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Abstract: PM2.5, a type of fine particulate with a diameter equal to or less than 2.5 micrometers, has
been identified as a major source of air pollution, and is associated with many health issues. Research
on utilizing various data sources, such as remote sensing and in situ sensors, for PM2.5 concentrations
modeling remains a hot topic. In this study, the Next Generation Weather Radar (NEXRAD) is
used as a supplementary weather data source, along with European Centre for Medium-Range
Weather Forecasts (ECMWF), solar angles, and Geostationary Operational Environmental Satellite
(GOES16) Aerosol Optical Depth (AOD) to model high spatial-temporal PM2.5 concentrations. PM2.5

concentrations as well as in situ weather condition variables are collected from the 31 sensors that are
deployed in the Dallas Metropolitan area. Four machine learning models with different predictor
variables are developed based on an ensemble approach. Since in situ weather observations are not
widely available, ECMWF is used as an alternative data source for weather conditions in studies.
Hence, the four established models are compared in three groups. Both models in this first group
use weather variables collected from deployed sensors, but one uses NEXRAD and the other does
not. In the second group, the two models use weather variables retrieved from ECMWF, one using
NEXRAD and one without. In the third group, one model uses weather variables from ECMWF,
and the other uses in situ weather variables, both without NEXRAD. The first two environmental
groups investigate how NEXRAD can enhance model performances with weather variables collected
from in situ observations and ECMWF, respectively. The third group explores how effective using
ECMWF as an alternative source of weather conditions. Based on the results, the incorporation of
NEXRAD achieves an R2 score of 0.86 and 0.83 for groups 1 and 2, respectively, for an improvement
of 2.8% and 9.6% over those models without NEXRAD. For group three, the use of ECMWF as an
alternative source of in situ weather observations results in a 0.13 R2 drop. For PM2.5 estimation,
weather variables including precipitation, temperature, pressure, and surface pressure from ECMWF
and deployed sensors, as well as NEXRAD velocity, are shown to be significant factors.

Keywords: PM2.5; machine learning; ensemble method; weather radar; NEXRAD; GOES-16 AOD;
ECMWF

1. Introduction

People are at risk of health problems due to air pollution. Clean air is fundamental to
health. Air pollution has a similar burden of disease to unhealthy diets and smoking, accord-
ing to the World Health Organization. Air pollution is responsible for non-communicable
diseases such as ischaemic heart disease, stroke, chronic obstructive pulmonary disease,
and asthma, as well as the substantial associated economic cost. Atmospheric pollution
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comes in many forms such as gaseous or airborne particulate matter (including airborne
biological material such as pollen and mold) [1]. Among these pollutants, fine size air-
borne particulates, such as PM2.5 are linked to numerous health issues from Asthma to
Alzheimer’s [2–9]. Because airborne particulates are so small, they exist everywhere and
can penetrate deeply into human lungs like Trojan Horses carrying toxic chemicals across
the air-blood barrier, and some of their smallest constituents even cross the blood-brain
barrier [1,10]. Understanding the distribution of PM2.5 in a high temporal and spatial
resolution is essential to address health concerns. The trending PM2.5 acquisition sources
are ground-based monitoring stations such as the Air Quality Data (AQS) from the United
States Environmental Protection Agency (EPA), which includes more than 500 sites across
the country. Because of their limited number and connectivity, ground-based monitoring
sites do not have the capability to cover continuous spatial area.

To address this issue, studies have used satellite-based remote sensing to model
ground level PM2.5 concentrations and estimate PM2.5 in a broader spatial coverage [11–18].
Aerosol optical depth (AOD) is one of the most utilized remote sensing products for PM2.5
studies. Depending on the satellite platform, AOD products can be classified into the
type of polar orbit and geostationary orbit. Examples of AOD instruments from polar
orbit platforms include the Moderate Resolution Imaging Spectroradiometer (MODIS),
MODIS Multi-Angle Implementation of Atmospheric Correction (MAIAC), and Infrared
Imaging Radiometer Suite (VIIRS). The AOD from these instruments share the feature
of relative high spatial resolution, but lower temporal resolution and noncontinuous
spatial coverage, which makes them the ideal data source for PM2.5 modeling, but not
for high temporal estimation [15–21]. On the other hand, the AOD instruments from the
geostationary platform, such as the Advanced Himawari Imager (AHI) on Himawari-8 and
Advanced Baseline Imager (ABI) on Geostationary Operational Environmental Satellite
(GOES-16), stay at 35,786 km above the equator and monitor a fixed area on the earth.
These AOD products provide comprehensive spatial coverage on a certain area of the earth
in a continuous temporal manager. Hence, in additional to modeling, geostationary AOD
is capable at high temporal PM2.5 estimation [11,12,22–26].

In addition to AOD, supplemental information, such as meteorological data, local
weather condition data, have been incorporated in PM2.5 modeling as well for better
modeling accuracy [12,27,28]. AOD is a measurement of the optical depth, which is
directly related to the particles suspended in the air, while meteorological variables, such
as wind, surface pressure, and humidity are important influential factors that affect the
concentration of PM2.5. In situ monitoring stations and the ECMWF are the two main
sources for meteorological and weather condition data. To better capture the spatial and
temporal PM2.5 variations, ancillary data including but not limited to population density,
landcover, and elevation, have been utilized for PM2.5 in studies [22,29–33]. Among these
studies, a comprehensive study has been conducted over the US by incorporating a total
of 17 variables for hourly PM2.5 modeling and estimation, which reveals a strong PM2.5
distribution pattern upon elevation, population density, land cover and soil type [22].

Data fusion is an important step to integrate data from a variety of sources into a
consistent spatial and temporal form for model training. Changelings exit in terms of
the incompatibility in both spatial and temporal scales of these datasets from different
sources. Specifically, weather information and PM2.5 concentration values from monitoring
stations are in the form of sparse points across a continuous space and commonly with a
high temporal resolution, but lack spatial coverage. Weather data from ECMWF, on the
other hand, are reanalyzed data from complicated models and have been converted to
regular grids with global coverage, which has relative fine temporal resolution but coarse
spatial resolution. The data fusion process includes integrating grid data with point data in
the spatial scale and matching data into a consistent time window in the temporal scale.
Studies have explored different data fusion approaches, including interpolation, nearest
search, and gridding alignment [22,34,35]. Depending on the model resolution design,
higher-resolution data could be downgraded to lower resolution, and lower resolution
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data could be upgraded to a higher resolution. However, no matter what approaches are
used, noise and uncertainty can be introduced during the data fusion process. Hence,
the native resolution of predictor and target variables, as well as the data fusion design
together determine the spatial and temporal resolutions of PM2.5 models.

The ECMWF is a popular data source providing meteorological variables for PM2.5
studies, which has an hourly temporal resolution [36]. These variables are widely used
for PM2.5 modeling and estimations because of their comprehensive spatial coverage and
satisfactory temporal resolution. However, challenges still exist in the following aspects.
First, although the meteorological variables from ECMWF are suitable for hourly PM2.5
modeling, when utilized for finer temporal modeling, up-sampling in temporal scale is
necessary during the data fusion process, either by interpolation or nearest matching, which
in turn introduced noises and uncertainty and hence to negatively affect the model accuracy.
Second, many studies utilized site-based PM2.5 concentrations and ECMWF variables for
PM2.5 modeling. However, in the spatial perspective, the data fusion process that integrates
the gridded areal ECMWF data with a point-based PM2.5 values by either interpolation,
grid alignment, or nearest search, could also introduce noise. Third, the concentration of
PM2.5 changes dynamically based on processes in the atmospheric boundary layer (ABL),
variations in meteorological parameters such as wind speed, vertical gradients in wind
speed, and air temperature. Given the limitations of assimilation and modeling, parameters
from reanalysis datasets are not always consistent with ground measurements [37–39].
Thus, the veracity of the reanalysis dataset is an issue when it is being used for PM2.5
studies. Although utilizing meteorological data from ECMWF together with site-based
PM2.5 observation for PM2.5 modeling is a common approach adopted in many PM2.5
studies, it is underexplored that how the temporal and spatial incompatibility during data
fusion process as well as the data veracity issues could affect the site based PM2.5 modeling
accuracy. In addition to the ECMWF, few other weather data sources are explored to be
suitable for high temporal PM2.5 modeling.

Next-Generation Weather Radar (NEXRAD), consists of 160 sites, which provide
important data for climatological and airborne object studies [40]. Due to the high scan-
ning frequency, NEXRAD provides weather monitoring data in high temporal resolution,
which is particularly effective in tracking dynamic objects and weather status, such as
monitoring bird roosts [41], detecting clusters of “biological targets”, evaluating hurri-
cane impacts on forests [42], and forecasting weather. In addition, studies have been
explored that NEXRAD is responsive to pollution plumes, such as smoke from fires and
pollen. Hence, NEXRAD can be utilized for forest fire management support and pollen
concentration estimation [43,44]. Although some use cases of NEXRAD have been dis-
cussed in studies, the application potential is not fully explored. Limited by the signal
frequency, fine particulate matters, such as PM2.5, can not be directly captured by NEXRAD.
Hence, research on utilizing NEXRAD for PM2.5 modelings has never been done before.

This research has three main contributions. First, previous studies reveal that the
concentration of the airborne particulate, such as pollen and PM2.5 has a close relationship
with the weather condition such as the wind velocity, humidity, and temperature [16,43],
but never explore how meteorological variables from NEXRAD can help with the PM2.5
modeling. This study explores NEXRAD’s potential in-ground PM2.5 modeling. Second,
most studies for PM2.5 focus on generating a model with a relatively coarse temporal
resolution (monthly, daily, or hourly) limited by the coarse sampling frequency of PM2.5
values predictors variables [45–47]. This study utilizes variables from NEXRAD and GOES-
16 AOD for high temporal PM2.5 modeling. Third, although variables from ECMWF have
been widely used together with site-based PM2.5 for modeling purposes, no studies have
explored the negative impact on the modeling accuracy caused by the veracity issue and the
data spatial-temporal incompatibility between predictor and target variables. By comparing
two models using weather variables from in situ observations and ECMWF respectively,
this research quantitatively explores the uncertainty and error that are introduced from the
data fusion process.
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2. Materials and Methods
2.1. A Machine Learning Approach Using NEXRAD for High Temporal PM2.5 Modeling

Currently, machine learning applications in environmental studies remain an active
research topic [48,49], particularly for air pollution issues. In this research, NEXRAD is
utilized together with variables from in situ observation, ECMWF, and GOES AOD for high
temporal PM2.5 machine learning modeling. The main purposes are in two aspects. First,
as an supplementary weather information source, NEXRAD’s contributions to high tempo-
ral PM2.5 modeling are explored under two sets of meteorological parameter configurations.
Second, the impact of using variables from ECMWF as an alternative weather source for
in situ observation on the high temporal PM2.5 modeling is explored. PM2.5 concentrations
measurements from 31 monitoring sensors located near the University of Texas at Dallas are
collected from 2019 to 2020 at a 3 s interval, which is then re-sampled to 15 min temporal
resolution for model training. The first meteorological parameter configuration includes
the weather condition parameters (humidity, temperature, pressure, and dew-point tem-
perature) that are measured together with PM2.5 values at each monitoring site. These
variables provide accurate weather condition observations for each PM2.5 measurement.
However, these variables are not widely available due to the limited number of monitoring
sites, which means these variables are useful for modeling but not feasible for estima-
tion purposes. On the other hand, in the second meteorological parameter configuration,
variables from ECMWF and NEXRAD are employed as a replacement to the site-based
environmental parameters for PM2.5 modeling and estimation. The high spatial resolution
of NEXRAD (8 min) and the continuous spatial coverage of meteorological parameters with
decent temporal resolution (hourly) makes them an ideal data source for high temporal
PM2.5 modeling and estimation. The model performances with the two sets of parameters
are then compared.

2.2. Data Sources and Pre-Processing
2.2.1. NEXRAD

NEXRAD scans the atmosphere continuously by completing volume coverage patterns
(VCP). Each VCP file contains data from only one radar station at a given timestamp, and the
radar makes multiple 360-degree scans of the atmosphere, sampling at increasing elevation
angles. A total of 160 NEXRAD sites operate independently across the country and Figure 1
shows the locations of these sites. KFWS is the NEXRAD station that covers the 31 PM2.5
sensors deployed in Dallas area. The VCP file from the KFWS station is converted to grid
files every 15 min. Each day 96 NEXRAD grid files are generated covering monitoring
sensors, and 3 years historical grid files are generated for the study area from July 2019
to June 2021. Grid files comprise vertically composed data from the ground up to one-
kilometer elevation and have a spatial resolution of 2 km by 2 km. The variables include
reflectivity, velocity, spectrum width, differential phase, differential reflectivity and cross
correlation ratio. As the training dataset for machine learning models, these variables
will be synchronized with PM2.5 values from the deployed sensors, meteorological data
from ECMWF, and AOD from GOES-16. KFWS provides raw NEXRAD scan files every
10 min, which are interpolated and saved as netCDF files with a spatial resolution of 2 km.
Interpolated files include ground to 1 km elevation composite values of the six variables.
A total of six composite value surfaces could be extracted from one interpolated file.
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Figure 1. The 160 NEXRAD monitoring stations across the United States.

2.2.2. High Temporal Resolution Monitoring Sites

A total of 31 monitoring sites have been deployed in Dallas county, Collin county,
and Tarrant county (See Figure 2). Most of them are located near the campus of Univer-
sity of Texas at Dallas in Richardson, and the rest are located in Fort Worth, Carrollton,
and Plano respectively. Each site is equipped with two types of sensors, the Fidas Frog
which is for PM2.5 concentration measuring, and the BME280 which is for weather con-
dition monitoring. They are both cheap and inaccuracy. Thus, the calibration based on
high-quality sensor ALPHA OPCN2 and AIRMAR [50] are required before these data are
used for modeling. Upon calibration, these sensors can provide ground-level PM2.5 data
as well as weather conditions measurements including humidity, temperature, pressure,
and dew point temperature in 3 seconds interval, which have comparable quality to the
expensive reference sensors. In this study, more than 10 million raw PM2.5 observations are
collected between July 2019 and June 2021. After data aggregation and cleaning, these ob-
servations are then used to explore the application potential of NEXRAD in high temporal
PM2.5 modeling.

(a) The monitoring sites state map (b) The monitoring sites county map
Figure 2. The maps show the locations of monitoring sites at the (a) state level and (b) county level in
Dallas. In total, 31 monitoring sensors are deployed, and some of them are clustered in the pinpoints.
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2.2.3. ECMWF Grid

The ECMWF climate data store contains ERA5 land reanalysis hourly data back to 1979.
A reanalysis combines model data with observations from across the world into a globally
complete and consistent dataset using data assimilation. During this process, a previous
forecast is combined with newly available observations in an optimal way to produce a new
best estimate. This assimilation system can estimate data at locations where data coverage
is low. For the purpose of model comparison, the four meteorological parameters that are
simultaneously available from deployed sensors and ECMWF have been selected for PM2.5
modeling including humidity, ground temperature, dew point, and surface pressure. EAR5
gridded files are in the GRIB format, with a horizontal resolution of 0.1 degrees and hourly
temporal resolution at a global level. A GRIB file is a format for storing and transporting
gridded meteorological data. In this study, historical gridded EAR5 data are collected from
July 2019 to June 2021, which will be synchronized with PM2.5 observations. Figure 3a is an
example displaying the temperature and Figure 3b displays the reflectivity from NEXRAD.

(a) (b)
Figure 3. The example raster layers used for high temporal PM2.5 study. Figure (a) shows the
temperature layer from ECMWF in 1 August 2020, and (b) shows the reflectivity layer from KFWS
NEXRAD site in 1 August 2020.

2.2.4. GOES-16

Geostationary Operational Environmental Satellite (GOES)-R is the latest geostationary
weather satellite of NOAA launched on 19 November 2016, which is equipped with the
Advanced Baseline Imager (ABI) and 16 spectral bands [51]. GOES-R became GOES-16
when it reached geostationary orbit at 75.2 degrees west longitude. Over the North and
South American continents, it provides high-temporal remote sensing data. The ABI offers
four modes of operation, including Full Disk, Mesoscale, Continental US, and Flex. Data
products generated by different ABI modes have different coverage scopes and spatial-
temporal resolutions. Among these modes, the Continental US is the best mode since it
scans the continent every 5 min with a spatial resolution of 0.5 km to 2 km. The AOD
product retrieved from the continental US mode with a 5 min temporal resolution and 2 km
spatial resolution is a valuable source that allows satellite-based PM2.5 modeling with an
unparalleled temporal resolution. The raw GOES-16 AOD is available in NetCDF format
on Amazon S3 and has its own fixed grid projection, which should be converted before
being used for PM2.5 modeling.

2.2.5. Data Matching

Figure 4 displays the four stages in the workflow including raw data processing, data
gridding, and data matching. The ground observations from the 31 sensors, the meteoro-
logical data from ECMWF, the weather condition parameters from NEXRAD, and the AOD
from GOES-16 are collected at different time stamps and in different formats. It is necessary
to align these datasets into a consistent timetable for model training. The coordinates
and timestamp information of each 2 km-by-2 km ground PM2.5 cell are retrieved. These
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coordinates and timestamp values are then used as query parameters to obtain meteoro-
logical and AOD variables from gridded NEXRAD, ECMWF, and GOES-16 files. These
retrieved values are then attached to each of the PM2.5 ground observation cells. During the
matching process, there are always grid pixels from NEXRAD and ECMWF that don’t
perfectly match with the PM2.5 observations. A nearest search method is adopted in this
case. In the time domain, ECMWF is recorded hourly while NEXRAD, PM2.5, and AOD
are recorded at an interval of less than 15 min. More specifically, the ECMWF file with the
timestamp that is closest to the PM2.5 observation timestamp is selected as the candidate
layer to match with the PM2.5 observation. In the spatial domain, ECMWF cells are in
10 km-by-10 km resolution while the NEXRAD, PM2.5 and AOD cells are in 2 km-by-2 km
resolution. Hence, a perfect coordinate match between ECMWF and other gridded data
is a rare case. In practice, a nearest search method is used to match values between these
data sources by setting a distance tolerance threshold. In this study, tolerance is set as the
ECMWF file’s spatial resolution. Once the matching process is done, a timetable containing
PM2.5 observation values, meteorological factors, AOD, and weather condition parameters
are generated. GOES-16 AOD is only available during the day to ensure data quality,
and NEXRAD is only recording reflected signals that are strong enough to be detected.
Thus, there are many empty AOD and NEXRAD values matched, and these observations
will be removed from the data table.

Figure 4. The flow chart presents the data pre-processing and data matching process.

2.3. Experiment Design

In this study, four models with different predictor variables are trained and evalu-
ated. Three comparison groups are constructed by selecting two from the four models.
For each comparison group, one model functions as the base model to benchmark the other
model. Table 1 summarizes the four models with different predictor variables, and Table 2
summarizes the comparison groups.

Table 1. The selected predictor variables for the 4 models.

Model Name In Situ Weather ECMWF NEXRAD AOD Solar Angles

Model_1 X X X

Model_2 X X X X

Model_3 X X X

Model_4 X X X X
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Table 2. The 3 comparison groups as well as the models included in each group.

Comparison Group Model Name Weather Source Design Purpose

Group 1
Model_1

Sensors NEXRAD VS No NEXRAD
Model_2

Group 2
Model_3

ECMWF NEXRAD VS No NEXRAD
Model_4

Group 3
Model_1

Sensors, ECMWF in situ VS ECMWF
Model_3

As in Table 2, the first experiment group includes two models which both utilize
weather variables from sensors, but one with NEXRAD and the other without NEXRAD.
This group explores whether combining NEXRAD with in situ weather observations could
improve the accuracy of PM2.5 modeling. Since sensor-measured weather variables have
little meaning for PM2.5 estimation at locations without monitoring sensors, the adoption
of ECMWF as a weather source is a more common practice in studies. Hence, the second
experiment group includes two models that use ECMWF as their weather condition source,
but one with NEXRAD and one without NEXRAD. In the third experiment group, sensor-
measured weather variables are replaced by similar measurements from the ECMWF,
and NEXRAD are not included for both models. This experiment group explores the
impact on modeling accuracy by using ECMWF as an alternative weather source for
in situ observations.

2.4. Machine Learning Approach

Data used in this study is vast in size, fast in generation, and complex in type which
poses challenges for traditional data processing approaches. Under this circumstance,
machine learning approach is adopted in this research. Machine learning is able to learn
from samples and improve the prediction result automatically as more training samples
are given. The feature of learning from samples makes machine learning an effective
approach to reveal patterns and extract knowledge hidden behind Big Data. Machine
learning is especially suitable for solving problems lacking the theoretical relationship
between predictor variables and response variables. The use of machine learning in this
study builds on our heritage of using machine learning for sensing applications over the
last two decades [27,43,47,50,52–56].

The various resolutions and sources of the predictor variables may introduce noises
into the training data set during the data gridding and data matching stages. A ensemble
machine learning approach, which aggregates multiple weak learners into one model, is
employed in this study to address this problem. The aggregation process of multiple weak
learners could reduce the bias and variances. More specifically, the Classification and
Regression Tree (CART) implementation of a decision tree is selected as the base learner
for the ensemble model because of its high implementation efficiency, ease of interpreta-
tion, and low overfitting risk. The Gini index and twoing criteria are used for CART on
feature selection optimization. Another important part of a machine learning model is
hyperparameters, which act as tuning knobs. Any adjustments on these knobs can lead
to different modeling results. The three main hyperparameter optimization methods are
grid search, random search, and Bayesian optimization. In comparison to grid search and
random search, Bayesian optimization can learn from previous optimization results and
thus propose candidate searching spaces, which skips the step of defining each hyper-
parameter sample in advance and reduces computing time. A Bayesian hyperparameter
optimization will be used to determine the ensemble method, the minimum sample size to
split, maximum leaf nodes, and number of trees in this study.
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The whole dataset is divided into a training group and a testing group at a ratio of
80-20. The 5-fold cross-validation sampling technique is used to evaluate the model for
the training set. The training set has been divided into five groups. One group is held out
for evaluation, and the remaining four groups are used for model training. The model
performance is summarized after five iterations. A further evaluation of the model is
needed on the portion of testing to which it has never been exposed. Figure 5 illustrates the
model training and validation process as a workflow.

Figure 5. Flow chart illustrates the machine learning model training and validation process.

3. Results
3.1. 5-Fold Cross-Validation Optimization

A Bayesian hyperparameter optimization process is utilized to discover the optimal
hyperparameter settings for the four models, with 30 evaluation iterations. For each
iteration, 5-fold cross validation technique is employed to measure the error through the
objective function value, which is defined in the Equation (1):

Objective = log(1 + cvloss) (1)

where, cvloss is the average of the mean square error (MSE) summarized from 5-fold cross
validation results.

Figure 6 shows the best objective function value achieved at each iteration for the
four models listed in Figure 1. The x-axis represents the number of optimization iterations,
and the y-axis represents the objective function value. The blue line shows the current
minimum objective function value observed, and the green line shows the estimated
minimum objective function value. As in the figure, with increasing iterations, the objective
function values improve. The minimum objective function values become stable after 15th,
19th, and 23th iterations for model_1, model_2, and model_3 respectively. For model_4,
the best objective function value is achieved at the 30th iteration. The hyperparameters
associated with the best objective function scores, as well as the R2 and the RMSE from
5-fold cross-validations for the four models are summarized in Table 3. Based on the 5-fold
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cross-validation results, the Model_2 has the best performance and the Model_3 has the
worst performance.

(a) Model_1 (b) Model_2

(c) Model_3 (d) Model_4
Figure 6. The objective function evaluation results during the hyper-parameter optimization pro-
cess. The red line represents the observed best objective function values at each iteration, and the
blue line represents the estimated best function values at each iteration. (a) The Model_1 without
NEXRAD, (b) the Model_2 with NEXRAD. (c) the Model_3 without NEXRAD, and (d) the Model_4
with NEXRAD.

Table 3. The best 5-fold cross-validation optimization results for the four models as well as the
optimized hyper-parameter settings.

Model Name Loss Function R2 RMSE Method Trees Min Leaf Size Max Splits Variables to Sample CPU Time

Model_1 1.963 0.82 2.253 Bag 39 1 11,450 4 2730

Model_2 1.888 0.855 2.032 Bag 10 2 1969 8 1372

Model_3 2.467 0.697 2.921 Bag 19 5 12,031 3 925

Model_4 2.275 0.747 2.68 Bag 28 1 6298 10 1753

3.2. Model Validation on Training and Testing Dataset

Once the Bayesian optimization process is complete, the four optimized models are
then applied to the training and testing dataset for validation. Table 4 summarized the
R2 and RMSE on the entire training and testing dataset. Need to mention that the R2 in
Table 3 are summarized based on the 5 fold cross-validation during the hyperparameter
optimization process, while the training R2 and the testing R2 in Table 4 are summarized
from the training dataset and testing dataset.
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Table 4. The optimized model performances on training and testing dataset.

Model Name Training R2 Testing R2 Training RMSE Testing RMSE

Model_1 0.958 0.832 1.186 2.184

Model_2 0.952 0.855 1.241 2.026

Model_3 0.867 0.7 2.097 2.904

Model_4 0.942 0.768 1.421 2.599

Tree-based ensemble machine learning models have the advantage of being able to
track the contributions of each predictor to the model. During of process of node splitting,
the variables with more power to decrease the impurity value gain more importance than
those with less power. A scatter plot showing the influence of each predictor variable on
the optimized ensemble model, and an importance rank plot is generated for each model
in the following three comparison groups.

3.3. Comparison Group 1: NEXRAD Sensitive Analysis with In Situ Weather Variables

Comparison group 1 explores whether the combining of NEXRAD with in situ ob-
served weather conditions could improve the PM2.5 modeling accuracy. The model_1
without radar and the model_2 with radar are included in this comparison group. For the
convenience of comparison, the alias names “base model” and “NEXRAD model” are used
for model_1 and model_2 respectively. In Figure 7, predicted values are plotted against
measurement values for the base model and NEXRAD model. The training R2 and RMSE
are calculated from the training which accounts for 80% of the whole dataset while the
testing R2 and RMSE are calculated from the testing dataset that accounts for 20% of the
whole dataset. These performance metrics correspond to the values in Table 4. Figure 8
compares model performances metrics side by side in a bar plot. These performance metrics
correspond to the values in Table 3.

(a) Scatter diagram for base model (b) Scatter diagram for NEXRAD model

Figure 7. The scatter diagram for models on training data set and testing data set. Red dots represent
the training observations and blue dots represent the validation observations. Red line and blue line
are fitting lines for training points and validation points respectively. (a) shows the estimated PM2.5

against measured PM2.5 for base model, and the (b) displays the estimated PM2.5 against measured
PM2.5 for NEXRAD model.
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Figure 8. The model performances comparison bar chart for group 1. The Y-axis displays model
performance metric names and the X-axis shows the scores for both R2 and RMSE. The RMSE and the
R2 of models are summarized on the testing dataset. The 5-CV RMSE and 5-CV R2 are summarized
based on 5-fold cross-validation results on the training dataset. In this chart, the RMSE and R2 are
compared between the NEXRAD Model and the Base Model.

As in the scatter plots and bar plots, the NEXRAD model consistently shows higher
R2 values and lower RMSE values than the base model on the testing dataset and cross-
validation holdout dataset. Figure 9a displays the importance rank for the base model
and NEXRAD model. The red and yellow bars represent the top five important predictor
variables and the blue bar represents the remaining variables. According to this plot,
the dew point temperature, pressure, humidity, and solar angles are the top five important
predictor variables for the base model. In the Figure 9b, the dew point temperature, temper-
ature, pressure, radar velocity, and solar azimuth angle are the top five important predictor
variables for the NEXRAD model. Compared to the base model, velocity from NEXRAD
contributes significantly to the performance of the NEXRAD model. The description of
variables is listed in the Table 5.

(a) Predictor importance for base model (b) Predictor importance for NEXRAD model

Figure 9. The importance rank plots for models with and without NEXRAD in comparison group 1.
The top five important variables are in red and yellow, while the rest are in blue.
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Table 5. The predictor variables names as well as their source and description are listed.

Source Var Name Description

ECMWF

d2m Dewpoint temperature at 2 m
t2m Temperature at 2 m
sp Surface pressure

Sensors

dewpoint Dewpoint temperature from sensor
temperature Temperature from sensor
pressure Pressure from sensor
humidity Humidity from sensor

NEXRAD

z01velocity Wind speed of particles detected
z01reflectivity Energy return to radar at ground level
z01spectrum width Distribution of velocities within a bin
z01differential reflectivity Horizontal to vertical power ratio

GOES-16 AOD Aerosol Optical Depth

Solar Angles
SAA Solar Azimuth Angle
SZA Solar Zenith Angle

3.4. Comparison Group 2: NEXRAD Sensitivity Analysis with ECMWF Weather Variables

In situ weather condition observations, AOD, and the variables from NEXRAD have
been explored for PM2.5 modeling in comparison group 1. Although the in situ weather
condition variables are important predictors, they are only available at sites with sensors
deployed, which limits the application potential for PM2.5 estimation. In comparison
group 2, these in situ weather observations are replaced with the similar measurements
from ECMWF for PM2.5 modeling, which provide continuous spatial coverage for PM2.5
modeling. This comparison group includes the model_3 and model_4, both of which use
weather variables from ECMWF but one with radar and the other without radar. The alias
“base model” and “NEXRAD model” are used for model_3 and model_4 (see Table 4)
respectively in this comparison group. The scatter diagram, bar plot, and importance rank
plot are generated in Figures 10–12 respectively.

(a) Scatter diagram for base model (b) Scatter diagram for NEXRAD model

Figure 10. The scatter diagram for models with variables from ECMWF. (a)The base model without
NEXRAD and (b) the NEXRAD model with NEXRAD.

In the scatter plot (Figure 10), the NEXRAD model has better performance than the
base model in terms of R2 and RMSE on both training and testing datasets. In the bar plot
(Figure 11), the NEXRAD model has higher R2 and lower RMSE compared to the base
model on testing data and 5 cross-validation holdout datasets. Compared to the model
accuracy improvements from NEXRAD in group 1, the NEXRAD model in group 2 has
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more significant accuracy improvements. As in the Figure 12, the dew point temperature,
surface pressure, temperature, and solar angles are the most important predictor variables
for the base model. After adding the variables from NEXRAD, the radar velocity becomes
the fourth important factor for the NEXRAD model.

Figure 11. The model performances comparison bar chart for group 2. The meaning of X axis and
Y axis is the same as in Figure 8. The RMSE and R2 are compared between the Base Model and
NEXRAD Model.

(a) Predictor importance for base model (b) Predictor importance for NEXRAD model

Figure 12. The importance rank plots for models with and without NEXRAD in comparison group 2.
The description of variables is listed in the Table 5.

3.5. Comparison Group 3: Weather Variables Sensitivity Analysis

The weather variables from ECMWF provide continuous spatial coverage for PM2.5
modeling and estimation, but at the cost of a coarser temporal (hourly) and spatial (10 km)
resolution. To investigate the model performances by replacing in situ weather observa-
tions with ECMWF products, model_1 and model_3 are compared in this group. For the
convenience of comparison, the alias of “in situ model” and “ECMWF model” are used
for model_1 and model_3 respectively, neither of which includes NEXRAD. The scatter
diagram, bar plot, and importance rank plot for the third comparison group are in the
Figures 13–15 respectively.

According to the Figure 13, the R2 value drops 0.13 and the RMSE increases 0.72
on the testing dataset by replacing the in situ weather variables with ECMWF variables.
Although with the performance drop, the model with ECMWF still achieves satisfactory
results with a 0.7 R2 score and 2.9 RMSE on the testing dataset. Figure 14 shows the results
from the testing data which are consistent with results from the 5-fold cross-validation
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results. In Figure 15, the dew point temperature and surface pressures are the two most
important predictor variables for both models.

(a) Scatter diagram for in situ model (b) Scatter diagram for ECMWF model

Figure 13. The scatter diagram for models with variables from ECMWF. (a) The in situ model with
weather variables from in situ observations, and (b) the ECMWF model with weather variables
from ECMWF.

Figure 14. The model performances comparison bar chart for group 3. The meaning of X axis and Y
axis is the same as in Figure 8. The RMSE and R2 are compared between the ECMWF Model and
In-situ Model.

(a) Predictor importance for in situ model (b) Predictor importance for ECMWF model

Figure 15. The importance rank plots for models using variables from in situ observation and
variables from ECMWF in comparison group 3. The description of variables is listed in the Table 5.
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4. Discussion

The wind influences the PM2.5 concentration during saltation. Particles are carried by
the wind and move in their own way as they creep, saltate, or suspend. When particles
moved by the wind collide with each other or with the ground surface, the saltation process
occurs. Researchers have found that wind plays an important role in saltation, in which fine
size airborne particulates including PM2.5 and PM10 can be emitted [57,58]. A NEXRAD’s
spectrum width and velocity can provide information on how fast and what is the direction
the wind is moving. Hence, variables from NEXRAD are incorporated together with in situ
observation and ECMWF variables for PM2.5 modeling in this study. The performances of
models with and without NEXRAD are compared in group 1 (see Table 6). Limited by the
availability of in situ weather observations, the variables from ECMWF are widely adopted
as an alternative source for measuring weather conditions, which are commonly used for
meteorological studies and PM2.5 estimations [34,59]. Therefore, group 2 replaces in situ
observations with similar variables from ECMWF to investigate the model performances
with and without NEXRAD. Replacing in situ observations with similar variables from
ECMWF allows better spatial coverage, but at the cost of lower spatial and temporal
resolution, and higher uncertainties. Under this circumstance, the comparison group 3
explores how effective the variables from ECMWF are in PM2.5 modeling compared to the
sensor measured in situ weather observations.

Table 6. Group comparison metrics. 5-CV R2 and 5-CV RMSE represent 5-fold cross-validation
results from training dataset; R2 and RMSE represent the validation results from testing dataset.

Groups In Group Alias 5-CV R2 Difference R2 Difference 5-CV RMSE Difference RMSE Difference

Group 1
Base Model 0.820

0.035
0.832

0.023
2.253

0.221
2.184

0.158
NEXRAD Model 0.855 0.855 2.032 2.026

Group 2
Base Model 0.697

0.051
0.700

0.068
2.921

0.241
2.904

0.305
NEXRAD Model 0.747 0.768 2.680 2.599

Group 3
in situ Model 0.820

0.123
0.832

0.132
2.253

0.667
2.184

0.720
ECMWF Model 0.697 0.700 2.921 2.904

A summary of the model comparison results can be found in Table 6. The results
from group 1 and group 2 demonstrate that variables from NEXRAD could provide extra
weather information, especially the velocity, which helps to improve the PM2.5 modeling
accuracy. The more significant model accuracy improvement in group 2 compared to
group 1 encourages us to believe that when lacking in situ weather observations, NEXRAD
can serve as an important supplementary information source to ECMWF for a better PM2.5
modeling accuracy. Group 3 shows that although ECMWF could serve as an alternative
weather variables source for in situ weather observations in PM2.5 modeling and has better
spatial coverage, variables from ECMWF are at hourly intervals, while the other variables
are available every 15 min. As a result, variables from ECMWF need to be interpolated
to match the temporal resolution of the rest variables for PM2.5 modeling, which could
introduce noise and lead to a model accuracy drop.

In addition to NEXRAD, ECMWF, and in situ observations, variables from GOES-16
and solar angles (see Table 5) are employed as predictor variables as well. Previous studies
examined the relationship between AOD and PM2.5 concentration varies depending on
the time of day [60]. Solar angles are closely related to the local time and have a huge
influence on the AOD quality, which provides important information to help the PM2.5
estimation. This conforms with the Figures 9, 12 and 15, where the variables from solar
angles contribute significantly to PM2.5 modeling accuracy.

5. Conclusions

By comparing the four established models in three groups, this study has made the fol-
lowing discovery. First, the in situ weather observations including humidity, temperature,
dew point, and pressure, together with AOD from GOES-16 and solar angles could achieve
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good modeling results (0.83 R2) for PM2.5 concentrations at a 15 min temporal resolution.
Second, combining variables from NEXRAD with an in situ model could improve the R2

modeling accuracy by 2.8%. Third, combining variables from NEXRAD with ECMWF could
achieve more accuracy improvements (9.7%) compared to the accuracy improvements from
the in situ models. Last, by replacing in situ observations with variables from ECMWF,
the model has an 0.7 R2 score on the testing dataset, which is 0.13 less than the model with
in situ weather observation.

Several novel facts have been uncovered by these discoveries that could provide
insights for future research. Due to NEXRAD’s high scanning frequency, even though it
cannot detect PM2.5 particles directly, it can provide supplementary weather conditions
that improve PM2.5 modeling, especially for high temporal PM2.5 modeling. In addition,
due to the incompatibility in resolution and veracity issues, using weather variables from
ECMWF as an alternative for in situ observation leads to a significant model accuracy drop.
However, when in situ observations are not available, weather variables from ECMWF
are still an effective source for PM2.5 modeling. Furthermore, NEXRAD improves model
accuracy more significantly in the model based on variables from ECMWF than in the
model based on variables from in situ observations. These facts suggest that NEXRAD
can be utilized as a supplementary weather source for high temporal PM2.5 modeling,
especially in the absence of in situ weather measurements.
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