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Abstract: To eliminate the mixed noise in hyperspectral images (HSIs), three-dimensional total
variation (3DTV) regularization has been proven as an efficient tool. However, 3DTV regularization
is prone to losing image details in restoration. To resolve this issue, we proposed a novel TV, named
spatial domain spectral residual total variation (SSRTV). Considering that there is much residual
texture information in spectral variation image, SSRTV first calculates the difference between the pixel
values of adjacent bands and then calculates a 2DTV for the residual image. Experimental results
demonstrated that the SSRTV regularization term is powerful at changing the structures of noises
in an original HSI, thus allowing low-rank techniques to get rid of mixed noises more efficiently
without treating them as low-rank features. The global low-rankness and spatial–spectral correlation
of HSI is exploited by low-rank Tucker decomposition (LRTD). Moreover, it was demonstrated that
the l2,1 norm is more effective to deal with sparse noise, especially the sample-specific noise such as
stripes or deadlines. The augmented Lagrange multiplier (ALM) algorithm was adopted to solve the
proposed model. Finally, experimental results with simulated and real data illustrated the validity of
the proposed method. The proposed method outperformed state-of-the-art TV-regularized low-rank
matrix/tensor decomposition methods in terms of quantitative metrics and visual inspection.

Keywords: hyperspectral image restoration; low-rank tensor decomposition; SSRTV; alternating
direction methods of multipliers (ADMM)

1. Introduction

Hyperspectral imagery (HSI) is composed of numerous narrow spectral bands typi-
cally in the range of 400 nm to 2500 nm. Due to its rich spectral information, it can better
reflect the reflectance information of ground objects; therefore, it has been widely used in
precise agriculture, mineral detection, environment monitoring, urban planning, and so
on [1]. Unfortunately, because of facility restrictions, atmospheric conditions, and other
unknown factors during the collection process [2], HSI of a real scene is degraded by vari-
ous noises, such as gaussian noise, impulse noise, stripe, and deadlines. The existence of
noise not only reduces visual quality but also limits the processing accuracy in subsequent
applications, e.g., unmixing [3], classification [4,5], and target detection [6]. Consequently,
restoration of HSI is a critical preprocessing step for effective applications.

A large number of restoration techniques has hitherto been developed for HSI. Filtering-
based methods are commonly used because of simplicity [7,8]. However, most of these
methods are effective only for a particular noise using a specific filter; the restoration perfor-
mance is limited for mixed noise. Another popular approach is statistical-based methods [9]
usually with the assumption that the noise obeys some probability distribution. In recent
years, optimization-based HSI restoration methods have emerged; these methods consider
HSI denoising as an optimization problem consisting of regularization and data-fidelity
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terms. The regularization term helps to exploit prior knowledge about the underlying
properties of HSI and noise; therefore, an accurate description of the regularization is
prerequisite to good results under ill-posed conditions.

In optimization-based methods, an HSI can be restored by the one dimensional (1D)
vector method [10], two dimensional (2D) matrix method [11], or 3 dimensional (3D)
tensor method [12–14]. In these methods, the HSI is treated as vectors, grayscale matrices,
or three-order tensors, respectively. Even though the 1D and 2D methods are always
faster, the restoration results are unsatisfactory because they ignore the inherited spectral
and spatial correlation of a HSI. To address this issue, various methods to incorporate
the prior knowledge of such correlations have been proposed. For instance, a wavelet
shrinkage method applied in both spatial and spectral domains was proposed in [15].
Zhao et al. [16] proposed a sparse representation method to jointly utilize the spatial-
spectral information of HSI. Considering the differences between spectral noise and spatial
information, Yuan et al. [17] proposed a spectral-spatial adaptive total variation model.
With the advent of tensor technology, which conveniently deals with the spectral and
spatial domain of a HSI simultaneously, increasingly more studies are devoted to tensor-
based restoration methods.

A typical HSI has low rank properties. It was claimed in [12] that HSI X Xhas a specific
correlation in both spatial dimensions by observing the obvious decaying trends of the
singular value changes of unfolding matrices X(1) and X(2), which also indicate that they are
low-rank matrices. From the linear mixture point, HSI shows strong spectral correlation,
and the mode-3 unfolding matrix X(3) is a low-rank matrix. As the collected HSIs from
real scenes are inevitably contaminated by various noise, they could destroy the low-rank
property. Based on the low rank assumption, a low-rank matrix recovery (LRMR) model
was proposed in [2] to remove the mixed noise, where an HSI was decomposed into a
low-rank part and a sparse part to represent a clean HSI and sparse noises, respectively.
Even LRMR can remove Gaussian and sparse noise simultaneously; this method considers
only the local similarity within patches. Subsequently, numerous non-convex norms have
been proposed to formulate the low-rank property instead of the nuclear norm, for example,
γ-norm [18] and weighted Schatten p-norm [19,20]. However, there are three weaknesses
with these methods. Firstly, these methods need to reshape the original 3D HSI into a 2D
matrix, which will destroy the spectral correlation. Secondly, computational cost is high
because one has to compute the matrix singular value decomposition (SVD) in each of the
iterations in optimization. Thirdly, the low rank property exists in both spectral and spatial
domains [12], but these methods consider the low rank property in the spatial domain
and spectral domain separately. Consequently, to utilize the global low-rank property and
spatial–spectral correlation of HSI, methods based on the low-rank tensor decomposition
(LRTD) have been proposed for HSI restoration [12–14]. One major challenge is local,
structured sparse noise such as stripes or deadlines. Since these noises are regarded as the
low rank component, the low-rank constraint will fail to remove them.

In addition to the low rank property of HSI, it also has a piecewise smooth structure
as a natural image in the spatial domain, which can be exploited by total variation (TV)
regularization methods [21–25]. For example, He et al. [21] combined band-by-band TV
(BTV) regularization with low-rank matrix factorization (LRMF) to improve restoration
performance. While BTV is useful to characterize spatial piecewise smoothness, it does not
consider spectral correlation of HSI.

To overcome spatial over-smoothing of TV methods, many methods incorporate
spectral correlation. For example, Yuan et al. [17] introduced a spectral-spatial adaptive
hyperspectral TV (SSAHTV), which realized the band and spatial adaptive denoising
process automatically. Zheng et al. [22] extended it to a band group-wise version. Similar
approaches that explicitly evaluate spectral correlation in addition to spatial piecewise-
smoothness include the spatial-spectral TV (SSTV) [23], anisotropic SSTV (ASSTV) [24],
and Cross Total Variation (CrTV) [25]. In the design of SSTV and ASSTV, spatial correlation
is interpreted as spectral piecewise smoothness and is evaluated by the l1 norm of local
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differences along the spectral direction, resulting in computationally efficient optimization.
Specifically, to evaluate spatial and spectral piecewise smoothness simultaneously, SSTV
focuses on local spatial-spectral differences. However, as this method ignores direct local
spatial differences, the restored HSI tends to have artifacts, especially in highly noisy
scenarios. While ASSTV handles both local spatial and spectral differences directly in
parallel, it often produces spectrally over-smoothed images because it strongly suppresses
the l1 norm of direct spectral differences for HSI. SSAHTV can adaptively estimate the
denoising strength according to different spatial properties and different noise intensity in
bands.

The other method is three-dimensional spectral-spatial TV (3DSSTV, or 3DTV for brief)
and its variants. The 3DTV [26] is defined as

‖X ‖3DTV = w1DhX + w2DvX + w3DpX = ∑
i,j,k

(w1

∣∣∣xi + 1,j,k − xi,j,k

∣∣∣ + w2

∣∣∣xi,j + 1,k − xi,j,k

∣∣∣ + w3

∣∣∣xi,j,k + 1 − xi,j,k

∣∣∣ (1)

The Dh, Dv, and Dp are difference operators along the horizontal, vertical, and spectral
directions, respectively. The w1, w2, and w3 are the weights corresponding with Dh, Dv,
and Dp. The 3DTV has been combined with LRTD [26] and t-SVD [27] to remove mixed
noise in HSI. In general, the combination of a low-rank tensor and 3DTV regularization
restoration model achieves better results. It is noteworthy that the 3DTV is different from
the aforementioned SSTV. The SSTV is defined as the TV of the unfolding matrix of HSI, as
such SSTV indeed belongs to 2DTV.

Although the 3DTV defined in Equation (1) considered both spatial and spectral
smoothness, there still is one problem. The difference images in 3DTV, which are calculated
by Dh, Dv, and Dp, are presented in Figure 1. Figure 1a–c shows the images of DhX , DvX ,
and DpX for real Urban dataset X , respectively. The 3DTV along the spectrum considers
that the content of the adjacent bands is close to each other, and the variation of DpX is
sparse. However, it can be observed from Figure 1c that the variation along spectrum DpX
still leaves lots of details. Therefore, the real value of 3DTV in HSI is relatively large (see
Figure 2a).

Figure 1. Examples of differences between 3DTV and SSTV with Band 115 of real Urban dataset. The
3DTV calculates the L1 norm of spatial-spectral differences (blue line). SSRTV evaluates the L1 norm
of both direct spatial and spatial-spectral residual differences (red line). The DhX , DvX and DpX
in (a–c) respectively represent differences of X along the horizontal, vertical, and spectral directions.
The Dh

(
DpX

)
and Dv

(
DpX

)
in (d) and (e) represent differences of DpX along the horizontal and

vertical directions.
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Figure 2. The histogram of (a) DpX , (b) Dh
(

DpX
)
, and (c) Dv

(
DpX

)
.

Figure 2 shows the histograms of DpX , Dh
(

DpX
)
, and Dv

(
DpX

)
, respectively. The

more detailed the image is, the larger the real 3DTV norm is. Therefore, if 3DTV is
minimized as a constraint condition for HSI restoration, there is a great possibility of loss of
image details, with a sub-optimal effect. To overcome the aforementioned drawbacks and
effectively utilize the prior knowledge on HSI, we proposed a Spatial-Spectral Residual
Total Variation (SSRTV) regularization technique for HSI restoration. The SSRTV is designed
to evaluate two types of local differences: direct local spatial differences (DhX , DvX )
and local spatial-spectral differences (Dh

(
DpX

)
, Dv

(
DpX

)
) in a unified manner with a

balancing weight. This design resolves the drawbacks of the existing TV regularization
techniques mentioned above. Generally speaking, Dh

(
DpX

)
and Dv

(
DpX

)
are calculated

with the 2DTV on the residual image DpX . Then, the local correlation within the bands
is actually considered, which would promote a much stronger sparsity than DpX (see
Figure 1d,e, and the corresponding histograms in Figure 2b,c). Dh

(
DpX

)
and Dv

(
DpX

)
are expressed as:

Dh
(

DpX
)
= ‖DhM1‖ = ∑ i,j,k

∣∣∣Mi + 1,j,k − Mi,j,k

∣∣∣ (2)

Dv
(

DpX
)
= ‖DvM1‖ = ∑ i,j,k

∣∣∣Mi,j + 1,k − Mi,j,k

∣∣∣ (3)

whereMi,j,k = Xi,j,k + 1 − Xi,j,k is the difference of band k + 1 and k for pixel at spatial
location (i, j).

Although the SSRTV defined here looks similar to the Hybrid Spatio-Spectral Total
Variation (HSSTV) in reference [28], there are essential differences between them. In fact, the
Dh
(

Dpu
)

and

Dv
(

Dpu
)

in HSSTV mean Dh

(
DpX(1)

)
and Dv

(
DpX(2)

)
, where X(1) and X(2) are the

unfolding matrices along the horizontal (mode-1) and vertical (mode-2).
In addition, the deadlines, stripes, and impulse noises were assumed to be sparse [2].

Among these sparse noises, the stripes or deadlines showed a certain directional character-
istic, as shown in Figure 3. When the sparse noises at the same place occurred in most of
the bands, they were treated as the low-rank component and could not be removed by the
low-rank-based method [21].

To remove the mixed noise in the HSI, we designed a spatial domain spectral Residual
Total Variation regularization approach combined with LRTD (LRTDSSRTV). Figure 4
presents the flowchart of our method.

It was found that SSRTV is totally different from the previous TV regularization
in [25,29]. Our proposed HSI restoration method combined SSRTV with the low-rank
Tucker decomposition framework. To summarize, the major contributions of this paper are
as follows.

(1) We designed a Spatial-Spectral Residual Total Variation (SSRTV) to better capture
both the direct spatial and spatial-spectral piecewise smoothness of HSI. This can
overcome disadvantages of previous TV methods, that is, the low-rank regularization
fails to remove the structured sparse noise.
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(2) The SSRTV was incorporated into the LRTD model to separate the underlying clean
HSI from its degraded version with mixed noise. LRTD was adopted to preserve the
global spatial and spectral correlation of HSI and restore the clean low-rank HSI.

(3) The classical higher-order orthogonal iteration (HOOI) algorithm [30] was adopted to
achieve the Tucker decomposition efficiently, without bringing an extra computational
burden. By using alternating direction method of multipliers (ADMM), our method
was split into several simpler sub-problems. Compared with the methods based on
low-rank matrix/tensor decomposition, the experimental results with the simulations
and real data validated the proposed method.

Figure 3. Illustration of deadlines and stripes in Urban data. (a) Band 204. (b) Band 206.

Figure 4. The flowchart of the LRTDSSRTV model.

The remaining contents are organized as follows. In Section 2, we present notations
for tensor operations. Our restoration model and its optimization are described in Section 3.
The effectiveness of the proposed method was verified by the experiments of simulated
data sets and real remote sensing data sets, shown in Section 4. Finally, the conclusions are
drawn, and outlook is presented in Section 5.

2. Notations and Preliminaries

In tensor algebra, a tensor is a multi-linear mapping defined on a Cartesian product of
some vector spaces and some dual spaces. The order of a tensor is defined as the number
of its dimensions or modes. For example, scalar, vector, and matrix are zero-order tensor,
one-order tensor, and two-order tensor, respectively. The corresponding representations are
a lowercase letter, lowercase boldface letter, and capitalized boldface letter. For instance, the
x, x, and X are scalar, vector, and matrix, respectively. An N-order (N ≥ 3) tensor is denoted
by a capitalized calligraphic letter, i.e., X . The HSI data cube is a three-order tensor. For
an N-dimensional real valued tensor X ∈ RI1 × I2 × ··· × IN , we used xi1,i2,··· ,iN to represent
its element at location (i1, i2, · · · , iN), and its Nth dimension is also called Nth mode. By
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fixing all the indices but the nth index, we obtained the mode-n fibers. By arranging all the

mode-n fibers as columns, we obtained a matrix denoted by X(n) or X(n) ∈ RIn × ∏N
k = 1,k 6=n Ik .

This process is also called the mode-n matrixing of X or unfolding along mode-n. The
multi-linear rank of X is an array (r1, r2, · · · , rN) and ri = rank (X(i)), I = 1, 2, . . . , N.

The inner product of two tensors X and Y was calculated by 〈X ,Y〉 = ∑i1,i2,··· ,iN
x1,i2,

··· ,iN · yi1,i2, · · · , iN . The l1-norm of tensorX was calculated as ‖X ‖1 = ∑i1,i2,··· ,iN

∣∣xi1,i2,··· ,iN

∣∣.
The l2,1-norm of matrix X was calculated as ‖X‖2,1 = ∑J

j = 1

√
∑I

i = 1

∣∣∣x2
i,j

∣∣∣. The tensor-

matrix product by mode-n was defined as (Y ×n U)i1···in − 1,in + 1,··· ,iN
= ∑in xi1,i2,··· ,iN · uj,in .

For more information of tensor algebra, please refer to [30].

3. Proposed Model
3.1. Observation Model with Mixed Noise

From the mathematics view, the HSI may be contaminated by additive and multi-
plicative noise. In this work, we considered mainly the additive noise, including Gaussian,
impulse, stripe, and deadlines [2]. The multiplicative noise can be transformed into addi-
tive noise with the Logarithmic transformation [31]. The Gaussian noise was caused by
poor lighting and/or high temperature of the imaging sensors, meanwhile the sparse noise
can be introduced by mechanical imperfection of push-broom sensors, e.g., deadlines and
stripes. Following the most popular HSI restoration model [12,32], the HSI degraded by
mixed noise was formulated in the following:

Y = X + S + N (4)

In model (4), Y ,X ,S ,N ∈ Rm × n × b are all three-order tensors, and they denote
the observed degraded HSI, latent clean HSI, the sparse noise (e.g., impulse, stripe, and
deadlines), and Gaussian noise, respectively. The size m × n × b indicates that the HSI has
b spectral bands and the resolution of each band grayscale image is m × n. The existence
of noise will hinder the understanding of HSI. The purpose of restoration focuses on
removing the noise from an observed noisy image Y and restoring a latent image X . This
pre-processing can improve the awareness level and further processing of his.

Recovering X from Y with Equation (4) is a difficult ill-condition problem [12,32]. To
tackle this problem, a typical practice is to exploit the priors of all involved variables. The
general mixed noise restoration model for HSIs can be formulated as

argmin
X ,S

R(X ) + ρR(S) + γR(N ) s.t. Y = X + S + N (5)

where R(X ), R(S), and R(N ) are the regularization terms to model the priori with respect
to a clean HSI X , sparse noise S , and Gaussian noise N , respectively. Parameters ρ and γ
are the positive regularization parameters that maintain the trade-off between the three
regularization terms. Since the Gaussian noise N is typically depicted by l2 norm and
N = Y − X − S , the Equation (5) can be transformed to its equivalent form

argmin
X ,S

R(X ) + ρR(S) s.t. ‖Y − X − S‖2
F ≤ σ2 (6)

Here, σ2 is a parameter related to the density of Gaussian noise.

3.2. Directional Structure Sparse Priori of S

For non-Gaussian noise such as deadlines, stripes, and impulse noises, they are
generally considered as having a sparse property [2], and the sparseness property for the
sparse noise S is characterized by l1 norm ‖S‖1 [12,32–34]. The directional characteristic of
stripes and deadlines show that they have structure sparse property, as shown in Figure 3.
While the l1 norm cannot depict this structure sparse property, the l2,1-norm is a sparsity-



Remote Sens. 2022, 14, 511 7 of 26

inducing norm defined as the l1-norm of the columns of matrix. It has the advantage of
being rotation invariant when compared with the traditional l1 norm [35]. It has been
demonstrated in [36] that the l2,1-norm is more robust with respect to outliers, especially
for structure sparse noise, such as stripes and deadlines [35]. In this paper, we extended

the l2,1 norm of a matrix to impose sparsity, that is ‖X ‖2,1 = ∑b
k = 1 ∑n

j = 1

√
∑m

i = 1

∣∣∣x2
i,j,k

∣∣∣.
Therefore, mathematically, the objective function can be written as follows:

min
X ,S

R(X ) + ρ‖S‖2,1, s.t. ‖Y − X − S‖2
F ≤ σ2 (7)

3.3. Low-Rank Priori of HSI

In light of the linear mixture model [37], HSI shows strong spectral correlation. Based
on this assumption, the mode-3 unfolding matrix X(3) is a low-rank matrix. Besides, by
observing the notable descent of the singular value curves of mode-1 unfolding matrix X(1)
and mode-2 unfolding matrix X(2), it was reported in [12] that HSI also showed strong
spatial correlation. To jointly consider the correlations of HSI in both spatial and spectral
domains, the low-rank Tucker decomposition was utilized to aggregate the factor matrix
of a clean HSI X : R1(X ) = ‖X − G ×1 U1 ×2 U2 ×3 U3‖2

F, where factorization matrices
U1 ∈ Rm × r1(with rank r1), U2 ∈ Rn × r2(with rank r2), and U3 ∈ Rb × r3(with rank r3) are
orthogonal in both spatial modes and spectral modes, respectively, and G ∈ Rr1 × r2 × r3 is
called the core tensor.

Restoring HSI by combining LRTD with 3DTV regularization, considering global
spatial-spectral correlation and spatial-spectral smoothness, the restored HSI achieved
satisfactory results [12]. Nevertheless, there are still some problems. The 3DTV-regularized-
based model explores the sparse priori of the spatial-spectral difference images. However,
the variation along the spectral domain still left lots of details. Therefore, the real value
of 3DTV in HSI was relatively large. To effectively utilize a priori knowledge for HSI
restoration, we proposed a new TV regularization technique to simultaneously evaluate
the direct local spatial differences and local spatial-spectral differences, which is expected
to resolve the drawbacks of the existing TV regularization techniques.

3.4. SSRTV Regularization

Our new regularization technique for HSI restoration is named SSRTV. It is defined as

SSRTV(X ) = w1DhX + w2DvX + w3
[
Dh
(

DpX
)
+ Dv

(
DpX

)]
(8)

The Dh, Dv, and Dp are the same difference operators as in Equation (1). The DhDp(·)
and DvDp(·) are defined in Equations (2) and (3). They are local spatial-spectral differences
of X , as shown in Figure 1 (box with dotted, red lines). The weights w1, w2, and w3 are
used to balance the importance of spatial-spectral piecewise smoothness and direct spatial
piecewise smoothness.

Different from DpX in 3DTV, to obtain Dh
(

DpX
)

and Dv
(

DpX
)
, the difference of

pixels in the same spatial position of adjacent bands is calculated first. Then, 2DTV is
calculated for the residual image DpX . Due to the similarity between adjacent bands, the
two-dimensional gradient of the residual image is more sparse than the two-dimensional
gradient of the original image most likely, which leads to the minimum real norm value
in the noise-free HSI. On the other hand, due to the disorder of noise, the obtained norm
value of a noisy HSI is bound to be much larger than that of the noise-free HSI. Therefore,
if the regularization term is minimized, the image details can be maintained with high
probability while removing noise.

3.5. Model Proposal and Optimization

Traditional 3DTV only considers the spatial-spectral piecewise smoothness. As a
result, the similar sparse noise in adjacent bands would be treated as a low-rank component
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and failed to be removed. Based on this observation, we put forward a spatial domain
spectral residual total variation-regularized low-rank tensor decomposition (LRTDSSRTV)
method. The low-rank tensor Tucker decomposition is used to keep the global spatial-
spectral correlation. Except for the direct spatial difference Dh(X ) and Dv(X ), the spatial
difference of spectral difference Dh

(
DpX

)
and Dv

(
DpX

)
in SSRTV regularization can

change the structure of sparse noise. The restoration model combining SSRTV with LRTD
is given as follows:

argmin
X ,S

ρ‖S‖2,1 + w1Dh(X ) + w2Dv(X ) + w3
[
Dh
(

DpX
)
+ Dv

(
DpX

)]
s.t. X = G ×1 U1 ×2 U2 ×3 U3, UT

k Uk = I, ‖Y − X − S‖2
F ≤ σ2 (9)

In Equation (9), we fully exploit the priors of the clean HSI component and noise
component. The LRTD is utilized to maintain the spatial-spectral correlation of HSI,
while the SSRTV is used to exploit local spatial-spectral smoothness of HSI. The tensor
formulation with l2,1-norm is utilized to separate the sparse noise, and the Gaussian noise
is eliminated by the Frobenius norm.

Due to the non-differential property of the model (9), an alternate updating scheme
was presented. We introduced the ADMM [38] to optimize it. By introducing auxiliary
variables Z and Dk (k = 1, 2, 3, 4, 5), a new objective function can be written as,

min
X ,S ,D1,D2,D3,D4,D5

ρ‖S‖2,1 + τ{w1‖D1‖1 + w2‖D2‖1 + w3[‖D4‖1 + ‖D5‖1]

s.t. X = G ×1 U1 ×2 U2 ×3 U3,X = Z , D1 = DhZ , D2 = DvZ , D3 = DpZ , D4 = DhD3, D5 = DvD3 (10)

All the constraints except X = G ×1 U1 ×2 U2 ×3 U3 were taken into account, and
the Augmented Lagrangian form of (10) is given by

L
(
X ,S ,G, Ui,Q, Λj

)
= ρ‖S‖2,1 + τ{w1‖D1‖1 + w2‖D2‖1 + w3[‖D4‖1 + ‖D5‖1]}

+ µ
2 (‖D1 − DhZ + Λ1‖2

F + ‖D2 − DvZ + Λ2‖2
F + ‖D3 − DpZ + Λ3‖2

F +

‖D4 − DhD3 + Λ4‖2
F + ‖D5 − DvD3 + Λ5‖2

F + ‖Y − X − S + Λ6‖2
F + ‖X − Z + Λ7‖2

F) (11)

where UT
i Ui = I (i = 1; 2; 3), µ is the penalty parameter, and Λj (j = 1; 2; 3; 4; 5; 6; 7) is the

Lagrange multipliers related to corresponding variables.
Problem (11) is a multi-objective optimization problem. All variables involved in

(11) cannot be jointly optimized. By using ADMM, variables in (11) can be alternatively
optimized with an individual, solvable subproblem while keeping the others fixed. Fol-
lowing this arrangement, we decomposed (11) into six independent subproblems and their
corresponding solutions are presented.

(1) Update G, Ui, and X . All the terms related to X were extracted from (11), and
we obtained

argmin
X

µ

2

(
‖Y − X − S + Λ6‖2

F + ‖X − Z + Λ7‖2
F

)
(12)

Combining with the constraintsX = G ×1 U1 ×2 U2 ×3 U3 and UT
i Ui = I (i = 1; 2; 3),

the problem (12) can be transformed into its equivalent form:

argmin
G,Uj

µ(‖G ×1 U1 ×2 U2 ×3 U3 −
(Y − S + Z + Λ6 − Λ7)

2
‖

2

F
) (13)

By using the higher-order orthogonal iteration (HOOI) algorithm [30], it was easy to
get the nuclear tensor G and factor matrix Uj. Then, X can be updated by X = G ×1
U1 ×2 U2 ×3 U3.
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(2) Update S : All the terms related to S are given by

argmin
S

ρ‖S‖2,1 +
µ

2
‖Y − X − S + Λ6‖2

F (14)

Let Y − X + Λ6 = C, following [36]; then, S can be updated by the following rule

S(:, j, k) =


‖C(:,j,k)‖ − ρ

µ

‖C(:,j,k)‖ ‖C(:, j, k)‖, if ρ
µ < ‖C(:, j, k)‖

0, otherwise

(3) Update D1:

argmin
D1

τw1‖D1‖1 +
µ

2
‖D1 − DhZ + Λ1‖2

F (15)

This is a soft-thresholding problem. The close-form solution is

D1 = T
(

DhZ − Λ1,
τw1

µ

)
(16)

where T (a, b) = sign(a) · max(|a| − b, 0).
Similarly, the D2, D4, and D5 can be updated by

D2 = T
(

DhZ − Λ2,
τw2

µ

)
(17)

D4 = T
(

DhD3 − Λ4,
τw3

µ

)
(18)

D5 = T
(

DvD3 − Λ5,
τw3

µ

)
(19)

(4) Update D3:

argmin
D3

µ

2

(
‖D3 − DpZ + Λ3‖2

F + ‖D4 − DhD3 + Λ4‖2
F + ‖D5 − DvD3 + Λ5‖2

F

)
(20)

This is a quadratic optimization problem, and it is equivalent to solving the following
linear system is:(

1 + DT
h Dh + DT

v Dv

)
D3 = DpZ − Λ3 + DT

h (D4 + Λ4) + DT
v (D5 + Λ5) (21)

By using the fast Fourier transform (FFT), the closed form solution of (21) is

D3 = F − 1

{
F
[
DpZ − Λ3 + DT

h (D4 + Λ4) + DT
v (D5 + Λ5)

]
1 + F (Dh)

∗F (Dh) + F (Dv)
∗F (Dv)

}
(22)

where F (·) and F − 1(·) represent the 3D FFT and the inverse 3D FFT, respectively. The
symbols T and * respectively represent the operators of transpose and complex conjugate.

(5) Update Z :

argmin
Z

µ

2

(
‖D1 − DhZ + Λ1‖2

F + ‖D2 − DvZ + Λ2‖2
F + ‖D3 − DpZ + Λ3‖2

F + ‖X − Z + Λ7‖2
F

)
(23)

This is also a quadratic optimization problem, and the corresponding linear system is
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(
1 + DT

h Dh + DT
v Dv + DT

p Dp

)
Z = (X + Λ7) + DT

h (D1 + Λ1) + DT
v (D2 + Λ2) + DT

p (D3 + Λ3) (24)

It is easy to get the closed form solution in (25) by 3D FFT,

Z = F−1
{
F (X + Λ7 + ∆)

(1 + D)

}
(25)

where D = F (Dh)
∗F (Dh) + F (Dv)

∗F (Dv) + F (Dp)
∗F
(

Dp
)

and ∆ = DT
h (D1 + Λ1)

+ DT
v (D2 + Λ2) + DT

p (D3 + Λ3).
(6) Update Multipliers: On the basis of the augmented Lagrange multiplier algo-

rithm [39], the Lagrange multipliers Λi (i = 1, 2, 3, 4, 5, 6, 7) can be updated as follows:

Λ1 = Λ1 + µ(D1 − DhZ) (26)

Λ2 = Λ2 + µ(D2 − DvZ) (27)

Λ3 = Λ3 + µ
(

D3 − DpZ
)

(28)

Λ4 = Λ4 + µ(D4 − DhD3) (29)

Λ5 = Λ5 + µ(D5 − DvD3) (30)

Λ6 = Λ6 + µ(Y − X − S) (31)

Λ7 = Λ7 + µ(X − Z) (32)

The pseudocode in Algorithm 1 summarizes the above optimization process. In the
LRTDSSRTV solver, the inputs are the noisy image Y , regularization parameters ρ and τ,
the weights wi s, estimated rank (r1, r2, r3) for Tucker decomposition, the stopping criteria
ε, the maximum iteration kmax, µmax = 106, and η = 1.5. More details and discussions are
presented in Section 4.

Algorithm 1: Optimization Process for LRTDSSRTV Solver

Input: Noisy image Y , regularization parameters ρ and τ, the weights wi s, estimated rank (r1, r2,
r3) for Tucker decomposition, the stopping criteria ε, the maximum iteration kmax, µmax = 106, and
η = 1.5.
1: Initialize: Let X = Y , Di = 0 (i = 1, 2, 3, 4, 5), Λj = 0 (j = 1, 2, 3, 4, 5, 6, 7), current iteration k = 0,
and µmax = 106

2: while not converged do
3: Update G and Ui via (13) and then X = G ×1 U1 ×2 U2 ×3 U3.
4: Compute S via (14).
5: Update D1, D2, D4, D5 via (16)–(19).
6: Compute D3 via 3D FFT (22).
7: Update Z via 3D FFT (25)
8: Compute the Lagrange multipliers Λj by (26)–(32).
9: Update the penalty parameter µ = min{ηµ, µmax}.

10: Check the convergence condition k < kmax and ‖X
(k + 1) − X (k)‖2

F
‖X (k)‖2

F
≤ ε.

11: end while
Output: The restoration result X .

4. Experimental Results and Analysis

In this section, the simulated and real datasets were adopted to evaluate the pro-
posed LRTDSSRTV solver. To better validate the advantages of the LRTD and SSRTV
regularization, we selected five representative advanced methods to compare, including
low-rank matrix recovery (LRMR) [2], the combination of low-rank matrix factorization
with TV regularization (LRTV) [21], anisotropic spatial-spectral TV regularization with
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low-rank tensor decomposition (LRTDTV) (http://gr.xjtu.edu.cn/web/dymeng/3, (ac-
cessed on 12 June 2021)) [12], the spatial-spectral TV model (SSTV) (https://sites.google.
com/view/hkaggarwal/publications (accessed on 12 June 2021)) [23], and Weighted Group
Sparsity-Regularized Low-Rank Tensor Decomposition(LRTDGS) (http://www.escience.
cn/people/yongchen/index.html (accessed on 12 June 2021)) [32]. LRMR imposes spectral
low-rankness in spatial patches. LRTV combines a low-rank constraint of the unfolding
matrix with HSI and BTV. LRTDTV jointly considers 3DTV and Tucker decomposition.
SSTV applies 1-D total variation on the spectral domain. LRTDGS introduces weighted
group sparse regularization to improve the group sparsity of the spatial difference image.
According to the authors’ suggestions, we carefully tuned the parameters involved in the
compared methods to guarantee optimal results. While for the parameters in our method,
a detailed discussion of parameter selection is presented in Section 4. In addition, all the
bands of the HSI were normalized within the range of [0, 1] for easy numerical calculation
and visualization, and the HSI was transformed to original grayscale level after restoration.

4.1. Experiment with Simulated Data

(1) Experimental Setting: In this section, we evaluated the robustness of a simulated
clean Indian Pines’ dataset with synthetic noise. This dataset contained 224 bands; each
band was a grayscale image of 145 × 145 pixels. It was widely used in [12,21,40]. This
dataset was firstly used in [2], which was generated from the real Indian Pines’ dataset.
The reflectance values of all the pixels were mapped to [0; 1] through linear transform.

To simulate complicated noise cases in a real scene, six representative types of noise
were added. The rules for adding noise were as follows:

Case 1: A zero-means Gaussian noise. In a real scene, the noise density in each band
should be different. Therefore, we added randomly selected noise variances to each band
within the range of [0, 0.25].

Case 2: Different intensities of Gaussian noise to each band, as in Case 1. Additionally,
we added deadlines from bands 141 to 170. The number of the deadline in each band was
randomly selected between 3 and 10, and the deadline’s width was randomly generated
from 1 to 3 pixels.

Case 3: Gaussian noise was added in the same way as in case 2. Additionally, the
impulse noise was added to all bands and the percentages were randomly selected within
the range of [0, 20%].

Case 4: On the basis of case 3, we added stripes to bands 161 to 190; the number of
stripes in each band was randomly selected in the range of 10 to 30.

Case 5: The deadline was added in the same way as in case 2, and the stripe noise was
added as in case 4. Additionally, the impulse noise was also added, and the percentages
were varied from 0 to 50% for each band.

Case 6: All the considered noises were added to simulate the most severe noise
situation. Gaussian noise, stripes, and impulse noise were added in the same way as in
case 4. Additionally, 30 bands were randomly chosen to add deadlines, and the number of
deadline were randomly selected from 3 to 10.

(2) Visual Comparison: One important outcome of restoration is to improve the visual
quality. To illustrate, we show three representative cases, 1, 5, and 6, in Figures 5–7,
respectively, with the restoration results for bands 46, 168, and 162. For better visualization,
we provided a zoom with yellow boxes. It can be observed that the denoised result of
(c) LRMR and (e) SSTV did not completely eliminate the noise in the presented results
(see the zoom boxes). Restoration results of (d) LRTV, (f) LRTDTV, and (g) LRTDGS
were satisfactory, completely removing all noises. However, the details of some areas
in the image of LRTV and LRTDTV were blurred (see the zoom boxes). Some striped
artifacts were observed from the zoom boxes with the result of (g) LRTDGS. Additionally,
there was obvious noise in the result of SSTV, as observed in Figure 7e. By contrast, the
proposed LRTDSSRTV method can remove all kinds of noises and maintain an image
feature and detail with better visual quality than the comparison methods. This is due to

http://gr.xjtu.edu.cn/web/dymeng/3
https://sites.google.com/view/hkaggarwal/publications
https://sites.google.com/view/hkaggarwal/publications
http://www.escience.cn/people/yongchen/index.html
http://www.escience.cn/people/yongchen/index.html
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the simultaneous consideration of both spatial spectral piecewise smoothness and direct
spatial piecewise smoothness in SSRTV.

Figure 5. Denoised results of all the methods: (a) Original band 46. (b) Noisy band under case 1.
(c) LRMR. (d) LRTV. (e) SSTV. (f) LRTDTV. (g) LRTDGS. (h) LRTDSSRTV.

Figure 6. Denoised results of all the methods: (a) Original band 168. (b) Noisy band in case 5.
(c) LRMR. (d) LRTV. (e) SSTV. (f) LRTDTV. (g) LRTDGS. (h) LRTDSSRTV.



Remote Sens. 2022, 14, 511 13 of 26

Figure 7. Denoised results of all the methods: (a) Original band 162. (b) Noisy band in case 6.
(c) LRMR. (d) LRTV. (e) SSTV. (f) LRTDTV. (g) LRTDGS. (h) LRTDSSRTV.

(3) Quantitative Comparison: Four objective quantitative evaluation indices (QEI)
were used to compare the results of all the methods in each simulated experiment, including
peak signal-to-noise ratio (PSNR) [dB] index, the structural similarity (SSIM) index [41],
erreur relative globale adimensionelle de synthese (ERGAS; relative dimensionless global
error in synthesis in English), and the spectral angle mapper (SAM) [42]. For the PSNR and
SSIM, we showed the average values (or means) of all the HSI bands, denoted by MPSNR
and MSSIM, respectively. The higher values of MPSNR and MSSIM or the lower values of
ERGAS and SAM represented better restoration results.

The values of four QEIs of all the methods under the simulated six different noise cases
are presented in Table 1. The best values among the comparison methods are highlighted
in bold, while the suboptimal values are underlined. By comparison, we can see that the
tensor-based methods (LRTDTV, LRTDGS and LRTDSSRTV) by and large performed better
than the matrix-based methods. The main reason is that LRTD can capture the global
correlation both in spatial and spectral dimensions. In comparison with LRTDTV and
LRTDGS, our method shows superiority in all QEIs under almost all cases. The reason
is that the 3DTV norm used in LRTDTV calculates and sums the gradient values in three
directions at the same time, and the actual norm results are relatively large. Therefore,
minimizing 3DTV as a constraint condition for HSI restoration would tend to lose image
details during restoration. For the group sparsity used in LRTDGS, it strengthens the
spatial constraints while failing to explore the spectral constraint. Our method remedies
the deficiency and makes an improvement in all QEIs for the Indian Pines’ dataset.

Table 1. Quantitative comparison of all comparison methods on the simulated indian pines in six
different noise cases.

Noise Case Evaluation Index Noise LRMR LRTV SSTV LRTDTV LRTDGS LRTDSSRTV

CASE 1

MPSNR (dB) 20.373 33.265 37.053 32.117 39.957 40.216 41.895
MSSIM 0.3896 0.8978 0.9834 0.8587 0.9912 0.9939 0.9963
ERGAS 380.198 48.91 47.303 60.23 24.371 24.306 23.561

SAM 0.3201 0.0366 0.0403 0.0445 0.0149 0.0149 0.0136
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Table 1. Cont.

Noise Case Evaluation Index Noise LRMR LRTV SSTV LRTDTV LRTDGS LRTDSSRTV

CASE 2

MPSNR (dB) 18.972 33.294 36.268 31.616 38.582 39.456 40.818
MSSIM 0.3953 0.9073 0.9838 0.8649 0.9888 0.9933 0.9958
ERGAS 346.025 47.540 46.265 60.061 30.873 25.216 23.529

SAM 0.2906 0.0364 0.0369 0.0449 0.0217 0.0174 0.0157

CASE 3

MPSNR (dB) 12.782 32.603 36.103 31.002 37.702 39.141 39.891
MSSIM 0.2183 0.8928 0.9816 0.8472 0.9866 0.9936 0.9921
ERGAS 500.499 50.092 56.685 63.562 30.005 25.254 24.130

SAM 0.4001 0.0376 0.0435 0.0473 0.0185 0.0165 0.0173

CASE 4

MPSNR (dB) 12.725 32.423 36.033 30.886 37.3536 38.897 39.963
MSSIM 0.2167 0.8902 0.9814 0.8432 0.9859 0.9928 0.9934
ERGAS 502.705 3.227 3.597 4.069 2.094 1.612 1.539

SAM 0.4014 0.0387 0.0460 0.0482 0.0217 0.0171 0.0166

CASE 5

MPSNR (dB) 11.296 36.425 37.382 37.157 39.465 41.419 44.403
MSSIM 0.1946 0.9481 0.9804 0.9587 0.9886 0.9938 0.9949
ERGAS 624.857 39.753 89.326 40.931 40.974 28.466 25.653

SAM 0.4908 0.0301 0.0638 0.0252 0.0264 0.0120 0.0108

CASE 6

MPSNR (dB) 12.589 32.124 34.739 30.768 37.427 38.102 38.963
MSSIM 0.2140 0.8889 0.9748 0.8420 0.9855 0.9903 0.9926
ERGAS 509.281 54.096 72.748 66.103 35.117 30.921 27.102

SAM 0.4079 0.0414 0.0584 0.0495 0.0246 0.0221 0.0193

To take a close look at the PSNR and SSIM values of each band. Figure 8 shows the
corresponding curves of these two QEIs in six cases. It is observed that the PSNR and SSIM
values of LRMR and SSTV were obviously lower than other four methods. Although the
PSNR and SSIM values of LRTV were higher than LRMR and SSTV, this indicates that
LRTV can get better denoised results in the spatial domain. We can see that the spectral
distortion of LRMR is still serious in Table 1. Compared with LRTDTV and LRTDGS, the
proposed LRTDSSRTV method achieved much higher SSIM and PSNR values for almost
all the bands.
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To further illuminate the qualitative comparison in terms of spectral information,
the spectral difference between the original spectrums and the restored ones at different
locations under cases 1, 5, and 6 are presented in Figure 9. The horizontal axis in Figure 9
denotes band number, while the vertical axis denotes the spectral difference. It can be
seen from Figure 9 that the LRTD-based methods (LRTDTV, LRTDGS, and our method)
achieved better spectral fidelity than other three methods. This phenomenon indicates that
the global LRTD can efficiently preserve the spatial-spectral correlation of HSI. However,
compared with LRTDTV and LRTDGS, the spectral differences of our method were the
smallest. This result is consistent with the values of the ERGAS index in Table 1.

4.2. Real-World Data Experiments

In this section, we conducted experiments with two real case datasets. One is the
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Indian Pines’ dataset and the
other is the Hyperspectral Digital Imagery Collection Experiment (HYDICE) urban dataset.
Before processing, the pixel value was also normalized to [0, 1] band by band.

4.2.1. AVIRIS Indian Pines’ Dataset

The spatial resolution of this dataset was 145 × 145, and it contained 220 bands. The
noises existing in this dataset were mainly Gaussian and impulse noises. For brevity,
two typical bands, 104 and 150, were selected to show the restoration results of different
methods. Figures 10a and 11a correspond to the original bands 104 and 150, respectively. It
was found that these two bands were both severely degraded by mixed noise. Therefore,
the useful information was almost completely corrupted. After restoration, there were
some noises in the results of LRMR. Even the LRTV could remove the noise, but the edges
were over-smoothed. The same situation happened in the results of SSTV, LRTDTV, and
LRTDGS. Especially, the details of LRTDGS were blurred seriously, as shown in Figure 11f.
Compared with TV regularization methods, our method performed the best in removing
noise and preserving edges and local details.
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Figure 9. From top to bottom are the differences between the original spectrum and the restoration
results of locations (86, 75), (55, 90), and (115, 102) in the spatial domain on the Indian Pines’ dataset
in cases 1, 5, and 6, respectively. (a) Noisy. (b) LRMR. (c) LRTV. (d) SSTV (e) LRTDTV. (f) LRTDGS.
(g) LRTDSSRTV.

Figure 10. Restoration results of all comparison methods for band 104 of the real Indian Pines’ dataset.
(a) Original. (b) LRMR. (c) LRTV. (d) SSTV. (e) LRTDTV. (f) LRTDGS. (g) LRTDSSRTV.
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Figure 11. Restoration results of all comparison methods for band 150 of the real Indian Pines’ dataset.
(a) Original. (b) LRMR. (c) LRTV. (d) SSTV. (e) LRTDTV. (f) LRTDGS. (g) LRTDSSRTV.

4.2.2. HYDICE Urban Dataset

The spatial resolution of this dataset was 307 × 307, and it contained 210 bands.
The noise in this dataset was more complicated than in the AVIRIS Indian Pines’ Dataset.
Except for the Gaussian noise, deadlines, impulse noise, and stripes, it may also have been
degraded by water absorption, atmosphere, and some other unknown noises. For brevity
and readability, two representative noise bands were chosen to compare the denoising
performance. The original bands, 108 and 208, and their corresponding denoised results
are shown in Figures 12–14, respectively. Figures 12a and 14a represent the original bands,
108 and 208, respectively. There were mixed noise and bias illumination, which changed
the image contrast, in these two bands. Figures 12b–g and 14b–g were the denoised results
with different restoration methods. It can be seen from the zoom boxes in Figure 12b–g
that there were still a few stripes existing in the results of the methods LRMR, LRTV, SSTV,
and LRTDTV. Even though LRTDGS can remove most noise, it resulted in a blurred edge
in some regions. It can be seen from Figure 14a that there were obvious deadlines in the
original band. All the five compared methods failed to eliminate the deadlines, and LRMR
also failed to remove other noises. A benefit of the SSRTV regularization and global LRTD,
as shown in Figures 12g and 14g, our method removed not only mixed noises but also bias
illumination. By comparison, the LRTV and LRTDTV just considered the DhX and DvX .
Therefore, they could not completely get rid of the bias illumination. Both SSTV and
LRTDSSRTV considered the Dh

(
DpX

)
, Dv

(
DpX

)
, and the bias illumination was removed,

as shown in Figures 12d and 14g, while the visual quality of SSTV was not as good as that
of LRTDSSRTV for failing to consider DhX and DvX in SSTV.

To further compare the restoration results, the mean digital number (MDN) corre-
sponding to Figures 12 and 14 is shown in Figures 13 and 15, respectively. The horizontal
axis represents the row number and the vertical axis denotes the MDN of each row. It
can be seen from Figure 12a that rapid fluctuations occurred in the curve for the existence
of stripes and other noises. It is observed from Figure 13b–g that the fluctuations were
reduced by all the methods. As shown in Figure 13b–e, due to the stripes in the image,
there were some minor fluctuations in the curve, which is consistent with the restoration
results shown in Figure 12b–e. Figure 12f shows the smoothed result of LRTDGS, which
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can also be confirmed from Figure 13f. By contrast, the proposed method achieved more
reasonable mean profile results, as shown in Figure 13g.

Figure 12. Restoration results of all comparison methods for band 108 of the real Urban dataset.
(a) Original. (b) LRMR. (c) LRTV. (d) SSTV. (e) LRTDTV. (f) LRTDGS. (g) LRTDSSRTV.

Figure 13. Spectral signatures’ curve of band 108 for the real Urban dataset estimated by different
methods: (a) Original. (b) LRMR. (c) LRTV. (d) SSTV. (e) LRTDTV. (f) LRTDGS. (g) Proposed.



Remote Sens. 2022, 14, 511 19 of 26

Figure 14. Restoration results of all comparison methods for band 208 of the real Urban dataset.
(a) Original. (b) LRMR. (c) LRTV. (d) SSTV. (e) LRTDTV. (f) LRTDGS. (g) LRTDSSRTV.

Figure 15. Spectral signatures’ curve of band 208 for the real Urban dataset estimated by different
methods: (a) Original. (b) LRMR. (c) LRTV. (d) SSTV. (e) LRTDTV. (f) LRTDGS. (g) LRTDSSRTV.

4.3. Classification Performance Comparison

To further compare the performance of different denoising methods and the influence
of denoising on classification application, real dataset, Indian pines, used in Section 4.2,
was selected. The effectiveness of the proposed algorithm and its influence on classification
were verified by comparing the classification accuracy with the basic threshold classifier
(BTC) [43].
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To compare the classification accuracy of different algorithms obtained by the classifier,
three common evaluation indicators were used here: (1) Overall Accuracy (OA), that is,
the number of correctly classified samples was divided by the number of test samples.
OA is obtained by using 10% of the samples of each class for training and the remaining
90% for testing; (2) average accuracy (AA), namely, the average of classification accuracy
of all available categories; and © Kappa coefficient (Ka), which is a statistical measure of
the consistency between the final classification map and the real classification map. The
formula of Kappa is as follows:

Kappa =
N ∑m

j = 1 xjj − ∑m
j = 1(xj + x + j)

N2 − N ∑m
j = 1(xj + x + j)

(33)

where m is the column number of error matrix, xjj represents the element in the position
of column j, and line j in the error matrix. The xj + is the sum of row j in the error matrix.
The x + j is the sum of column j in the error matrix. N is the number of test samples.

The larger the values of Kappa (no unit), OA (given in percentage form), and AA (given
in percentage form), the better the classification effect of the algorithm. The Indian pines’
dataset contains 16 classes, and the specific class names can be found on the website http:
//www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes (ac-
cessed on 12 June 2021).

Figure 16b shows the classification map obtained by applying BTC on the original
Indian Pines’ data set. Figure 16c–h shows the classification map obtained by applying BTC
after denoising on the Indian Pines’ data set using LRMR, LRTV, SSTV, LRTDTV, LRTDGS,
and SSRTV. It was observed that BTC was seriously affected by noise on the original data,
which made the classification accuracy low. Different denoising methods reduced this effect
more or less and improved the classification accuracy. Compared with other algorithms,
the proposed algorithm showed a more excellent performance.

Figure 16. Classification map on Indian pines’ dataset, (a) true values, (b) before denoising, (c) LRMR,
(d) LRTV, (e) SSTV, (f) LRTDTV, (g) LRTDGS, (h) SSRTV.

Table 2 shows the indices by using BTC to classify the original Indian pines’ data
and the denoised data. Three indices after denoising by all methods increased more or
less. Different denoising results had different degrees of improvement in classification
accuracy. For example, the denoising results of the LRMR method still contained a large

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
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amount of noise, so the Ka, OA, and AA values only increased by about 2%, 2%, and 0.01%,
respectively. The Ka, OA, and AA values of the proposed algorithm increased about 12%,
12%, and 0.13%, respectively. Obviously, the proposed algorithm significantly improved
the classification accuracy.

Table 2. Classification indexes of Indian pines and the denoised results by different methods.

Index Original LRMR LRTV SSTV LRTDTV LRTDGS LRTDSSRTV

OA 79.24 81.39 81.99 86.99 86.64 87.08 91.11
AA 78.37 80.97 81.14 86.95 85.58 87.01 90.34
Ka 0.7621 0.7712 0.7731 0.8336 0.7884 0.7944 0.8982

5. Discussion

(1) Parameters’ selection

In this section, we will address how to determine the parameters in our experiments
with systematical analysis. The choosing of parameters was based on the simulated
experiment in the Indian pines’ dataset.

In our model, there were two regularization parameters, ρ and τ; one penalty param-
eter, µ; three weight parameters, w1, w2, and w3; and Tucker rank (r1, r2, r3) among the
three HSI modes. For penalty parameter µ, it was first initialized as µ = 10−2 and updated
by µ = min (ηµ, µmax), where η = 1.5 and µmax = 106. This strategy of determining the
variable µ has been widely used in the ALM-based method [12], which can facilitate the
convergence of the algorithm.

For the Tucker rank (r1, r2, r3), following the same strategy proposed in [32], we
set r1 and r2 as 80% of the width and height of each band image, respectively. In our
simulated experiments, we set r3 = 10. In the real data experiments, the r3 was estimated
by HySime [44].

The parameter ρ corresponded to the sparse term. It was set as ‖ρ‖ = 100 × C√
mn by

default in the following experiments according to [12,32], where m and n were the width
and height of each band image of HSI and C was a parameter that needed to be carefully
tuned. Therefore, we jointly tuned the parameters ρ and τ. We also chose the simulated
cases 1, 5, and 6 to present the sensitivity analyses of these two parameters, and the MPSNR
was used as the evaluation index. Figure 17 shows the MPSNR values as ρ varied in the
set [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33] and τ varied in the set [0.01,
0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1].
From this figure, we can see that the MPSNR values had similar change trends in the three
cases, indicating that these two parameters were effective and robust for different noisy
cases. Additionally, it can be observed that the MPSNR values were higher when the value
of ρ was changed from 17 to 25 and τ was changed from 0.4 to 0.6. Consequently, it was
suggested that the parameters ρ and τ were separately chosen from these ranges according
to different noise cases.

The weighted parameters, w1, w2, and w3, were used to balance the weights of spatial
TV and SSRTV. It was demonstrated in [12] that the two weights of spatial TV can be set
the same; so, we set w1 = w2 = 1. Then, we tuned the weight of SSRTV in the range of 0
to 1. The parameter w3 was crucial in keeping the balance of the local spatial smoothness
and local spatial-spectral smoothness. Figure 18 plots the curves of MPSNR and MSSIM
values with respect to parameter w3; it can be observed that when the parameter w3 was
in the range of 0.6 to 0.8, the MPSNR and MSSIM achieved the best values. Therefore, we
set w3 = 0.7 in all the experiments.
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Figure 17. Sensitivity analysis between parameters ρ and τ using the simulated Indian Pines’ dataset.
(a) Case 1. (b) Case 5. (c) Cases 6.

Figure 18. Performance with weight parameter w3. (a) MPSNR value vs. w3, (b) MSSIM value vs. w3.

(2) Convergence Analysis

Due to the non-convex constraint of LRTD, our solver was a non-convex optimization
problem. Therefore, it was hard to get the globally optimal solution, and theoretical proof
of the convergence was hard to guarantee. Nevertheless, to promote convergence of the
algorithm, we employed the ALM-based optimization [39] strategy to update the penalty
parameter µ in each iteration. Additionally, we illustrated the convergence of our solver by

means of empirical analysis. The MPSNR and the relative change of the ‖X
(k + 1) − X (k)‖

2
F

‖X (k)‖
2
F

values gain versus the iteration number under case 1, case 5, and case 6 in the simulated
experiment are presented in Figure 18. It can be recognized that, with the increasing of
iterations, even if there were significant jumps in all the subfigures in Figure 19, the MPSNR
values increased rapidly before gradually stabilizing to a value, and the relative change
converged to zero after about 20 iterations. This clearly illustrated the convergent behavior
of the proposed LRTDSSRTV solver.
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Figure 19. MPSNR and relative change values versus the iteration number of LRTDSSRTV: (a,b) for
case 1; (c,d) for case 5; (e,f) for case 6.

(3) Operation time analysis

To validate the feasibility and effectiveness of our method, we present the running time
of all the compared methods on the real data experiments in Table 3. All the experiments
were carried out in MATLAB R2016a using a desktop of 16-GB RAM, with Intel Core
i5-4590H CPU@3.30 GHz. As shown in Table 3, our method was not the fastest, but the
running time was acceptable and our method performed better. In the future, we will
design a more effective algorithm to speed up our method.

Table 3. Average operation time of different methods under simulated dataset and real dataset
(in second).

Dataset LRMR LRTV SSTV LRTDTV LRTDGS LRTDSSRTV

Indian
pines 49 93 648 358 263 380

Urban 343 593 2016 768 516 797

6. Conclusions

We proposed a new low-rank tensor decomposition-based spatial domain spectral
residual total variation-regularized technique for mixed noise removal of HSI. Different
from the existing TV regularization methods, both the direct spatial and spatial-spectral
piecewise smoothness of an HSI were evaluated by SSRTV, leading to an effective way to
remove Gaussian noise for HSI. Additionally, the global spatial-spectral correlation of clean
HSI among all bands was described via low-rank tensor decomposition, which can aid in
isolating the sparse noise from the clean HSI. Moreover, the l2,1 norm was more effective
for removing the sparse noise, especially the structure sparse noise. We also formulated
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SSRTV-regularized HSI restoration as a constrained non-convex optimization problem and
developed an efficient algorithm based on ADMM. Experimental results on mixed noise
removal based on simulated data and real data validated the efficiency and utility of SSRTV.
In the future, we will attempt to exploit more potential priori for the difference image to
further improve the HSI restoration results.
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