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Abstract: Steep rock slopes present key opportunities and challenges within Earth science applica-
tions. Due to partial or complete inaccessibility, high-precision surveys of these high-relief landscapes
remain a challenge. Direct georeferencing (DG) of unoccupied aerial vehicles (UAVs) with advanced
onboard GNSS receivers presents opportunities to generate high-resolution 3D datasets without
ground-based access to the study area. However, recent research has revealed large vertical errors
using DG that may prove problematic in near-vertical terrain. To address these concerns, we exam-
ined more than 75 photogrammetric UAV-datasets with various imaging angles (nadir, oblique, and
combinations) and ground control scenarios, including DG, along a steep slope exposure. Results
demonstrate that mean errors in DG scenarios are up to 0.12 m higher than datasets using integrated
georeferencing with well-distributed GCPs. Inclusion of GCPs greatly reduced mean error values
but had limited influence on precision (<0.01 m) for any given imaging strategy. Use of multiple
image angles resulted in the highest precisions, regardless of georeferencing strategy. These findings
have implications for applications requiring the highest precision and accuracy (e.g., geotechnical
engineering, hazard mitigation and mapping, and geomorphic change detection), which should
consider using ground control whenever possible. However, for applications less concerned with
absolute accuracy, our results show that DG datasets provide strong internal consistency and relative
accuracy that may be suitable for high precision measurements within a model, without use of
ground control.

Keywords: direct georeferencing; RTK; UAV; SfM; photogrammetry; high-relief terrain; steep
slopes; façades

1. Introduction

Steep slopes are common natural landscape features that provide recreational and
educational opportunities, but also pose a number of geotechnical challenges. Sub-vertical
slopes can afford some of the best outcrop exposures and offer a viewing window into
laterally extensive geologic features that are commonly not exposed at the surface. However,
slopes are also dynamic and particularly susceptible to contemporary erosional processes,
often posing safety hazards to people and infrastructure. Due to partial or complete
inaccessibility, quantitative documentation of these high-relief landscapes is challenging
for established surveying methods that commonly require ground-based measurements.

Remote sensing techniques, such as light detection and ranging (LiDAR) and pho-
togrammetry, are commonly used to record detailed 3-dimensional (3D) information of
inaccessible slopes in academic, commercial, and public safety applications. Ground-based
LiDAR, also referred to as terrestrial laser scanning (TLS), is considered the standard for
recording reliable 3D information about a scene, while preserving geometric properties
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(i.e., scale, orientation, dimensions) [1,2]. TLS is particularly well-suited to steeply sloping
planes and façades when compared to conventional airborne surveys with nadir look
angles [3,4] and has been used in geotechnical engineering [5–7] and geologic [8–10] appli-
cations. However, TLS can be hindered by practical issues, such as limited mobility, high
costs, and susceptibility to occlusions created by restricted line-of-sight [10,11].

Photogrammetry is a popular low-cost alternative for recording datasets along steep
slopes, particularly with recent advances in automated image matching algorithms, such
as structure-from-motion and multi-view stereo (SfM-MVS) [12,13]. Images collected from
unoccupied aerial vehicles (UAV) are now commonly processed using SfM-MVS workflows
(UAV-SfM) to create digital datasets of inaccessible and/or extensive areas with detailed
resolution and ground sampling distance (GSD) in geomorphic [14–20], geologic [21–30],
and geotechnical [31–34] studies.

However, photogrammetry depends on known ground control points (GCPs) within
a given study area for reliable absolute accuracy (i.e., location and orientation), relative
accuracy (i.e., reconstruction of internal scene morphology), and camera calibration (i.e.,
interior orientation parameters) accuracy [35,36]. Following established recommendations
in photogrammetry, GCPs should be well-distributed and non-colinear throughout a scene
to constrain the full survey area, including the periphery [37]. Several investigations have
documented UAV-SfM accuracy based on GCP distribution and precision [38–44], but rarely
consider the practical challenges and potential hazards in high-relief terrain. Measuring
GCPs in scenes with steep slopes may require additional equipment, such as total station,
to record points along a façade [2,11,32], or use of relative reference systems [45,46].

Direct georeferencing (DG) using on-board GNSS has potential to increase survey
efficiency and has demonstrated success using ground-based sensors [5,47,48], but is often
unreliable due to low-precision (~5–10 m) consumer positioning systems [49–51]. However,
precise positioning using multi-carrier phase GNSS capabilities is becoming increasingly
available for UAVs, colloquially known as real-time kinematic, or RTK-UAVs. Evalua-
tion of RTK-UAVs commonly indicate that datasets using GCPs are more accurate than
DG datasets, specifically in the vertical (z) vector [51–64], attributed to suboptimal es-
timation of camera interior orientation parameters (IOPs), notably focal length, during
self-calibration [59,65]. Although strategies to reduce vertical bias have been suggested
using a single GCP [54,59,64,66,67], oblique images [55,68,69], or alternative IOP calibra-
tion [38,70,71], few studies (e.g., [53,56]) have considered how vertical errors manifest in
datasets with vertically oriented objects and extensive vertical landscape features.

To evaluate the accuracy and precision of RTK-UAV photogrammetric datasets along
laterally extensive sub-vertical rock slopes, we compare absolute and relative accuracy of
more than 75 scenarios. Variables include orthogonal and nadir imaging angles combined
with various GCP strategies, including direct georeferencing using RTK-UAV image ge-
olocation and use of image geolocation combined with GCPs (integrated georeferencing).
UAV datasets are compared against a TLS reference dataset to document disparities in
absolute positioning and relative internal precision of 3D photogrammetric datasets.

2. Materials and Methods
2.1. Study Area and Geologic Setting

To test the performance of DG UAV-SfM across near-vertical planes, we selected a
section of outcrop exposure along a steep slope (approximately 70◦ on average) near the
Hoodoos Public Recreation Area, 12 km southeast of Drumheller, Alberta (Figure 1). The
outcrop exposes extensive channel system deposits of the Late Cretaceous Horseshoe
Canyon Formation (Campanian-Maastichtian) that is well-exposed for tens of kilometers
throughout the Red Deer River valley [72–77]. Within the field area specifically, deposits
have been identified as meander-belt strata with packages of distinct inclined heterolithic
stratification signifying lateral point-bar migration [72,74,78] along with fine-grained de-
posits indicating transition to counter-point-bar deposits and associated abandoned channel
fill [79]. Locally, the underlying marine dominated Bearpaw Formation can be found at
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the erosional base of the Horseshoe Canyon (Figure 1c) along with regionally identifiable
features, such as Coal #0 [76,80,81], which is ~0.8 m thick locally and can be followed
continuously for tens of kilometers throughout the Red Deer River valley [79].

Figure 1. Study area overview; (a) site location near Hoodoos Public Recreation Area, 12 km SE
of Drumheller, AB; (b) UAV-SfM orthomosaic and digital surface model (DSM) of study area with
TLS scan locations; (c) 3D model of study slope (~70◦ average), GCP distribution with Top3 along
accessible ridge, Base4 along bottom, and regional features identified (i) Coal #0 and (ii) erosional
basal contact with the underlying Bearpaw Formation.

2.2. UAV Data Acquisition

UAV images were collected using a DJI Phantom 4 RTK quadcopter (P4RTK) equipped
standard with 1” sensor, 20 megapixel, and 8.8 mm focal length, equating to approximately
0.014 m/pix at 50 m altitude above ground level. The camera is integrated into the UAV
system on a 3-axis gimbal that can be tilted from −90◦ (nadir) to 0◦ (horizontal) along
the x-axis, enabling complete coverage within complex, sloping topography. The P4RTK
system includes high-precision GNSS receivers compatible with multiple constellations and
frequencies, including: GPS (L1/L2), GLONASS (L1/L2), Galileo (E1/E5a), and Beidou
(B1/B2) with horizontal and vertical precisions of 0.01 and 0.015 m, respectively [82].

There are various RTK configurations for the P4RTK, we use the D-RTK 2 Mobile
Station configuration in classic RTK-mode to facilitate: (1) automatic geotagging of images
with high-precision locations that do not require post processing, and (2) manual flight
mode, which is not compatible with post processing kinematic workflows. The D-RTK 2 is
capable of establishing its position prior to flight, but a workflow for highest precision using
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post processing is not well-documented. Therefore, the D-RTK 2 base station was setup over
a known ground control point surveyed with a Trimble R8 RTK-GNSS and post-processed
using Natural Resources Canada—Precise Point Positioning service to enhance precision
through precise GNSS orbit and clock information [83]. Setup of RTK mode, positioning,
and manual flights were conducted using the DJI GS RTK application integrated with the
P4RTK flight controller.

Experimental UAV-SfM and reference TLS datasets were collected nearly simultane-
ously during a cloudy day with consistently dissipated lighting conditions throughout
the survey. Prior to UAV flights, 7 GCP targets were distributed at the base and along an
accessible ridge at the top of the slope (Figure 1b,c). GCPs were 0.6 m × 0.6 m corrugated
plastic with quadrants painted alternating red and black forming a distinct central point.
Center points of non-signalized GCPs were measured using a Trimble R8 RTK-GNSS sys-
tem with base receiver placed on the established known control point and GCPs measured
with the rover in RTK-mode. UAV images were collected during 3 different flights, each
with a single image angle and varying distance from outcrop: nadir (−90◦, ~60 m average),
oblique (−60◦, 50 m), and obliqueclose (−45◦, 32 m; Table 1).

Table 1. Image sets collected during UAV flight and combination scenarios for processing.

Image Set Image Angle (◦) # of Images GSD(m)
Average

Precision, XY
(m)

Average
Precision, Z

(m)

Si
ng

le Nadir −90 191 0.017 0.011 0.021
Oblique −45 109 0.012 0.010 0.023

Obliqueclose −45 213 0.007 0.010 0.024

C
om

bi
na

ti
on

s Nadir + Oblique −90 + −45 300 0.016 0.011 0.022
Nadir + Obliqueclose −90 + −45 404 0.015 0.011 0.023

Nadir + Oblique
+ Obliqueclose

−90 + −45 513 0.014 0.010 0.023

Oblique + Obliqueclose −45 322 0.008 0.010 0.024

2.3. UAV-SfM Processing

All UAV-SfM datasets were processed using Pix4Dmapper (v4.5.6) on a high-performance
computer. An initial ‘master’ project was created with image sets from each flight (nadir,
oblique, and obliqueclose) and all GCPs with precision information from respective GNSS
instrumentation (Table 1). Each GCP was manually verified in six images for each imag-
ing angle (18 images total) within Pix4Dmapper GCP Manager. To ensure consistency of
GCP marks among processing scenarios, each dataset was then derived from this master
project, creating 77 unique datasets from varying combinations of image angle (Table 1)
and georeferencing strategy. Scenarios processed without GCPs are equivalent to DG using
only RTK-UAV location information in SfM-MVS processing. Datasets that incorporate one
or more GCP are equivalent to integrated georeferencing as they include both GCP and
RTK-UAV image location information in processing, sometimes referred to as assisted geo-
referencing. GCP configurations were selected to represent common real-world scenarios
in which accessibility around a slope or cliff varies; for example, accessibility limited to the
base of a slope (Base4), top of a slope (Top3), and a single GCP based on recommendations
from previous studies [53,54,59,64,66,67].

To facilitate matching among images with nadir and oblique perspectives and high-
precision image location, a number of customized settings were adapted in SfM-MVS
processing (Table 2). Default calibration settings were modified to use “Accurate Geolo-
cation and Orientation” and IOP Optimization was changed from “All” to “All Prior,” as
recommended by Pix4D for image sets with high-precision location information [71,84].
According to the software developer, this forces IOP values that are iteratively re-calculated
and optimized during bundle adjustment to be similar to initial values. In some instances,
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this setting has been tested and found to degrade accuracy of results [71] but similar
pre-processing in our datasets did not result in any notable differences.

Table 2. Processing settings in Pix4Dmapper selected for all UAV-SfM scenarios.

Step Processing Option Setting

1. Initial processing

Keypoint image scale Full

Matching image
pairs(Custom)

Neighboring images: 5
Triangulation enabled

Geometrically
verified matching

Calibration(Advanced)
Geolocation based

IOP: all prior
EOP: all

2. Point cloud densification

Image scale 1/2 image size, multiscale
Point density Optimal
Min. matches 3

Matching window size 9 × 9 pixels

2.4. Reference Datasets

Reference datasets were collected nearly simultaneously with GCP and UAV surveys
using a FARO Focus3D S120 TLS. The FARO is a phase-based laser scanner (905-nm
wavelength) that can record up to 976,000 points per second at precisions of 0.002 m at
25 m target distance and angular resolution of 0.011◦ [85]. To mitigate occlusions and data
shadows in TLS point clouds, a total of four scans were collected with substantial overlap of
the 125 m × 55 m slope. Scans were imported, processed, and georeferenced within FARO
Scene v7.0.2.5 software following similar process documented in [34]. Initial scan locations
were surveyed in the field using the Trimble R8 RTK system described previously and
combined with orientation measurements from internal TLS sensors. Relative registration
and merging were performed using cloud-to-cloud registration functions within FARO
Scene software. The merged point cloud was then aligned to absolute geospatial coordinates
through indirect georeferencing using the seven GCPs that were also used for referencing
UAV-SfM datasets (described previously). Center points on GCPs were identified in the
point cloud (Figure 2) and used to perform a global shift, which involves translation
and rotation without modification to scale. To reduce noise in SfM and TLS datasets
caused by sparse vegetation [86–88], the reference TLS point cloud was filtered to remove
collocated points (within 0.004 m) and obvious patches of vegetation using the CANUPO
plugin [89] in open-source CloudCompare software [90]. The final reference point cloud
contained 10.4 million points, a registration error of 0.014 m, and an average point density
of 1950 pts/m3.

2.5. Assessment

To compare the experimental UAV-SfM and reference TLS point clouds, we used the
Multiscale Model to Model Cloud Comparison (M3C2) plugin for CloudCompare [91].
M3C2 reports differences between two point clouds based on local surface roughness and
surface normal orientation within a user defined radius. Local differences are calculated by
estimating an average plane for each point cloud within the given radius and subsequently
calculating the distance between each plane, see [91] for detailed description. M3C2 is ideal
for identifying 3D variance throughout an entire point cloud surface and is particularly
effective at identifying local differences in complex topography. In our comparisons, we
followed a similar workflow to previous studies (e.g., [91,92]; however, to ensure proper
normal orientation, surface normals of the TLS reference point cloud were calculated prior
to M3C2 calculation. Normals were calculated using the Compute Normals function in
CloudCompare, with parameters set to Quadric surface approximation, Octree of 0.1 m
radius (to align with M3C2 diameter), and orientation using Minimum Spanning Tree
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knn = 16. Calculated normals were then used in all M3C2 calculations for Cloud 1 (TLS)
normal. Additional parameters used in M3C2 calculation include the TLS registration error
(0.014 m), defined projection diameter (d) of 0.1 m, and a maximum depth of 3.0 m. Output
datasets from M3C2 processing provide localized differences between the TLS reference
point cloud and each UAV-SfM point cloud in the direction of local surface normals.

Figure 2. Section of merged TLS point cloud, prior to vegetation and noise removal. Note the GCP
target (0.6 × 0.6 m, approximately 2600 points) and rough slope topography composed of rills and
drainages void of points.

3. Results
3.1. Direct and Integrated Georeferencing

Dense point clouds processed using DG strategy resulted in the highest standard
deviations and mean values when compared to scenarios processed with one or more GCP
for each imaging angle (Figures 3 and 4). The addition of GCPs had minimal impact on
standard deviations for each imaging angle (Figure 4a). For example, nadir-only datasets
demonstrated the largest change in standard deviation from DG (0.107 m) to use of All7
GCPS (0.097 m; Figure 3a,d); similarly, combination scenarios, such as oblique + obliqueclose
ranged from 0.043 m to 0.040 m for the same georeferencing strategies (Figure 3b,e). The
number of GCPs had a greater influence on mean difference values for each imaging angle
(Figure 4b), with considerable improvements in nadir datasets (DG = 0.129 m and All7
GCPs = 0.010 m) and smaller refinements for combination datasets (Figure 3). Generally,
inclusion of more GCPs resulted in lower error values for a given imaging scenario, with
the exception of the oblique-only scenarios that had similar mean values for All7 and Top3
GCP scenarios.

3.2. Imaging Variables

Nadir-only datasets produced higher standard deviations than all datasets in this
investigation, regardless of georeferencing strategy, and had higher mean error values
than all other imaging angles unless at least four GCPs were used. Combining nadir- and
oblique- images resulted in lower standard deviation than single-angle datasets for all geo-
referencing strategies (Figure 5a–c). Mean error values were higher in datasets containing
nadir images (e.g., nadir-only and combined nadir/oblique) compared to oblique-only
datasets, particularly when processed with fewer than four GCPs (Figure 5d–f).
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Figure 3. M3C2 differences for select RTK only scenarios (a–c) and All7 GCP scenarios (d–f). Positive
values (red) indicate UAV-SfM datasets below TLS reference surface, negative values (blue) indicate
TLS reference surface below UAV-SfM. Note mean and standard deviation (StDev) results documented
for each scenario.

Figure 4. M3C2 error statistics grouped by imaging angle with subgroups based on georeferencing.
(a) standard deviation of error; (b) mean error. ‘Obl.’ refers to ‘Oblique’.
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Figure 5. M3C2 error statistics grouped by georeferencing strategy and subgroups of imaging strategy.
Standard deviations: (a) Nadir + Oblique, (b) Nadir + Obliqueclose, (c) Oblique + Obliqueclose and
Nadir + Oblique + Obliqueclose; mean error: (d) Nadir + Oblique, (e) Nadir + Obliqueclose, (f) Oblique
+ Obliqueclose and Nadir + Oblique + Obliqueclose. ‘Obl.’ refers to ‘Oblique’.

UAV-SfM models produced from larger image sets typically resulted in lower standard
deviations for all georeferencing scenarios (Figure 6a). Number of images used in UAV-
SfM processing had little impact on mean difference errors (Figure 6b). Image sets with
higher proportions of nadir images resulted in higher standard deviations and mean
difference values for all georeferencing strategies, particularly in single GCP and no GCP
scenarios (Figure 7).

Figure 6. M3C2 error (y-axis) as a function of number of images used in UAV-SfM processing.
(a) standard deviation of errors; (b) mean error. Black points represent results for RTK-only DG (no
GCPs) and lightest blue use >3 GCPs.
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Figure 7. M3C2 error (y-axis) with respect to the percentage of nadir images within an image set
used in UAV-SfM processing. (a) standard deviation of errors; (b) mean error. Black points represent
results for RTK-only DG (no GCPs) and lightest blue use >3 GCPs.

4. Discussion

Our study confirms that GCPs are generally beneficial for SfM-MVS processing relative
to DG strategies, even when implementing an RTK-enabled UAV. This aligns with previous
studies comparing DG to various georeferencing strategies and extends understanding from
relatively flat, horizontal scenes, to complex landscapes with laterally extensive sub-vertical
planes common to geologic, geomorphic, and geotechnical engineering applications.

Statistical analysis of surface errors calculated by M3C2 offers insight into the internal
precision of a 3D dataset and absolute accuracy relative to global geographic coordinates. In
our analyses, standard deviation indicates how widely dispersed error values are between
a given UAV-SfM dataset and the reference TLS dataset. For example, a low standard
deviation suggests that difference values are relatively consistent throughout a model,
while a high standard deviation indicates a broader range of errors. Two datasets with
similar standard deviations have similar internal consistency, but may show differences in
absolute accuracy based on mean values. A mean value close to zero suggests the UAV-SfM
model is roughly aligned with the TLS reference, while a mean further from zero may be
‘offset’ from the reference surface via error in positional placement, such as global shift,
translation, or rotation [93,94]. In our study, use of GCPs improves resulting mean error
values by aligning UAV-SfM and TLS datasets, but does not have a notable influence on
standard deviation values. Imaging geometry has a more profound impact on standard
deviation and internal consistency of 3D datasets, but may also reduce absolute accuracy
unless sufficient number of GCPs are included in SfM-MVS processing.

4.1. Absolute Accuracy

Regardless of imaging geometry, the use of GCPs improved mean M3C2 error values
(i.e., values closer to 0) relative to DG. Datasets without GCPs consistently resulted in
the highest mean error values, while increasing the number of GCPs in a given imaging
scenario generally improved mean M3C2 values, with best results generated in scenarios
using All7 GCPs (Figures 3 and 4). Including a single GCP had mixed results, lowering
mean values in 82% of scenarios and reducing mean errors by >50% in nearly a quarter
of scenarios compared to DG. Distribution of GCPs along the Top3 or Base4 of the slope
had more consistent results with lower mean values than 40 of 49 single GCP (and all
DG) scenarios with 12 of 14 scenarios reducing mean error by >50% compared to DG.
Quantitatively, All7 GCPs resulted in mean error values at least four times smaller than
RTK-only for all imaging scenarios.

These findings suggest that GCPs measured with survey-grade GNSS are imperative
for the highest absolute accuracy and alignment of SfM-MVS models with geospatial
coordinates, even when employing an RTK-UAV. This further supports recent studies that
document shortcomings of DG using RTK-UAV images compared to datasets incorporating
GCPs in relatively flat landscapes [51–64]. Errors in DG are often attributed to a lack of
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reliable precision (or physical offset) of onboard GNSS measurements and/or incorrect
camera calibration during bundle adjustment. To mitigate errors and vertical biases, many
studies have suggested inclusion of a single GCP [54,59,64,66,67]. Similar to previous work,
our results demonstrate that a single GCP often improves mean error values, by shifting
the mean closer to zero; however, results appear inconsistent and generally provide minor
improvements. Differences between our results and previous investigations may be due
to different weighting of precision parameters for images and/or GCPs within SfM-MVS
processing, placement of GCP within the scene, and/or could be partly attributed to the
vertical orientation of the study area.

Distribution of multiple GCPs along the top or base of a slope has also been suggested
when a slope is partially inaccessible. Regardless of imaging geometry, our results show
substantial improvement and consistent reduction of mean error when at least three GCPs
are incorporated with RTK-UAV images. These outcomes are based on two different
GCP configurations that are roughly linear and at similar elevations, which is generally
considered poor GCP distribution when using low-precision GNSS observations typical of
consumer UAVs [31]. However, in combination with RTK-UAV images, this solution may
present a viable alternative for surveying challenging terrain when distribution of GCPs
throughout an entire slope/site is not possible.

4.2. Relative Accuracy

In addition to improving model alignment to absolute geospatial coordinates, in-
clusion of GCPs also appears to have a minor influence on resulting standard deviation.
Although, increasing number of GCPs consistently lowered standard deviation values
(improved precision) within datasets of a given imaging angle, differences were only a
fraction of GSD (<65% GSD; Figure 4a). These apparent improvements of less than 1 GSD
may not be reliably distinguishable from random errors and noise within a dataset [95].
The narrow difference of standard deviation relative to inclusion/exclusion of GCPs in our
study suggests that it is possible to generate 3D models with strong internal consistency
using RTK-UAV images, regardless of georeferencing strategy. These results appear con-
sistent with previous literature in demonstrating that inclusion of precise image positions
mitigates block deformation issues [96]. Our results are also analogous to the simulations
performed by James et al. (2017) [94] showing that the internal shape of a reconstructed
topographic surface could be accurate, while larger overall errors can propagate due to
poor georeferencing to an external coordinate system, i.e., strong relative accuracy and
poor absolute accuracy.

Imaging angle had a strong influence on the internal precision of 3D models (Figure 4a
and a–c). The highest standard deviations occurred in datasets using only nadir images,
regardless of georeferencing strategy (min = 0.097 m, max = 0.107 m). This could be
partially attributed to the poor perspective of images, highly oblique and non-normal to
the dominant topographic exposure of sloping terrain. In photogrammetric surveys, it
is not common practice to collect a majority of images at highly oblique angles relative
to the plane of interest. However, collection of nadir images along parallel flight lines is
the most common practice in UAV-SfM operations, particularly for large areas [97], and
may be the default implementation for operators unaware of the challenges presented by
high-relief terrain.

Tilting the camera to align the image plane roughly parallel with the average slope
is a practical UAV-SfM surveying strategy to acquire more detailed datasets along steep
slopes that has been recently applied [20,32,98]. In our study, use of similar imaging
strategies (e.g., oblique and obliqueclose) also yielded improvements to dataset precision
with standard deviations of 0.073 m and 0.047 m respective averages, compared to nadir
datasets (0.101 m). Lowest standard deviations were produced by datasets that combined
nadir and oblique imaging geometries, particularly those that included obliqueclose images,
with minimum of 0.040 m and maximum of 0.049 m. This is consistent with recent studies
that have documented the benefits of adding oblique images to nadir image blocks to obtain
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wide parallactic angles among images that are beneficial in reducing systematic internal
errors [92,94,99]. Compared to the addition of GCPs, our results demonstrate that creating
strong image network geometry with RTK-UAV images is more effective for improving the
internal precision of UAV-SfM models.

4.3. Additional Factors

The number and ratio of images collected at different angles may contribute to dis-
parities in standard deviation and mean error values. Including more images typically
corresponds with higher overlap and greater redundancy within images that can result
in higher precision and accuracy [94,96,100,101]. In our study, increasing the number of
images does not appear to have a direct relationship with accuracy, but generally pro-
duces results with lower standard deviations (Figure 6). However, the ratio of images
collected at different angles may have a more distinct impact on accuracy. Previous studies
have documented the general benefits of incorporating multiple imaging angles in cam-
era self-calibration while cautioning that unbalanced ratios can shift mean error values
away from zero [92,93]. Results in this study seem consistent with previous findings that
increasing the proportion of images non-normal to the primary object plane (nadir images
in this study) produced mean values further from zero, compared to parallel imaging
geometries (Figure 7). This relationship is most prevalent in RTK-only and single GCP
scenarios and was partially mitigated by use of three or more GCPs (Figure 7). Though
our results highlight potential correlation among variables previously speculated upon,
further research is required to thoroughly vet and document these relationships before any
reliable recommendation is made regarding DG UAV survey techniques and ideal image
network geometry.

Variables that are not further considered here are processing settings and handling of
input parameters, such as image location/orientation precision and GCP precision during
bundle adjustment in SfM-MVS software. Weighting of these parameters surely effects
the output datasets, but investigation of these parameters remains challenging within
proprietary commercial software. In these scenarios, it is up to the user to make educated
selections of the appropriate processing settings for their datasets as recommended by
software manufacturers. Similarly, the RTK configuration in this study requires setup over
a known control point for the D-RTK2 base station to achieve real-time UAV precisions
achieved here (0.01–0.025 m; Table 1). Actual precisions may vary if using different RTK
configurations or relying on the D-RTK2 base station to resolve its absolute coordinates
without post-processing corrections.

4.4. Use Cases and Recommendations

Although results are generally promising for DG solutions in high-relief landscapes,
with mean errors ranging from 0.012–0.129 m, this research highlights important considera-
tions when employing DG UAV-SfM strategies. A strong imaging geometry is crucial for
creating reliable relative accuracy and internal precision within resulting 3D data products,
while GCPs only narrowly influence internal precisions. We strongly recommend that
most UAV-SfM (RTK- and non-RTK) applications using camera self-calibration should
incorporate both: (i) a majority of images with plane oriented roughly parallel to dominant
surface orientation (e.g., nadir [−90◦] for a flat landscape, and horizontal [0◦] for a vertical
plane), and (ii) images at non-parallel angles, or oblique to the surface normal in order to
encourage strong network geometry and robust camera calibration. In our investigation
of steep slopes, we caution against nadir-only imaging angles that are highly oblique to
average slope angle because they consistently produced the highest errors, regardless of
georeferencing strategy.

For applications requiring lowest errors (e.g., geotechnical engineering surveys, haz-
ard mapping, geomorphic change detection), integrated georeferencing using both high-
precision RTK-UAV image geotags and well-distributed GCPs provides the most reliable
solution. However, high-relief terrain often creates practical challenges for ideal distribu-
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tion and measurement of GCPs, such as accessibility, safety, and cost. In these scenarios,
use of RTK-UAV images and three or more GCPs across the base or top of a slope may be
a suitable alternative to improve absolute accuracy without degrading relative accuracy.
Including a single GCP had varying impacts, but according to our results, should not be
viewed as a reliable or consistent solution for improving absolute or relative accuracy com-
pared to RTK-only and should be the subject of future investigation. For applications that
are less concerned with absolute accuracy, such as geologic mapping, DG using RTK-UAV
may present an adequate solution with internal precisions of 1–2 GSD, which is comparable
to datasets incorporating well-distributed GCPs. Practitioners should be cautious with
this approach, as orientation measurements may be susceptible to large errors propagating
from inaccurate or systematic GNSS ‘drifts’ in RTK-UAV observations, particularly for
laterally extensive scenes.

5. Conclusions

Direct georeferencing of UAV-SfM is an appealing solution for surveyors and re-
searchers with potential to increase efficiency and obtain reliable 3D measurements of
inaccessible locations. Although our results appear generally promising for DG using
an RTK-UAV, precision and accuracy in DG datasets is consistently poorer than datasets
using integrated georeferencing strategies incorporating both RTK-UAV images and well-
distributed GCPs. However, for image sets with strong network geometry that include
multiple imaging angles, DG may result in suitable accuracy and precision for a variety of
applications. For the highest precision and accuracy, we recommend use of well-distributed
GCPs and RTK-UAV images acquired from multiple angles whenever possible. If acces-
sibility to a slope is restricted, placing at least three GCPs at the base or top of the slope
may provide a suitable alternative when using an RTK-UAV. In our study, use of a single
GCP had inconsistent results and only produced minor improvements relative to RTK-only
datasets with no GCPs. For applications that do not require accurate alignment with abso-
lute geospatial coordinates, direct georeferencing may still provide suitable datasets for
local measurements within the model as internal precision (relative accuracy) is consistent,
regardless of georeferencing strategy.
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