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Abstract: In hyperspectral target detection, the spectral high-dimensionality, variability, and heter-
ogeneity will pose great challenges to the accurate characterizations of the target and background. 
To alleviate the problems, we propose a Meta-pixel-driven Embeddable Discriminative target and 
background Dictionary Pair (MEDDP) learning model by combining low-dimensional embeddable 
subspace projection and the discriminative target and background dictionary pair learning. In 
MEDDP, the meta-pixel set is built by taking the merits of homogeneous superpixel segmentation 
and the local manifold affinity structures, which can significantly reduce the influence of spectral 
variability and find the most typical and informative prototype spectral signature. Afterward, an 
embeddable discriminative dictionary pair learning model is established to learn a target and back-
ground dictionary pair based on the structural incoherent constraint with embeddable subspace 
projection. The proposed joint learning strategy can reduce the high-dimensional redundant infor-
mation and simultaneously enhance the discrimination and compactness of the target and back-
ground dictionaries. The proposed MEDDP model is solved by an iterative and alternate optimiza-
tion algorithm and applied with the meta-pixel-level target detection method. Experimental results 
on four benchmark HSI datasets indicate that the proposed method can consistently yield promis-
ing performance in comparison with some state-of-the-art target detectors. 

Keywords: hyperspectral image; target detection; dictionary learning; dimension reduction;  
represent learning 
 

1. Introduction 
Hyperspectral remote sensing image has the characteristic of high spectral resolu-

tion, which carries rich and consecutive spectral information of the land-covers. The di-
agnostic spectral information can distinguish the subtle differences between different spa-
tially adjacent ground objects [1–3]. As a result, HSI has unique advantages in detecting 
ground targets of interest. HSI target detection refers to the process of separating key tar-
get pixels from the non-target ones, i.e., background, which is committed to highlighting 
the targets and simultaneously suppressing the background. 

In HSI target detection, the target to be detected usually exists in the form of pixel-
level or even sub-pixel level in the image, due to the complex distribution and 
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composition of the ground objects, limited spatial resolution, and the small number and 
size of the targets [4,5]. Therefore, HSI target detection is usually transformed into the 
problem of determining the existence of target information in testing pixels. Given its nu-
merous superiorities, HSI target detection technology has been successfully applied in 
many fields, such as the geologic and mineral survey, future urban planning, and military 
reconnaissance [6,7]. From the viewpoint of pattern recognition, HSI target detection can 
be regarded as an unbalanced binary classification problem with a large volume of back-
ground pixels and a low existence probability of target pixels. The basic idea is to 
strengthen the divisibility of the target and background with the guidance of known tar-
get prior spectra via spectral decomposition, spectral matching, or hypothesis test [7]. 
Some classical models, such as the Constrained Energy Minimization (CEM) [8], Adaptive 
Coherence Estimator (ACE) [9], and Spectral Matched Filter (SMF) [10], are usually served 
as the benchmarks. 

In recent years, numerous advanced machine learning technologies, such as the 
sparse and low-rank modeling methods, have been successfully applied in a wide range 
of HSI processing applications, such as the HSI classification [11–15], unmixing [16,17], 
and target detection [18–20]. In a sparse representation-based target detector (SRD), the 
test pixel is represented or reconstructed by an over-complete dictionary composed of the 
background dictionary and known prior target spectra. The detection is then conducted 
by examining which sub-dictionary, i.e., background or target, yields a smaller represen-
tation residual [18]. Moreover, Zhang et al. suggested a sparse representation-based bi-
nary hypothesis (SRBBH) target detector, with the basic hypothesis that the testing pixels 
will be better reconstructed by the background dictionary when the target is absent [19]. 
By contrast, it will have a higher probability that the testing pixels can be more accurately 
reconstructed by the background and target combined dictionary when the target exists. 
Zhu et al. advocated a novel binary-class collaborative representation-based HSI target 
detector (BCRD) by assuming that the target pixels could be precisely represented by a 
collaborative representation of the pixels in the image [20]. To make better use of the dis-
tinct representation ability of the sparse and collaborative representation methods, a com-
bined sparse and collaborative representation method has been proposed by taking the 
merits of both collaborative and sparse representations [21]. In addition, a sparse and 
dense hybrid representation-based HSI target detection method was presented, which can 
take full advantage of the structural prior information between the target and background 
for improved detection performance [22]. The key assumption for the above representa-
tion learning-based target detection methods is that the semantically similar HSI pixels 
will cluster and fall into a linear subspace. 

In HSI target detection, the key problem is how to accurately characterize and esti-
mate the target and background [4,8,23]. For example, some famous Gaussian-based tar-
get detectors, e.g., matched filter and normalized matched filter, depending on the un-
known covariance matrix of the background around the test pixel, whose entries should 
be properly estimated [5]. Normally, the background can be characterized by some back-
ground pixels selected from the HSI scene. However, the background dictionary con-
structed in such a way might be contaminated by target information and failed to consider 
its discrimination in correspondence to the target prior information. Also, too many back-
ground pixels will increase the computational burden and make the problem more unbal-
anced. Chen et al. argued that using a local adaptive scheme-based sliding dual-window 
for background dictionary construction can generally achieve promising detection perfor-
mance than using a global dictionary constructed by some background samples [18,24]. 
To separate a pure background dictionary, a sparse and low-rank matrix decomposition-
based background dictionary construction method has recently been presented based on 
the robust principal component analysis (RPCA), which assumes that the background dic-
tionary has a low-rank property and can be separated from the observed HSI by matrix 
decomposition [4]. However, little attention has been paid to the discrimination between 
the background and target dictionaries. Strengthening the discrimination between the 
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target and background dictionaries can lead to better detection performance. Following 
the idea, a structural incoherent background and target dictionaries (SIBTD) learning 
method has been developed for HSI target detection [8]. In SIBTD, the structural incoher-
ence constraint is introduced to enhance the discrimination between the target and back-
ground dictionaries. Nevertheless, due to the high dimensionality and heterogeneity of 
the spectra, these methods will also suffer from the problem of spectral variability. There-
fore, the accurate, discriminative, and compact characterization issues of the target and 
background need to be resolved. As shown in Figure 1, this paper aims to handle the 
challenges by learning a discriminative target and background dictionary pair from the 
observed HSI data based on superpixel segmentation-derived meta-pixel with the guid-
ance of target prior spectra and the structural incoherent regularization, in a jointly 
learned adaptive lower-dimensional embeddable subspace. In a nutshell, the main contri-
butions are summarized below. 
(1) The meta-pixel set for HSI is defined by inheriting the merits of the homogeneous 

superpixel spectral property and the local manifold affinity structure, which can sig-
nificantly reduce the influence of the spectral variability and find the most informa-
tive and prototype spectral signatures of HSI. 

(2) A Meta-pixel-driven Embeddable Discriminative background and target Dictionary 
Pair (MEDDP) learning model is established to efficiently learn a discriminative and 
compact background dictionary from the constructed meta-pixel set by introducing 
the discriminative structural incoherence. In addition, an adaptive low-dimensional 
embeddable subspace is jointly derived to reduce spectral redundancy and extract 
meaningful features, which can lead to more accurate characterizations of the target 
and background. 

(3) An efficient optimization algorithm is designed to solve the MEDDP model. The key 
variables, i.e., the background dictionary and orthogonal embeddable projection ma-
trix are optimized iteratively to find the satisfied solutions. Furthermore, a novel 
meta-pixel-level target detection is performed based on the MEDDP model and some 
representation learning strategies. Experiments on several benchmark HSI datasets 
verify the effectiveness of the proposed method in comparison with several state-of-
the-art HSI target detectors. 

 
Figure 1. Overview of the proposed HSI target detection method. In the training stage, the observed 
HSI data is segmented by entropy rate superpixel segmentation method, and then the training meta-
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pixel set is constructed, which is further decomposed to get a discriminative target and background 
dictionary pair with the guidance of target spectra and the structurally incoherent regularization in 
an adaptive lower-dimensional embeddable subspace. In the testing stage, the HSI data is seg-
mented with a finer scale to construct the testing meta-pixel set as in the training stage. The discrim-
inative target and background dictionary pair obtained in the training stage are then combined with 
some representative representation learning-based methods, such as the SRD, SRBBH, and BCRD, 
for meta-pixel level target detection. 

The remainder of this paper is structured as follows. Some key related works are 
introduced in Section 2. Section 3 presents the detailed descriptions for the proposed 
MEDDP model and the target detection strategy. Then, in Section 4, the experimental re-
sults and analysis are presented. Section 5 finally summarizes the full paper. 

2. Related Works 
Suppose an HSI dataset is with the size of ℎ × 𝑤𝑤 × 𝐵𝐵 and contains several target ob-

ject pixels of interest for detection given some prior target spectra. ℎ and 𝑤𝑤 respectively 
represent the height and width of the HSI scene. The data dimensionality, i.e., spectral 
band, is 𝐵𝐵. The observed 3-D HSI can be rearranged as a 2-D matrix by arranging the 
pixels in order. Thus, the HSI dataset is converted into the form of a matrix as 𝐗𝐗 =
[𝐱𝐱1, 𝐱𝐱2, … , 𝐱𝐱𝑁𝑁] ∈ ℜ𝐵𝐵×𝑁𝑁 with 𝑁𝑁 = ℎ × 𝑤𝑤. 𝑁𝑁 is the total number of the HSI pixels, which is 
usually very large containing various land-cover objects, such as soil, gravel, vegetation, 
and buildings. Some important notations used in this paper are summarized in Table 1. 

Table 1. Important notations used in this paper. 

Notation Meaning Notation Meaning 

X Observed HSI dataset Dt, Db 
Target and background 
samples (dictionaries) 

L Low-rank component of X 𝐒𝐒𝐗𝐗 = {𝐒𝐒𝑐𝑐}, c = 1,2,…C Superpixel set of X 
E Sparse noise component of X 𝐌𝐌𝐗𝐗 = {𝐦𝐦𝑐𝑐}, c = 1,2,…C Meta-pixel set of X 

P Embeddable projection matrix 𝛅𝛅𝑐𝑐 Center pixel of the cth su-
perpixel 

α, β, γ,λ Tradeoff parameters 𝐂𝐂𝑡𝑡 
Sparse target representa-

tion matrix 

2.1. Low-Rank Modeling 
Low-rank regularization, served as a metric to second-order (i.e., matrix) sparseness, 

has recently seen a surge of interest in theories, models, and applications. Robust principal 
component analysis (RPCA) is a representative low-rank modeling method to recover the 
low-rank component 𝐋𝐋 from the corrupted noisy observations 𝐗𝐗 by removing the sparse 
noise component 𝐄𝐄, which is mathematically formulated as below [25]. 

min
𝐋𝐋,𝐄𝐄

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐋𝐋) + 𝜆𝜆‖𝐄𝐄‖0   s.t.  𝐗𝐗 = 𝐋𝐋 + 𝐄𝐄 (1) 

where the parameter 𝜆𝜆 > 0 is used to balance the two terms in the objective function. In 
addition, the 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(·) function can be relaxed by nuclear norm ‖∙‖∗, such that the prob-
lem can be readily solved by existing convex optimization tools. RPCA is essentially based 
on the hypothesis that data is drawn from a single low-rank subspace. However, high-
dimensional optical data are generally distributed in a union of multiple low-dimensional 
subspaces. To better handle such complex structure of data, low-rank representation 
(LRR) has been suggested to pursue a low-rank representation matrix of a set of samples 
on a given dictionary 𝐃𝐃, which is formulated as follows [26,27]. 

min
𝐃𝐃,𝐄𝐄

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝐙𝐙) + 𝜆𝜆‖𝐄𝐄‖0   s.t.  𝐗𝐗 = 𝐃𝐃𝐙𝐙 + 𝐄𝐄 (2) 
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It was obvious that an appropriately constructed dictionary 𝐃𝐃 plays a key role in 
pursuing the desired optimal low-rank representation solution 𝐙𝐙 [28]. 

2.2. Sparse Representation Theory-Based HSI Target Detection 
The sparse linear representation model based on an over-complete dictionary of 

primitives or signal atoms is a powerful tool to analyze the data with sparseness property 
[28–31]. A sufficiently sparse representation is informative for reasoning and decision-
making. Therefore, the sparse representation theory has been introduced for HSI target 
detection. Sparse representation-based target detection (SRD) assumes that the pixels be-
longing to the same category are approximately located in a low-dimensional subspace, 
and employs the samples from both the target prior samples (dictionary) 𝐃𝐃𝑡𝑡 ∈ ℜ𝐵𝐵×𝑛𝑛𝑡𝑡  and 
the background samples (dictionary) 𝐃𝐃𝑏𝑏 ∈ ℜ𝐵𝐵×𝑛𝑛𝑏𝑏 to approximately reconstruct the label-
unknown test pixel 𝐱𝐱 as below. 

𝐱𝐱 ≈ 𝐃𝐃𝑡𝑡  𝒄𝒄𝑡𝑡 + 𝐃𝐃𝑏𝑏𝒄𝒄𝑏𝑏 = 𝐃𝐃𝒄𝒄 (3) 

where 𝐃𝐃 = [𝐃𝐃𝑡𝑡 ,𝐃𝐃𝑏𝑏] ∈ ℜ𝐵𝐵×(𝑛𝑛𝑡𝑡+𝑛𝑛𝑏𝑏) is composed of the target and background samples, and 
𝒄𝒄 is the global representation vector of 𝐱𝐱, with 𝐃𝐃 as the representation dictionary. The 
entities of 𝒄𝒄 = [𝒄𝒄𝑡𝑡 , 𝒄𝒄𝑏𝑏] ∈ ℜ(𝑛𝑛𝑡𝑡+𝑛𝑛𝑏𝑏) reflect the contributions of the corresponding samples in 
representing 𝐱𝐱. Among the numerous potential solutions for model (3), if most of the en-
tities of a solution are nearly equal to zero, the remaining non-zero entities will be very 
informative, and implicitly indicate the category of 𝐱𝐱, as target or background. Therefore, 
most of the entities of 𝒄𝒄 are encouraged to be zero by introducing the following l0-norm 
based sparsity regularization. 

min
𝒄𝒄
‖𝒄𝒄‖0   s.t.  𝐱𝐱 ≈  𝐃𝐃𝒄𝒄 (4) 

where the l0-norm ‖∙‖0 counts the number of the nonzero elements of a vector. The solu-
tion can be obtained via some sparse optimization algorithms, e.g., orthogonal matching 
pursuit (OMP) [32]. However, the problem of searching for the sparest solution of an un-
derdetermined linear equation is NP-hard [33]. Recent advances in the sparse representa-
tion and compressed sensing theories reveal that if the solution 𝐜𝐜 is sufficiently sparse, 
one can use the following l1-minimization problem as a surrogate for the l0-minimization 
problem (4). 

min
𝒄𝒄
‖𝒄𝒄‖1   s.t.  𝐱𝐱 ≈  𝐃𝐃𝒄𝒄 (5) 

The optimization problem (5) can be solved in polynomial time via some standard 
linear programming methods. As a result, solving (4) or (5) can lead to two sparse repre-
sentation sub-vectors 𝒄𝒄𝑡𝑡  and 𝒄𝒄𝑏𝑏  corresponding to the target and background sub-dic-
tionaries 𝐃𝐃𝑡𝑡  and 𝐃𝐃𝑏𝑏 . The recovery residuals (𝐱𝐱 − 𝐃𝐃𝑏𝑏𝒄𝒄�𝑏𝑏)  and (𝐱𝐱 − 𝐃𝐃𝑡𝑡𝒄𝒄�𝑡𝑡)  calculated 
based on the two sub-dictionaries are utilized for determining the label of test HSI pixel 
using the following thresholding operation. 

Label(𝒙𝒙) = Threshold(‖𝐱𝐱 − 𝐃𝐃𝑏𝑏𝒄𝒄�𝑏𝑏‖22 − ‖𝐱𝐱 − 𝐃𝐃𝑡𝑡𝒄𝒄�𝑡𝑡‖22) (6) 

Nevertheless, SRD does not consider the prior difference information between target 
and background. Different from SRD, SRBBH recovers the test pixels according to the two 
subspaces spanned by the background dictionary and the target-background combined 
dictionary based on the binary hypothesis test respectively, as shown below. 

H0: 𝐱𝐱 ≈ 𝐃𝐃𝑏𝑏𝜷𝜷, target is absent (7) 

H1: 𝐱𝐱 ≈ 𝐃𝐃𝑏𝑏𝜸𝜸𝑏𝑏 + 𝐃𝐃𝑡𝑡𝜸𝜸𝑡𝑡 =  𝐃𝐃𝜸𝜸, target is present (8) 

The sparse representations of 𝜷𝜷 and 𝜸𝜸 to (7) and (8) can be obtained by solving the 
following l0-norm minimization problems. 
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𝜷𝜷� = min
𝜷𝜷
‖𝐱𝐱 − 𝐃𝐃𝑏𝑏𝜷𝜷‖𝟐𝟐   s.t.  ‖𝜷𝜷‖0 ≤ 𝐾𝐾0 (9) 

𝜸𝜸� = min
𝜸𝜸
‖𝒙𝒙 − 𝐃𝐃𝜸𝜸‖𝟐𝟐   s.t.   ‖𝜸𝜸‖0 ≤ 𝐾𝐾1 (10) 

where 𝐾𝐾0 and 𝐾𝐾1 mean the sparseness levels under the two hypotheses. Similar to (6), 
representation residuals derived from (9) and (10) are utilized for target detection. 

Label(𝒙𝒙) = Threshold ��𝒙𝒙 − 𝐃𝐃𝑏𝑏𝜷𝜷��2
2 − ‖𝒙𝒙 − 𝐃𝐃𝜸𝜸�‖22� (11) 

The ideas of sparse and collaborative representations have proved to be efficient in 
SRD, SRBBH and their variants, such as the combined sparse and collaborative represen-
tation (CSCR) [21], the sparse and dense hybrid representation-based detector (SDRD) 
[22], and the binary class collaborative representation-based detector (BCRD) [20]. How-
ever, the performances of these methods are largely dependent on the high quality of the 
target prior samples and the background samples, which should be able to well charac-
terize the complex statistical properties of the target and background. The target prior 
samples, as the known prior knowledge about the targets, are usually constructed from 
some standard spectral libraries or gathered in the field with handheld spectrometers. As 
for the construction of background dictionary, an adaptive scheme is commonly adopted 
based on a dual concentric window centered on the test pixel, with an inner window re-
gion (IWR) centered within an outer window region (OWR), such that the background 
dictionary can well characterize the local background statistics [18]. Unfortunately, there 
are no general rules for determining the appropriate IWR and OWR window sizes. In 
addition, the background dictionary constructed in this way failed to ensure the purity of 
the background because the inner window was a rectangle with a fixed size and might be 
contaminated by scattered targets. 

Therefore, the problems of accurate and compact characterizations of the target and 
background dictionaries need further investigation. In addition, the intrinsic high-dimen-
sionality, diversity, and heterogeneity properties of the HSI data will pose great chal-
lenges to the discriminative characterizations of the target and background, and harm the 
detection performance. As a result, we attempt to learn a global compact and discrimina-
tive target and background dictionary pair from the observed HSI by exploiting the ad-
vantages of superpixel segmentation, discriminative structural incoherence, and adaptive 
embeddable features learning, such that the spectra variability, mixture, high redundancy 
of HSI can be well dealt with for improved detection accuracy. 

3. Metal-Pixel-Driven Embeddable Discriminative Target and Background Dictionary 
Pair Learning for HSI Target Detection 
3.1. Meta-Pixel Set Construction 

Superpixel segmentation can group spatial homogenous and perceptually uniform 
HSI regions and greatly reduce spectral variability and heterogeneity. And meanwhile, 
the computational efficiency can be improved by reducing redundancy between similar 
pixels [34]. As one of the most widely used algorithms for superpixel segmentation in HSI, 
entropy rate superpixel segmentation (ERS) is applied to the first three principal compo-
nents after principal component analysis, and can efficiently get compact and homogene-
ous superpixels with similar sizes. Therefore, after segmenting the HSI data 𝐗𝐗 =
[𝐱𝐱1, 𝐱𝐱2, … , 𝐱𝐱𝑁𝑁] ∈ ℜ𝐵𝐵×𝑁𝑁 by ERS, a superpixel set of 𝐗𝐗, i.e., 𝐒𝐒𝐗𝐗 = {𝐒𝐒𝑐𝑐}, c = 1, 2…, C, containing 
C superpixels with 𝑁𝑁𝑐𝑐 pixels in the c-th superpixel can be obtained. 

Although the pixels in each superpixel are spatial homogeneous and perceptually 
uniform, the spectral differences and variations between the pixels of superpixel still exist 
and will bring computational complexity. To smooth the spectral difference, one can in-
tuitively find the center pixel of each superpixel by averaging all pixels as below. 
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𝛅𝛅𝑐𝑐 =
1
𝑟𝑟𝑐𝑐
� 𝐱𝐱𝑐𝑐𝑐𝑐

𝑛𝑛𝑐𝑐

𝑐𝑐
 (12) 

where 𝛅𝛅𝑐𝑐 is the center pixel of the c-th superpixel. 𝐱𝐱𝑐𝑐𝑐𝑐 is the i-th pixel in the c-th super-
pixels. Nevertheless, the center pixel merges the pixels in the superpixel on average and 
fails to consider the superpixel local affinity manifold structure, which will be lost by the 
simple average operation. 

To alleviate the issue, a novel meta-pixel is defined based on the superpixel by con-
sidering the manifold affinity relationship between each pixel with the center pixel. Thus, 
the informative prototype spectral signatures, i.e., the meta-pixel 𝒎𝒎𝑐𝑐 of the superpixel is 
calculated as below, 

𝒎𝒎𝑐𝑐 = � 𝑤𝑤𝑐𝑐𝑐𝑐𝐱𝐱𝑐𝑐𝑐𝑐
𝑛𝑛𝑐𝑐

𝑐𝑐
 (13) 

where 𝑤𝑤𝑐𝑐𝑐𝑐  reveals the manifold affinity of pixel 𝐱𝐱𝑐𝑐𝑐𝑐 to the center pixel 𝛅𝛅𝑐𝑐 of the c-th su-
perpixel, which is inversely proportional to its distance to the center pixel of the super-
pixel and reflects the local manifold affinity property of the pixels within the superpixel. 

𝑤𝑤𝑐𝑐𝑐𝑐 = 𝑒𝑒𝑒𝑒𝑒𝑒 �− |𝐱𝐱𝑐𝑐𝑐𝑐−𝛅𝛅𝑐𝑐|
2𝑘𝑘

�, c = 1, 2…, C; i = 1, 2…, nc (14) 

As shown in Figure 2, in comparison to the center pixel, the meta-pixel considers the 
weighted composition of the pixels in superpixel, such that the global and local manifold 
affinity structure can be simultaneously preserved to find the most typical spectral signa-
tures. According to this, the meta-pixel set 𝐌𝐌𝐗𝐗 containing C training meta-pixels can be 
obtained. 

𝐌𝐌𝐗𝐗  =  {𝐦𝐦𝑐𝑐}, 𝑐𝑐 = 1,2, … ,𝐶𝐶 (15) 

 

  
(a) (b) 

Figure 2. Illustration for the center pixel and meta-pixel. As shown in (a), the center pixel equally 
merges the pixels in the superpixel. Differently, contributions of the pixels in superpixel are 
weighted by considering the local manifold affinity structure between different pixels in the super-
pixel and finding the key typical spectral signature in each superpixel, i.e., meta-pixel, as in (b). 

The constructed meta-pixel set can transform the target superpixel into a pure target 
or sub-pixel, inhibit the spectra heterogeneity and variability by efficiently clustering spa-
tial and spectral similar pixels, and concurrently retaining the key spectral prototype sig-
nature and local manifold property of each superpixel. 

3.2. MEDDP Model Formulation 
In HSI target detection, the target pixel of interest only accounts for a small part of 

all the pixels in the whole HSI scene, and thus are sparse in quantity. On the other side, 
similar background pixels have similar spectral characteristics, and the types of back-
ground pixels are limited. Therefore, background pixels are correlative and usually fall 
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into a low-dimensional subspace with the low-rankness property. As a result, the low-
rankness prior can enable us to obtain a better estimation of the background from the 
training meta-pixel set. Therefore, the HSI meta-pixel dataset 𝐌𝐌𝐗𝐗 is modeled as a summa-
tive combination of a background dictionary 𝐃𝐃𝑏𝑏 ∈ ℜ𝐵𝐵×𝑛𝑛𝑏𝑏  with low-rankness, and the 
known target prior spectra 𝐃𝐃𝑡𝑡 ∈ ℜ𝐵𝐵×𝑛𝑛𝑡𝑡 regularized by a sparse target representation ma-
trix 𝐂𝐂𝑡𝑡, i.e., 𝐌𝐌𝐗𝐗 = 𝐃𝐃𝑏𝑏 + 𝐃𝐃𝑡𝑡𝐂𝐂𝑡𝑡, resulting in the following model. 

min
𝐃𝐃𝑏𝑏,𝐂𝐂𝑡𝑡

‖𝐃𝐃𝑏𝑏‖∗ + 𝛼𝛼Φ(𝐃𝐃𝑏𝑏 ,𝐃𝐃𝑡𝑡) + 𝛽𝛽‖𝐂𝐂𝑡𝑡‖1 + 𝛾𝛾‖𝐌𝐌𝐗𝐗  −  𝐃𝐃𝑏𝑏 − 𝐃𝐃𝑡𝑡𝐂𝐂𝑡𝑡‖𝐹𝐹2  (16) 

where ‖∙‖∗ is the nuclear norm of matrix used to model and separate a low-rank back-
ground dictionary 𝐃𝐃𝑏𝑏. The data reconstruction fidelity term ‖𝐌𝐌𝐗𝐗 − 𝐃𝐃𝑏𝑏 − 𝐃𝐃𝑡𝑡𝐂𝐂𝑡𝑡‖𝐹𝐹2  is uti-
lized to model the noise which is usually assumed identically and independently distrib-
uted Gaussian random variables. To alleviate the target prior spectrum scarcity problem, 
one can use some linear mixture model (LMM) and nonlinear mixture model (NLMM), to 
simulate and generate real-world target sub-pixel using pure prior target pixel and back-
ground pixel with varying fractions. The regularization term Φ(𝐃𝐃𝑏𝑏 ,𝐃𝐃𝑡𝑡) is expected to 
promote the discrimination between 𝐃𝐃𝑏𝑏 and 𝐃𝐃𝑡𝑡. To achieve this aim, 𝐃𝐃𝑏𝑏 and 𝐃𝐃𝑡𝑡 should 
be as incoherent as possible. 𝐃𝐃𝑡𝑡

T𝐃𝐃𝑏𝑏 calculates the coherence and correlation between 𝐃𝐃𝑡𝑡 
and 𝐃𝐃𝑏𝑏. Thus, minimizing �𝐃𝐃𝑡𝑡

T𝐃𝐃𝑏𝑏�𝐹𝐹
2  will lead to enhanced incoherence and discrimina-

tion between 𝐃𝐃𝑡𝑡 and 𝐃𝐃𝑏𝑏, as formulated below, 

min
𝐃𝐃𝑏𝑏,𝐂𝐂𝑡𝑡,𝐏𝐏

‖𝐃𝐃𝑏𝑏‖∗ + 𝛼𝛼‖𝐃𝐃𝑡𝑡
𝑇𝑇𝐃𝐃𝑏𝑏‖𝐹𝐹2 + 𝛽𝛽‖𝐂𝐂𝑡𝑡‖1 + 𝛾𝛾‖𝐌𝐌𝐗𝐗  −  𝐃𝐃𝑏𝑏 − 𝐃𝐃𝑡𝑡𝐂𝐂𝑡𝑡‖𝐹𝐹2  (17) 

Nevertheless, the original HSI data always contain hundreds of contiguous narrow 
bands and has high-dimensional redundant information. Based on the model (17), an or-
thogonal dimension reduction embeddable matrix 𝐏𝐏 ∈ ℜ𝐵𝐵×𝑑𝑑  (𝑑𝑑 < 𝐵𝐵)  with 𝐏𝐏T𝐏𝐏 = 𝐈𝐈  is 
further incorporated and jointly learned to transform the learning of the background dic-
tionary 𝐃𝐃𝑏𝑏 into a lower d-dimensional embeddable subspace. The complete formulation 
for our proposed meta-pixel-driven discriminative target and background dictionary pair 
model is as below, 

min
𝐃𝐃𝑏𝑏,𝐂𝐂𝑡𝑡,𝐏𝐏

‖𝐃𝐃𝑏𝑏‖∗ + 𝛼𝛼‖𝐃𝐃𝑡𝑡
𝑇𝑇𝐃𝐃𝑏𝑏‖𝐹𝐹2 + 𝛽𝛽‖𝐂𝐂𝑡𝑡‖1 + 𝛾𝛾‖𝐏𝐏T𝐌𝐌𝐗𝐗  −  𝐏𝐏T𝐃𝐃𝑏𝑏 − 𝐏𝐏T𝐃𝐃𝑡𝑡𝐂𝐂𝑡𝑡‖𝐹𝐹2  

s.t.  𝐏𝐏T𝐏𝐏 = 𝐈𝐈 
(18) 

Compared to the primary model (17), the above model (18) can learn the background 
dictionary 𝐃𝐃𝑏𝑏  from the meta-pixel set 𝐌𝐌𝐗𝐗  in a jointly learned adaptive dimension-re-
duced embeddable subspace spanned by the projection matrix 𝐏𝐏, which can significantly 
reduce the spectral redundancy by extracting meaningful features. 

3.3. MEDDP Model Optimization 
For ease of optimization for model (18), two auxiliary variables 𝐉𝐉 and 𝐋𝐋 are first in-

troduced to make the optimization problem separable and transform the formulation into 
the following equivalent one. 

min
𝐃𝐃𝑏𝑏,𝐂𝐂𝑡𝑡

 ‖𝐉𝐉‖∗ + 𝛼𝛼�𝐃𝐃𝑏𝑏
T𝐃𝐃𝑡𝑡�𝐹𝐹

2 + 𝛽𝛽‖𝐋𝐋‖1 + 𝛾𝛾‖𝐏𝐏T𝐌𝐌𝐗𝐗 − 𝐏𝐏T𝐃𝐃𝑏𝑏 − 𝐏𝐏T𝐃𝐃𝑡𝑡𝐂𝐂𝑡𝑡‖𝐹𝐹2  

s.t.   𝐏𝐏T𝐏𝐏 = 𝐈𝐈,  𝐃𝐃𝑏𝑏 = 𝐉𝐉,  𝐂𝐂𝑡𝑡 = 𝐋𝐋 
(19) 

which can be solved based on the Inexact Augmented Lagrange Multiplier (ALM) scheme 
because of its efficiency [35]. Accordingly, the augmented Lagrangian function form of 
(19) is as follows. 

ℒ(𝐃𝐃𝑏𝑏 ,𝐂𝐂𝑡𝑡,𝐏𝐏, 𝐉𝐉,𝐋𝐋,𝜇𝜇) =  ‖𝐉𝐉‖∗ + 𝛼𝛼�𝐃𝐃𝑏𝑏
T𝐃𝐃𝑡𝑡�𝐹𝐹

2 + 𝛽𝛽‖𝐋𝐋‖1 + 𝛾𝛾�𝐏𝐏T𝐌𝐌𝐗𝐗 − 𝐏𝐏T𝐃𝐃𝑏𝑏 − 𝐏𝐏T𝐃𝐃𝑡𝑡𝐂𝐂𝑡𝑡�𝐹𝐹
2

+
𝜇𝜇
2
‖𝐃𝐃𝑏𝑏 − 𝐉𝐉 + 𝐘𝐘1 𝜇𝜇⁄ ‖𝐹𝐹2 +

𝜇𝜇
2
‖ 𝐂𝐂𝑡𝑡 − 𝐋𝐋 + 𝐘𝐘2 𝜇𝜇⁄ ‖𝐹𝐹2  

s.t.  𝐏𝐏T𝐏𝐏 = 𝐈𝐈 
(20) 
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where 𝜇𝜇 > 0 denotes the penalty parameter, while 𝐘𝐘1 and 𝐘𝐘2 denote the Lagrange mul-
tipliers. The optimization of problem (20) can be performed iteratively by updating 𝐃𝐃𝑏𝑏, 
𝐂𝐂𝑡𝑡, 𝐏𝐏, 𝐉𝐉, 𝐋𝐋, and 𝜇𝜇 sequentially. The detailed steps are as follows 
(1) Update 𝐏𝐏 by solving the following problem with the other variables fixed. 

min
𝑷𝑷

𝛾𝛾�𝐏𝐏T𝐌𝐌𝐗𝐗 − 𝐏𝐏T𝐃𝐃𝑏𝑏 − 𝐏𝐏T𝐃𝐃𝑡𝑡𝐂𝐂𝑡𝑡�𝐹𝐹
2  

s.t.  𝐏𝐏T𝐏𝐏 = 𝐈𝐈 
(21) 

The optimization problem (19) can be converted into the following one. 

min
𝐏𝐏

 Tr(𝐏𝐏T(𝐌𝐌𝐗𝐗 − 𝐃𝐃𝑏𝑏 − 𝐃𝐃𝑡𝑡𝐂𝐂𝑡𝑡)(𝐌𝐌𝐗𝐗 − 𝐃𝐃𝑏𝑏 − 𝐃𝐃𝑡𝑡𝐂𝐂𝑡𝑡)T𝐏𝐏) 

s.t.  𝐏𝐏T𝐏𝐏 = 𝐈𝐈 
(22) 

Let 𝐑𝐑 = (𝐌𝐌𝐗𝐗 − 𝐃𝐃𝑏𝑏 − 𝐃𝐃𝑡𝑡𝐂𝐂𝑡𝑡)(𝐌𝐌𝐗𝐗 − 𝐃𝐃𝑏𝑏 − 𝐃𝐃𝑡𝑡𝐂𝐂𝑡𝑡)𝑇𝑇, and model (22) is further be rewritten 
in the form as below. 

min
𝐏𝐏

 Tr(𝐏𝐏T𝐑𝐑𝐏𝐏)   s.t.  𝐏𝐏T𝐏𝐏 = 𝐈𝐈 (23) 

The solution can be got by solving the minimum eigenvalue problem as follows. 

𝐑𝐑𝐏𝐏 = 𝜆𝜆𝐏𝐏 (24) 

The optimal solution is denoted as 𝐏𝐏∗ = [𝐩𝐩1;𝐩𝐩2; · · · ;𝐩𝐩𝑑𝑑 ], and the vector 𝐩𝐩𝑐𝑐 corre-
sponds to the eigenvector of the i-th smallest eigenvalues. 
(2) Update 𝐉𝐉 with the other variables fixed and solve the following problem. 

min
𝐉𝐉

1
𝜇𝜇

 ‖𝐉𝐉‖∗ +
1
2
‖𝐉𝐉 − (𝐃𝐃𝑏𝑏 + 𝑳𝑳 𝜇𝜇⁄ )‖𝐹𝐹2  (25) 

The optimal solution is obtained as 𝐉𝐉∗ = 𝐔𝐔𝒮𝒮1 𝜇𝜇⁄ [𝚺𝚺]𝐕𝐕𝑇𝑇  with (𝐔𝐔,𝚺𝚺,𝐕𝐕) = SVD(𝐃𝐃𝑏𝑏 +
𝐋𝐋 𝜇𝜇⁄ ), and 𝒮𝒮𝜃𝜃[∙] is the soft thresholding shrinkage operator defined as below [15]. 

𝒮𝒮𝜃𝜃[𝕩𝕩] = �
𝕩𝕩 − 𝜃𝜃, 𝑖𝑖𝑖𝑖 𝕩𝕩 > 𝜃𝜃 
𝕩𝕩 + 𝜃𝜃, 𝑖𝑖𝑖𝑖 𝕩𝕩 < −𝜃𝜃
0,       𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒

 (26) 

(3) Update 𝐂𝐂𝑡𝑡 with the other variables fixed by solving the following problem. 

min
𝐂𝐂𝑡𝑡

𝛾𝛾‖𝐏𝐏T𝐌𝐌𝐗𝐗 − 𝐏𝐏T𝐃𝐃𝑏𝑏 − 𝐏𝐏T𝐃𝐃𝑡𝑡𝐂𝐂𝑡𝑡‖𝐹𝐹2 +
𝜇𝜇
2
‖ 𝐂𝐂𝑡𝑡 − 𝐋𝐋 + 𝐘𝐘2 𝜇𝜇⁄ ‖𝐹𝐹2  (27) 

Calculate the derivative of the objective function in (27) w.r.t. 𝐂𝐂𝑡𝑡 and set it as zero 
obtaining the following equations. 

2𝛾𝛾𝐃𝐃𝑡𝑡
𝑇𝑇𝐏𝐏𝐏𝐏𝑇𝑇(𝐃𝐃𝑡𝑡𝐂𝐂𝑡𝑡 − 𝐌𝐌𝐗𝐗 + 𝐗𝐗𝑏𝑏) + 𝜇𝜇(𝐂𝐂𝑡𝑡 − 𝐋𝐋 + 𝐘𝐘2 𝜇𝜇⁄ ) = 𝟎𝟎 (28) 

The solution for 𝐂𝐂𝑡𝑡 is then got as follows. 

𝐂𝐂𝑡𝑡 = (2𝛾𝛾𝐃𝐃𝑡𝑡
𝑇𝑇𝐏𝐏𝐏𝐏𝑇𝑇𝐃𝐃𝑡𝑡 + 𝜇𝜇𝐈𝐈)−1�2𝛾𝛾𝐃𝐃𝑡𝑡

𝑇𝑇𝐏𝐏𝐏𝐏𝑇𝑇𝐌𝐌𝐗𝐗 − 2𝛾𝛾𝐃𝐃𝑡𝑡
𝑇𝑇𝐏𝐏𝐏𝐏𝑇𝑇𝐃𝐃𝑏𝑏 + 𝜇𝜇(𝐋𝐋 − 𝐘𝐘2 𝜇𝜇⁄ )� (29) 

(4) Update 𝐃𝐃𝑏𝑏 with the other variables fixed by solving the following problem. 

min
𝐃𝐃𝑏𝑏

𝛼𝛼�𝐃𝐃𝑡𝑡
T𝐃𝐃𝑏𝑏�𝐹𝐹

2 + 𝛾𝛾‖𝐏𝐏T𝐌𝐌𝐗𝐗 − 𝐏𝐏T𝐃𝐃𝑏𝑏 − 𝐏𝐏T𝐃𝐃𝑡𝑡𝐂𝐂𝑡𝑡‖𝐹𝐹2  

+
𝜇𝜇
2
‖𝐃𝐃𝑏𝑏 − 𝐉𝐉 + 𝐘𝐘1 𝜇𝜇⁄ ‖𝐹𝐹2  

(30) 

Calculate the derivative of the objective function in (30) with respect to 𝐃𝐃𝑏𝑏 and set it 
as zero. The solution for 𝐃𝐃𝑏𝑏 can be got via the equations in (31) and (32). 

2𝐃𝐃𝑡𝑡𝐃𝐃𝑡𝑡
T𝐃𝐃𝑏𝑏 + 2𝛾𝛾𝐏𝐏𝐏𝐏T�𝐃𝐃𝑏𝑏 − (𝐌𝐌𝐗𝐗 − 𝐃𝐃𝑡𝑡𝐂𝐂𝑡𝑡)� + 𝜇𝜇�𝐃𝐃𝑏𝑏 − (𝐉𝐉 − 𝐘𝐘1 𝜇𝜇⁄ )� = 𝟎𝟎 (31) 

𝐃𝐃𝑏𝑏 = �(2𝛼𝛼′𝐈𝐈 + 2𝛾𝛾𝐏𝐏𝐏𝐏T + 𝜇𝜇𝐈𝐈)�−1�2𝛾𝛾(𝐌𝐌𝐗𝐗 − 𝐃𝐃𝑡𝑡𝐂𝐂𝑡𝑡) + 𝜇𝜇(𝐉𝐉 − 𝐘𝐘1 𝜇𝜇⁄ )� (32) 
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(5) Update 𝐋𝐋 with the other variables fixed by solving the following problem. 

min
𝐋𝐋

𝛽𝛽
𝜇𝜇
‖𝑳𝑳‖1 +

1
2
‖𝑳𝑳 − (𝐂𝐂𝑡𝑡 + 𝐘𝐘2 𝜇𝜇⁄ )‖𝐹𝐹2  (33) 

Let 𝐐𝐐 = 𝐂𝐂𝑡𝑡 + 𝐘𝐘2 𝜇𝜇⁄ , the optimal solution to (33) is obtained using the thresholding 
shrinkage operator as in (26). 
(6) Update the Lagrange multipliers and penalty parameter: 

�
𝐘𝐘1 = 𝐘𝐘1 + 𝜇𝜇(𝐃𝐃𝑏𝑏 − 𝐉𝐉)
𝐘𝐘2 = 𝐘𝐘2 + 𝜇𝜇(𝐂𝐂𝑡𝑡 − 𝐋𝐋)
𝜇𝜇 = 𝑚𝑚𝑖𝑖𝑟𝑟(𝜌𝜌𝜇𝜇, 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚)

 (34) 

As summarized in Algorithm 1, the optimization processes from (1) to (6) are alter-
natively and iteratively performed until the convergence conditions are reached. The ma-
jor computational loads of Algorithm 1 lie in solving (25), (27), and (30) because they in-
volve singular value decomposition (SVD) and matrix inversion. SVD in (25) is operated 
for 𝐵𝐵 × 𝑟𝑟𝑏𝑏 matrix and the computational complexity is 𝒪𝒪(B3). Matrix inversion and mul-
tiplication in solving (27) cost 𝒪𝒪(𝑟𝑟𝑡𝑡3 + 𝑟𝑟𝑡𝑡𝐵𝐵𝑑𝑑 + 𝑟𝑟𝑡𝑡2𝑑𝑑). Also, matrix inversion for solving (30) 
costs 𝒪𝒪(𝐵𝐵3)  since 𝐵𝐵 ≥ 𝑑𝑑 . The main computational complexity of Algorithm 1 is 
𝒪𝒪�𝜏𝜏(𝐵𝐵3 + 𝑟𝑟𝑡𝑡3 + 𝑟𝑟𝑡𝑡𝐵𝐵𝑑𝑑 + 𝑟𝑟𝑡𝑡2𝑑𝑑)�, with 𝜏𝜏 as the iteration number. 

Algorithm 1. Solving problem (18) using Inexact ALM 
Input: Meta-pixel set 𝐌𝐌𝐗𝐗, target prior spectra 𝐃𝐃𝑡𝑡, 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚 = 108, 𝜌𝜌 = 1.1, ϵ = 10−6, 𝜇𝜇 =
10−5, 𝛼𝛼, 𝛽𝛽, and 𝛾𝛾. Reduced dimension d. 
Initialization: Initialize 𝐏𝐏 by PCA, 𝐃𝐃𝑏𝑏 = 𝐂𝐂𝑡𝑡 = 𝐘𝐘1 = 𝐘𝐘2 = 𝟎𝟎. 
While not convergence do 
1. Update 𝐏𝐏, 𝐉𝐉, 𝐂𝐂𝑡𝑡, 𝐃𝐃𝑏𝑏, 𝐋𝐋 by successively solving the sub-problems in (23), (25), (27), 

(30) and (33). 
2. Update the Lagrange multipliers and penalty parameter as in (19). 
3. Examine the convergence conditions: ‖𝐃𝐃𝑏𝑏 − 𝐉𝐉‖𝐹𝐹2 /‖𝐌𝐌𝐗𝐗‖𝐹𝐹2 < ϵ  and  ‖𝐂𝐂𝑡𝑡 − 𝐋𝐋‖𝐹𝐹2 /
‖𝐌𝐌𝐗𝐗‖𝐹𝐹2 < ϵ 
End while 
Output: 𝐃𝐃𝑏𝑏 and 𝐏𝐏. 

3.4. Meta-Pixel-Level Target Detection Based on MEDDP Model 
With the optimal target and background dictionary pair derived from the MEDDP 

model in a lower-dimensional embeddable subspace, superpixel segmentation is per-
formed in testing to find perceptually uniform regions of HSI as in the training stage, and 
then obtain the testing meta-pixel set containing V meta-pixels according to (11)–(15). 

Subsequently, a novel meta-pixel-level target detection is designed instead of the tra-
ditional pixel-level target detection. Specifically, each testing meta-pixel 𝐦𝐦𝑣𝑣, 𝑣𝑣 = 1,2, … ,𝑉𝑉 
is respectively represented by the target and background dictionaries 𝐃𝐃𝑏𝑏 and 𝐃𝐃𝑡𝑡 as in 
SRD and BCRD, or the combination of them as in SRBBH. The label of the testing meta-
pixel 𝐦𝐦𝑣𝑣 is then determined by checking the difference between the representation resid-
uals of 𝐦𝐦𝑣𝑣 over the target and background dictionaries, or their combination. Namely, 
the labeling of testing meta-pixel is determined by checking the corresponding represen-
tation residuals. This paper will combine the proposed MEDDP model with three state-
of-the-art representation strategies, including SRD, SRBBH, and BCRD, for performance 
evaluations in the experimental part. Take SRBBH for example, the sparse representations 
of 𝜷𝜷  and 𝜸𝜸  of 𝐦𝐦𝑣𝑣  regarding the background dictionary 𝐃𝐃𝑏𝑏  and target-background 
combined dictionary 𝐃𝐃 = [𝐃𝐃𝑏𝑏 ,𝐃𝐃𝑡𝑡] can be obtained by solving the following l0-norm min-
imization problems. 

𝜷𝜷� = min
𝜷𝜷
‖𝐦𝐦𝑣𝑣 − 𝐃𝐃𝑏𝑏𝜷𝜷‖𝟐𝟐   s.t.  ‖𝜷𝜷‖0 ≤ 𝐾𝐾0 (35) 
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𝜸𝜸� = min
𝜸𝜸
‖𝐦𝐦𝑣𝑣 − 𝐃𝐃𝜸𝜸‖𝟐𝟐   s.t.   ‖𝜸𝜸‖0 ≤ 𝐾𝐾1 (36) 

where 𝐾𝐾0 and 𝐾𝐾1 mean the sparseness levels. The representation residuals derived from 
(35) and (36) are then utilized for target detection. 

Label(𝐦𝐦𝑣𝑣) = Threshold ��𝐦𝐦𝑣𝑣 − 𝐃𝐃𝑏𝑏𝜷𝜷��2
2 − ‖𝐦𝐦𝑣𝑣 − 𝐃𝐃𝜸𝜸�‖22� (37) 

If the residual is bigger than a certain threshold, the meta-pixel will be labeled as 
background otherwise it will be labeled as a target. The complete procedures for target 
detection are shown in Algorithm 2. 

Algorithm 2. MEDDP and meta-pixel-based target detection 
Input: HSI dataset 𝐗𝐗, target prior spectra 𝐃𝐃𝑡𝑡, tradeoff parameters 𝛼𝛼, 𝛽𝛽 and 𝛾𝛾. Reduced 
dimension d. 
1. Construct a training meta-pixel set of 𝐗𝐗 based on ERS and local manifold preserva-

tion. 
2. Obtain the optimal target and background dictionary pair by solving Algorithm 1. 
3. Construct testing meta-pixel set, and use the obtained dictionary pair for meta-pixel-
level target detection via different representation-based target detection strategies, such 
as the SRBBH presented in (35)–(37).  
Output: Detection map 

4. Experimental Verifications 
Numerous experiments will be performed in this part to test the performance of the 

proposed MEDDP model and the meta-pixel-based target detection method in compari-
son with several representative and state-of-the-art detectors on benchmark HSI target 
detection datasets. 

4.1. Benchmark HSI Datasets 
Some benchmark HSI target detection datasets, i.e., the AVIRIS, HYDICE, and Indian 

Pines datasets with both relatively scattered and aggregated targets, were adopted in the 
experiments for performance evaluations of different methods. 

More specifically, the AVIRIS dataset was collected by the Airborne Visible/Infrared 
Imaging Spectrometer (AVIRIS) in San Diego with a spatial resolution of 3.5 m. The da-
taset retains 189 spectral bands by discarding the low signal-to-noise, water absorption, 
and bad bands (1–6, 33–35, 97, 107–113, 153–166, and 221–224) [36]. Two sub-datasets, in-
cluding AVIRIS I, AVIRIS II, and their corresponding ground-truth information for the 
target of interests are shown in Figure 3a,b, the spatial size of which are 60 × 60 pixels and 
100 × 100 pixels, respectively. As illustrated in Figure 3c, the Indian Pines dataset is a scene 
of Northwest Indiana collected by an AVIRIS sensor [5]. The spatial size of the scene is 
145 × 145 pixels with 220 spectral bands covering the wavelength range from 375 nm to 
2500 nm. Multiple bands with noise and water absorption, i.e., 104–108, 150–163, and 220, 
were removed, leaving a total of 200 spectral bands used in the experiments [11,12]. The 
stone and steel tower with 93 pixels is selected as the targets to be detected. 

  
(a) (b) 
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(c) (d) 

Figure 3. The HSI dataset and the corresponding ground-truth used in the experiments. (a) AVIRIS 
I dataset, (b) AVIRIS II dataset, (c) The Indian Pines dataset, (d) The HYDICE dataset. 

The third data set was collected by the HYDICE sensor with a spatial resolution of 2 
m and 210 spectral bands [20]. After removing the low signal-to-noise ratio, water absorp-
tion, and bad bands, including the 1–4, 76, 87, 101–111, 136–153, and 198–210 bands, 162 
bands remained. The HYDICE data set and its ground-truth information are shown in 
Figure 3d, which has 150 × 150 pixels, and the vehicles with the size of 21 pixels were 
selected as the targets for detection. 

4.2. Comparison Methods and Performance Evaluation Metrics 
Our HSI target detection approach is compared with several frequently referred 

state-of-the-art approaches, including three classical methods (i.e., ACE, CEM, and SMF), 
three sparse and collaborative representation-based detectors (i.e., SRD, SRBBH, and 
BCRD), and the dictionary learning based detector (i.e., SLRMDD). A detailed description 
of these methods is enumerated as follows. 
(1) ACE: ACE is a background unstructured detector by assuming that the background 

has the same covariance structure but different variances under the two hypotheses 
[9]. 

(2) CEM: CEM detects target by designing a finite impulse response filter (FIRF) using 
the known target spectrum and minimizing the energy of the interference signal. 
However, CEM fails to consider the assumption of data distribution, which will re-
strict its performance [37]. 

(3) SMF: Different from CEM, the SMF detector estimates the background covariance 
matrix and then employs the generalized likelihood ratio test for detection with only 
a single target spectrum, which cannot fully model the diversity of target spectra [10]. 

(4) SRD: SRD represents a test pixel using the target and background combined diction-
ary, and then determines the label of test pixel (background or target) by examining 
which sub-dictionary yields a smaller representation residual for the test pixel [18]. 

(5) SRBBH: SRBBH combines the idea of binary hypothesis and sparse representation, 
in which the test pixel is respectively represented by the background dictionary, and 
the background and target combined dictionary under the two hypotheses that the 
target is present or absent. The derived representation errors under the two hypoth-
eses are used for the final detection decision [19]. 

(6) BCRD: In BCRD, both pixels in the background and pixels in the target can be collab-
oratively represented by some pixels of the image. The detection result is achieved 
by estimating the residual difference of two collaborative representations [20]. 

(7) SLRMDD: SLRMDD is based on sparse and low-rank matrix decomposition and re-
gards the given HSI as a composition of the sum of low-rank background HSI and a 
sparse target HSI containing targets via a target dictionary constructed from some 
online spectral libraries. Strategy one is used for target detection by combining the 
separated background dictionary with the SRBBH detector. The ratio between the 
two key parameters is set as 5/2 [4]. 
As previously mentioned, as a fundamental dictionary construction method, our 

MEDDP model is applied with the state-of-the-art SRD, SRBBH, and BCRD for detection, 
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which can clearly show the advantages of the proposed dictionary construction and the 
meta-pixel-level target detection strategies. For the AVIRIS dataset, the sizes of the outer-
window and inner-window used to construct the local background dictionary were em-
pirically set as 17 × 17 and 7 × 7 for the above comparing method. For the Indian Pines and 
HYDICE datasets, the sizes for the dual windows in the comparative methods are 13 × 13 
and 5 × 5. The receiver operating characteristic (ROC) curve was used to depict the rela-
tionship between the probability of detection and false alarm rate. The detector with a 
higher detection rate under the same false alarm rate level or the detector with the same 
detection rate with a lower false alarm rate level is claimed to have better detection per-
formance. Despite the ROC curve, the area under the curve (AUC) was also used as a 
quantitative indicator for performance evaluation [38]. A detector with a larger AUC 
value means better detection performance. 

4.3. Qualitative and Quantitative Results 
The detection maps for the comparative methods on different datasets are shown in 

Figures 4–7. Intuitively, a good detector should have a higher true detection rate and 
lower false alarm rate by strengthening the differences between the target and back-
ground. In comparison with the ground truth maps of different datasets, the detection 
maps obtained by the classic ACE, CEM, and SMF detectors cannot clearly illustrate the 
location of the targets, and the target and background differences are not well enhanced 
by these detectors. Take the AVIRIS I and AVIRIS II datasets, for example, the detection 
maps of ACE are rambling with low detection accuracy. And the CEM and SMF can only 
roughly indicate the approximate locations of the targets, which might lead to extensive 
false alarms. Compared with SRD, SRBBH, BCRD, and SLRMDD, the target locations in 
the detection maps of the proposed MEDDP method in combination with SRD, SRBBH, 
and BCRD, are visually more apparent, which means that the proposed methods have 
better abilities in background suppression and target enhancement. 

 
Figure 4. Visual comparisons between the detection maps of the proposed method and other com-
parative methods on the AVIRIS I dataset. 

 
Figure 5. Visual comparisons between the Detection maps of the proposed method and other com-
parative methods on the AVIRIS II dataset. 
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Figure 6. Visual comparisons between the Detection maps of the proposed method and other com-
paring methods on the Indian Pines dataset. 

 
Figure 7. Visual comparisons between the Detection maps of the proposed method and other com-
parative methods on the HYDICE dataset. 

The target edge area and shape can be well highlighted, especially for the AVIRIS II 
and Indian Pines datasets, where the differences between target and background can be 
observed. In addition to visual observation of the qualitative detection maps for perfor-
mance evaluations of different methods, the ROC curves of all the comparing methods 
are shown in Figure 8, and the AUC values were further used as a quantitative metric for 
more accurate evaluations, and the detailed results were reported in Table 2. The best 
results are shown in bold with the second-best underlined. Based on the comprehensive 
analyses of qualitative and quantitative results, one can see that the proposed MEDDP 
model can generally yield very promising performance when combing with different rep-
resentation learning-based detectors, i.e., MEDDP + SRD, MEDDP + SRBBH, and MEDDP 
+ BCRD. Especially when comparing with the basic detectors SRD, SRBBH, and BCRD, 
the improvements are significant, which can verify the benefits of the MEDDP model in 
precisely characterizing the discrimination between the target and background and keep 
a good balance between suppressing background and highlighting target. 
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(a) (b) 

  
(c) (d) 

Figure 8. ROC performance for all the comparative detectors on different data sets. (a) AVIRIS I 
dataset, (b) AVIRIS II dataset, (c) Indian Pines dataset, (d) HYDICE dataset. 

Table 2. AUC performances of different detectors on different data sets. 

Detectors 
Datasets 

AVIRIS I AVIRIS II Indian Pines HYDICE 
ACE 0.7843 0.4716 0.4067 0.8903 
CEM 0.7069 0.7011 0.4794 0.9121 
SMF 0.7933 0.7299 0.6328 0.9147 
SRD 0.9629 0.9564 0.2155 0.9654 
BCRD 0.9774 0.9934 0.9969 0.9495 
SRBBH 0.9055 0.7675 0.5669 0.9214 
SLRMDD 0.6603 0.6211 0.5719 0.7982 
MEDDP + SRD 0.9826 0.9927 0.9988 0.9927 
MEDDP + SRBBH 0.9735 0.9921 0.9979 0.9879 
MEDDP + BCRD 0.9825 0.9943 0.9969 0.9895 
The best results are shown in bold with the second-best underlined. 
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4.4. Parameters Analysis and Convergence Analysis 
The performance of the proposed detection method is affected by the several key 

parameters, which are needed to be properly set, including the balancing parameters α, β, 
and γ in the model (18), the reduced dimensionality d, the dictionary atoms for the back-
ground (number of the training meta-pixels) C in MEDDP model, and the number for the 
testing meta-pixel V in the meta-pixel-level target detection. This section will study the 
proper settings of these parameters in a relatively small parameter range. 
(1) Influence of the Reduced Dimensionality d. 

By considering the original dimensionality of the HSI data, the reduced dimension-
ality d is empirically selected from the candidate set {5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. 
The AUC performance variations of MEDDP + SRD, MEDDP + SRBBH, and MEDDP + 
BCRD, w.r.t different reduced dimensionality on the four HSI datasets are illustrated in 
Figure 9. From the figures, one can see that a relatively high dimensionality can generally 
lead to better detection performance on the AVIRIS I and Indian Pines data sets. However, 
a too high dimension d might introduce redundancy and limit the discrimination between 
the target and background dictionaries. And meanwhile, the risk of over-fitting and com-
putational complexity will increase, which will yield fluctuating or even reduced perfor-
mance. The detection performances for MEDDP + SRD, MEDDP + SRBBH, and MEDDP + 
BCRD on the AVIRIS II and Indian Pines data sets show better robustness to the variations 
of the reduced dimensionality d. Take the Indian Pines data set, for example, a compara-
tive performance can be achieved when d = 10. Through comprehensive consideration of 
all the results on different data sets and different methods, the optimally reduced dimen-
sionality d can be empirically set and tuned around 90, by which a promising detection 
performance can be expected to be achieved by the proposed MEDDP + SRD, MEDDP + 
SRBBH, and MEDDP + BCRD. 

   
(a) (b) (c) 

Figure 9. The ROC performance variations for our proposed detectors with different reduced di-
mensionality d on different data sets. (a) MEDDP + SRD, (b) MEDDP + SRBBH, (c) MEDDP + BCRD. 

(2) Influence of Number of Training Meta-Pixel C. 
One of the key steps in the proposed MEDDP model is the training meta-pixel set 

construction, which is used to alleviate the spectral variability and heterogeneity and find 
the typical spectral signatures of HSI to enable the following discriminative target and 
background dictionary pair learning. The selection of the number of training meta-pixel 
C will also determine the number of the background dictionary atoms and is critical to the 
quality of the dictionary pair, which will affect the final target detection performance. The 
candidate number of training meta-pixel C for is empirically selected from the set {30, 40, 
50, 60, 70, 80, 90, 100, 110, 120}. The ROC performance variations of our proposed detectors 
with different numbers of training meta-pixel C on different data sets are shown in Figure 
10 From the subplots, one can see that the detection performance on the AVIRIS II and 
Indian Pines are more robust to the variations of C. While for the AVIRIS I and HYDICE 
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data sets, the detection performances more susceptible to different settings of C. More 
training meta-pixel tends to yield better detection performance. However, the computa-
tional complexity will also increase with more training meta-pixels. A balance should be 
kept between performance and consumption. Based on the results and analyses, the num-
ber of training meta-pixel C can be set around 100. 

   
(a) (b) (c) 

Figure 10. The ROC performance variations for our proposed detectors with different number of 
training meta-pixel C on different data sets. (a) MEDDP + SRD, (b) MEDDP + SRBBH, (c) MEDDP 
+ BCRD. 

(3) Impact of the Number of Testing Meta-Pixel V. 
In the testing stage, a novel meta-pixel-level target detection strategy instead of pixel-

level target detection has been devised. Similar to the training phase, the HSI dataset is 
firstly segmented into a certain number of superpixels to construct the testing meta-pixel 
set. In comparison to the number of the training meta-pixel, the number V for the testing 
meta-pixel should be larger, which can ensure a finer segmentation and detection. The 
candidate number V for testing meta-pixel is selected from the set {300, 600, 900, 1200, 
1500, 1800, 2100, 2400, 2700, 3000}. The ROC performance variations for our proposed de-
tectors with different numbers of testing meta-pixel V on different data sets are shown in 
Figure 11. With larger testing meta-pixel numbers, promising detection performances can 
be consistently achieved on the AVIRIS I, AVIRIS II, and Indian Pines data sets. While for 
the HYDICE data set, the detection performance improves with the increase of the number 
of testing meta-pixel. As a result, the number of testing meta-pixel V is suggested to be set 
around 2000 in practice. 

   
(a) (b) (c) 

Figure 11. The ROC performance variations for our proposed detectors with different number of 
testing meta-pixel V on different data sets. (a) MEDDP + SRD, (b) MEDDP + SRBBH, (c) MEDDP + 
BCRD. 

(4) Influence of the Balancing Parameters α, β, and γ. 
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For the balancing parameters α, β, and γ in the MEDDP model (16), α is fixed when 
adjusting β and γ within the candidate parameter set {10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103, 
104}. The performance variation of the detector regarding the log-scaled β and γ were re-
ported in Figure 12. From the MEDDP model formulation, one can see that a larger α will 
help enhance the discrimination between the target and background dictionaries by min-
imizing their correction, which can be observed from the experimental curves in Figure 
12. However, an extreme large might lead to over-fitting, thus the optimal α can be se-
lected from [10−1, 102]. In addition, the ROC performance variations for our proposed de-
tectors w.r.t different settings of the balance parameters β and γ with the optimal α fixed 
on different data sets are shown in Figure 13. The detection performances show higher 
sensitivity to the settings of β and γ. By comprehensively analyzing the performance var-
iations rule w.r.t the different combinations of β and γ, the suggested setting ranges for 
the two parameters are β ∈ [101, 104], γ ∈ [10−1, 102]. There is a higher probability that 
stable and satisfying performance can be yielded with these suggested parameters. 

   
(a) (b) (c) 

Figure 12. The ROC performance variations for our proposed detectors with different settings of 
the balance parameter α on different data sets. (a) MEDDP + SRD, (b) MEDDP + SRBBH, (c) 
MEDDP + BCRD. 
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(c) (d) 

Figure 13. The ROC performance variations for our proposed detectors with different settings of the 
balance parameters β and γ with α fixed on different data sets. (a) MEDDP + SRD on the AVIRIS I 
data set with α = 100; (b) MEDDP + BCRD on the AVIRIS II data set with α = 10; (c) MEDDP + SRBBH 
on the Indian Pines data set with α = 0.01; (d) MEDDP + BCRD on the HYDICE data set with α = 0.1. 

(5) Convergence Analysis of the Optimization Algorithm 
For solving the proposed MEDDP model, an inexact ALM-based optimization algo-

rithm has been devised and presented in Algorithm 1. The convergence property of the 
algorithm is dependent on the proper settings of the balancing parameters α, β, and γ, and 
will finally affect the performance of the model. Two key convergence conditions, i.e., 
‖𝐃𝐃𝑏𝑏 − 𝐉𝐉‖𝐹𝐹2 ‖𝐌𝐌𝐗𝐗‖𝐹𝐹2 <  ϵ⁄  and ‖𝐂𝐂𝑡𝑡 − 𝐋𝐋‖𝐹𝐹2 ‖𝐌𝐌𝐗𝐗‖𝐹𝐹2⁄ < ϵ, were used as the judging criteria to in-
dicate the convergence performance of the optimization algorithm, the convergence 
curves on different data sets of which were shown in Figure 14. It can be seen from the 
curves that the optimization algorithm converges well in practice, and the convergence 
conditions can be quickly reached within the appropriate 20 iterations. As a result, the 
convergence curves, as well as the detection performance reported in the experimental 
results, can verify the effectiveness of the optimization algorithm. 

    
(a) (b) (c) (d) 

Figure 14. The convergence curves of Algorithm 1 for solving the proposed MEDDP model on dif-
ferent data sets. (a) AVIRIS I, (b) AVIRIS II, (c) Indian Pines, (d) HYDICE. 

Among the comparative methods, as shown by the experimental results, the classic 
methods, such as the ACE, CEM, and SMF, are always dependent on some specific prior 
assumptions, which are not true due to the high dimensionality and complexity of the HSI 
spectra, which will limit the generalization ability in more application scenarios. In con-
trast, such assumptions are not needed in some state-of-the-art representation learning-
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based HSI target detectors, including the SRD, SRBBH, and BCRD, which are developed 
on the theory of linear subspace, and show more flexibility in modeling the HSI spectral 
variations. However, SRD and SRBBH cannot achieve promising performance without 
accurate target and background dictionaries, especially in the case of aggregated larger 
targets. 

The above classical target detection techniques, such as the SRD, SRBBH, and BCRD, 
adopt the local adaptive scheme-based sliding dual-window for background dictionary 
construction. The sizes for the IWR and OWR are hard to be set. As a result, the purifica-
tion and compactness of the obtained background dictionary cannot be guaranteed. By 
contrast, the proposed MEDDP model is tailored to alleviate the problems of spectral 
high-dimensionality, variability, and heterogeneity, and improve the discriminative char-
acteristics between the target and background dictionaries. In addition, the experimental 
results show that the proposed method can consistently yield superior performance. The 
reasons can be stated as follows. Firstly, the newly developed meta-pixel set construction 
method can efficiently alleviate the problems of spectral variability and heterogeneity by 
discovering the typical spectral signatures. Meanwhile, by reducing the spatial redun-
dancy between similar pixels via meta-pixel construction, the computational efficiency 
can be also improved. Secondly, a discriminative target and background dictionary pair 
was obtained by low-rank matrix decomposition, structural incoherence based on the ad-
vantages of the meta-pixel. In addition, the joint learning strategy of the dictionary pair 
and adaptive subspace can enhance the intra-class similarity and inter-class dissimilarities 
by reducing spectral redundancy. 

Even though the proposed method can estimate a discriminative target and back-
ground dictionary pair to enlarge the response differences between the target and back-
ground pixels, the background suppression problem is not considered in the proposed 
method. A perfect target detector should simultaneously highlight the target and suppress 
the background. Another key problem is the transferability of the detector. This is because 
the target prior spectra are usually acquired from some standard spectral libraries col-
lected with handheld spectrometers. However, the targets to be detected are always re-
motely sensed in the wild. A distribution bias will inevitably exist between them. Thus, 
the problems of background suppression and transferability of the method need to be 
solved in future. 

5. Conclusions 
This paper has developed a sparse and low-rank modeling-based MEDDP method 

to learn a meta-pixel-driven discriminative target and background dictionary pair for 
meta-pixel-level target detection. Specifically, the meta-pixel set is constructed by taking 
the advantages of superpixel segmentation and the local manifold structures to find the 
most informative and typical prototype spectral signatures of HSI. Afterward, the meta-
pixel driven embeddable discriminative target and background dictionaries learning 
model is established by incorporating the prior target spectrum information, structurally 
incoherent constraint, and the low dimensional subspace learning, to simultaneously en-
large the dissimilarity between the target and background dictionaries and find the mean-
ingful low-dimensional features with spectral redundancy reduced. Therefore, the ob-
tained discriminative and compact target and background pair can finally boost the meta-
pixel-level target detection performance, as verified by the experimental results on bench-
mark HSI datasets through comparisons with different representative detection methods. 
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