attention mechanism is much more prominent over the PU dataset and IP
dataset. The improvement of the average OA & AA increase by 3.09% & 4.99%, and 3.67%
& 5.82%, respectively. In addition, we notice that the SAM is slightly better than SCAM
over these three datasets. We suspect the main reason is that the spectral information might
be preferred than the spatial information, although they are complementary. Furthermore,
the dual-attention mechanism reduces the variation of the performance over multiple
repetitions, making the network more stable.

The statistical test demonstrates whether the distribution of one set is significantly
different from another set. In this study, we execute a two-tailed Wilcoxon’s test over
per-class accuracy across three datasets to verify if the proposed modules are statistically
important. The statistical difference between the performance of DA-IMRN (- -), DA-IMRN
(single SCAM), DA-IMRN (single SAM) and DA-IMRN is shown in Table 7, demonstrating
that the attention modules, especially for the SAM, significantly improves the performance
(p-value = 1.21 × 10−5). Although the performance of DA-IMRN (SAM) is slightly better
than that of DA-IMRN (SCAM), there is no significant difference between their results.

Table 6. Impact of the SCAM and SAM in terms of OA and AA (in %). DA-IMRN (- -) denotes the
network without any attention module or interaction between two branches. Both the SAM attention
modules and their inputs are removed in the network DA-IMRN (single SCAM). Similarly, the SCAM
attention modules and their inputs are discarded in the network DA-IMRN (single SAM).

Salinas Valley Pavia University Indian Pines
OA AA OA AA OA AA

DA-IMRN (- -) 89.80± 1.40 93.10± 1.14 90.24± 3.48 84.62± 4.60 78.71± 2.70 74.53± 3.70
DA-IMRN (single SCAM) 90.39± 1.18 93.38± 1.08 91.69± 2.21 88.81± 2.35 80.46± 2.22 76.90± 2.78
DA-IMRN (single SAM) 90.79± 0.86 93.60± 1.05 92.59± 1.35 89.25± 1.15 81.86± 0.93 78.69± 1.14

DA-IMRN 91.26± 0.89 94.22± 0.90 93.33± 1.00 89.61± 1.12 82.38± 2.04 80.35± 2.69



Remote Sens. 2022, 14, 530 18 of 22

Table 7. Results of two-tailed Wilcoxon’s tests over per-class accuracy for the proposed networks.

DA-IMRN (Single SCAM) DA-IMRN (Single SAM) DA-IMRN

DA-IMRN (- -) 1.91× 10−4 5.55× 10−5 1.21× 10−5

DA-IMRN (single SCAM) 0.234 0.002
DA-IMRN (single SAM) 0.014

5.3. Impact of the Multi-Scale Spectral/Spatial Residual Block

Furthermore, we verify the effect of the multi-scale residual blocks through ablation
experiments. We evaluate the performance of the proposed network (DA-IMRN), the
network containing only the multi-scale spatial residual block (DA-IMRN (single MSpaRB)),
the network containing only the multi-scale spectral residual block (DA-IMRN (single
MSpeRB)) and the network without the multi-scale spectral/spatial residual block (DA-
IMRN (- -)). The experimental results in terms of OA & AA over three datasets are shown
in Table 8. In general, both the MSpaRB and MSpeRB contribute to the improvement of the
performance, and their combination yields the best performance. The advantage is most
obvious over the IP dataset, and the OA & AA increased from 77.38% & 75.61% to 82.38%
& 80.35%, respectively. Moreover, the introduction of the MSpaRB and MSpeRB reduce the
standard variance of OA & AA across multiple repetitions, indicating its better stability
under the same parameter settings.

We further compare the statistical differences between DA-IMRN (- -), DA-IMRN
(single MSpaRB), DA-IMRN (single MSpeRB) and DA-IMRN via Wilcoxon’s test. As
shown in Table 9, MSpaRB and MSpeRB significantly improved the performance (with p-
value of 1.23× 10−4 and 1.48× 10−4) across three datasets. However, there is no significant
statistical difference between DA-IMRN (MSpaRB) and DA-IMRN (MSpeRB), and the
performances of them are similar.

Table 8. Performance comparisons in terms of OA and AA (in %) between the networks with/without
multi-scale residual blocks. DA-IMRN (- -) represents replacing both MSpaRB and MSpeRB in DA-
IMRN with ordinary residual block without multi-scale convolution. DA-IMRN (single MSpaRB)
(or DA-IMRN (single MSpeRB)) means that only MSpaRB (or MSpeRB) is used in the network, and
another block is replaced with standard residual block.

Salinas Valley Pavia University Indian Pines
OA AA OA AA OA AA

DA-IMRN (- -) 87.25± 1.91 91.40± 1.71 91.04± 1.14 87.95± 2.52 77.38± 2.18 75.61± 2.24
DA-IMRN (single MSpaRB) 89.27± 0.88 92.28± 1.30 91.71± 0.59 90.19± 2.17 81.77± 1.47 77.09± 4.69
DA-IMRN (single MSpeRB) 88.71± 3.82 91.91± 3.46 92.08± 2.26 89.26± 2.89 81.73± 1.86 76.34± 3.18

DA-IMRN 91.26± 0.89 94.22± 0.90 93.33± 1.00 89.61± 1.12 82.38± 2.04 80.35± 2.69

Table 9. Results of two-tailed Wilcoxon’s tests over per-class accuracy for the proposed MSpaRB ,
MSpeRB and complete network.

DA-IMRN (Single MSpaRB) DA-IMRN (Single MSpeRB) DA-IMRN

DA-IMRN (- -) 1.23× 10−4 1.48× 10−4 2.47× 10−5

DA-IMRN (single MSpaRB) 0.692 0.017
DA-IMRN (single MSpeRB) 0.011

5.4. Impact of the Numbers of Labeled Pixels for Training

Given a classification method, the performance is influenced largely by the training
set. In this work, we evaluate the performance of the proposed method when different
numbers of labeled pixels are used for training and the result over PU dataset is shown in
Table 10. In general, with the increase of the average number of training pixels from 2136 to
2701.4, the performance in term of OA/AA/Kappa improves from 86.04%/81.34%/0.823
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to 93.33%/89.61%/0.923. Given more training samples (in comparison to 2701.4), the
proposed method achieves similar result and the performance becomes saturated.

Table 10. Performance with different ratios of labeled pixels for training over PU dataset.

Training Pixels 2949.7 2701.4 2554.8 2318.8 2136
Ratio (%) 6.89% 6.31% 5.97% 5.42% 4.99%
OA (%) 92.92± 1.11 93.33± 1.00 91.28± 1.87 88.31± 2.53 86.04± 1.70
AA (%) 89.74± 1.37 89.61± 1.12 87.27± 1.45 84.05± 2.23 81.34± 2.76
Kappa 0.921± 0.02 0.923± 0.02 0.887± 0.02 0.849± 0.03 0.823± 0.02

5.5. Impact of Different Information Fusion Strategies

In this study, we interactively explore the spectral-spatial information to enhance the
classification performance. Generally, the information fusion can be categorized into raw
data fusion, feature fusion and decision fusion. As to this work, the inputs of these two
branches are from the same patches. Therefore, we only consider the feature fusion and
decision fusion in this study. The detailed architecture of the decision fusion network is
shown in the Supplementary Figure S1, where the decision maps from two branches are
averaged to obtain the final prediction results. As shown in Table 11, the performance of
feature fusion is better than that of decision fusion. Taking the PU dataset for instance, the
average OA/AA/Kappa of the feature fusion framework is 93.33%/89.61%/0.923, whereas
that of the decision fusion framework is only 92.00%/87.69%/0.898, respectively. Similar
results are observed over SV dataset and IP dataset.

Table 11. Performance comparison with different fusion strategies.

SV PU IP
Feature Fusion Decision Fusion Feature Fusion Decision Fusion Feature Fusion Decision Fusion

OA (%) 91.26± 0.89 89.61± 1.54 93.33± 1.00 92.00± 0.98 82.38± 2.04 78.67± 3.37
AA (%) 94.22± 0.90 92.62± 1.26 89.61± 1.12 87.69± 2.01 80.35± 2.69 73.16± 4.34
Kappa 0.885± 0.03 0.877± 0.03 0.923± 0.02 0.898± 0.02 0.791± 0.02 0.747± 0.03

6. Conclusions

HSIs are characterized by abundant spectral and spatial information. As a key step in
HSI analysis, the purpose of HSI classification is to assign a unique label to each pixel of
the HSIs. However, there might be potential information leakage issues in the traditional
patch-wise classification approaches which aim to predict the label of the central pixel and
then provide predictions for all pixels with the sliding strategy. In this study, we propose
a novel pixel-to-pixel classification framework to fully exploit the limited annotations of
HSIs. Although previous HSI classification methods attempted to extract discriminative
spectral-spatial features, most of them simply stacked these two types of information,
and neglected the information interaction in the feature learning. Under the premise of a
data partition method without information leakage, we develop a dual-attention guided
interactive multi-scale residual network to achieve end-to-end pixel-wise classification of
HSIs. We first employ attention modules, including spatial-channel attention and spectral
attention, to realize information interaction between two branches. The proposed attention
modules are able to adaptively re-weight the feature maps and achieve distinctive features.
In addition, since both spectral and spatial information are vital for HSI classification,
we introduce MSpaRB and MSpeRB in two different branches, and fuse different levels
of spectral as well as spatial features. The proposed method takes advantages of the
fusion of joint spectral-spatial information, and achieves better performance in comparing
with the recent HSI classification methods. In addition, how to efficiently explore the
potential information from limited HSIs is a major concern in the remote sensing field. The
proposed framework, with simple network structures, provides a promising way for HSI
classification, especially for small-size HSI analysis. The modules designed in this paper
can be easily generalized to other HSI datasets.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs14030530/s1, Figure S1: The network architecture corresponding to decision fusion, Table S1:
The performance of DA-IMRN and AutoCNN when the ratio of pixels for training is set to be 4.20%
(over the PU dataset).
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