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Abstract: The number of trees and their spatial distribution are key information for forest manage-
ment. In recent years, deep learning-based approaches have been proposed and shown promising
results in lowering the expensive labor cost of a forest inventory. In this paper, we propose a new
efficient deep learning model called density transformer or DENT for automatic tree counting from
aerial images. The architecture of DENT contains a multi-receptive field convolutional neural net-
work to extract visual feature representation from local patches and their wide context, a transformer
encoder to transfer contextual information across correlated positions, a density map generator to
generate spatial distribution map of trees, and a fast tree counter to estimate the number of trees in
each input image. We compare DENT with a variety of state-of-art methods, including one-stage
and two-stage, anchor-based and anchor-free deep neural detectors, and different types of fully
convolutional regressors for density estimation. The methods are evaluated on a new large dataset
we built and an existing cross-site dataset. DENT achieves top accuracy on both datasets, signifi-
cantly outperforming most of the other methods. We have released our new dataset, called Yosemite
Tree Dataset, containing a 10 km2 rectangular study area with around 100k trees annotated, as a
benchmark for public access.

Keywords: tree counting; Yosemite; transformer; neural network; deep learning

1. Introduction

The density and distribution of forest trees are important information for ecologists
to understand the ecosystem in certain regions. For example, the environmental effect of
deforestation or forest fires may be estimated based on the number of lost trees and their
location. In recent decades, forest trees are often counted with the help of aerial imagery.
Since manually counting the trees from images is time-consuming, automatic tree counting
methods have been developed to lower the time cost. With the breakthrough of deep
learning in the recent decade, deep neural networks (DNNs) made unprecedented progress
in computer vision tasks such as image classification [1–5] and object detection [6–11].
DNNs also become widely popular for object counting. One approach of object counting
using DNNs is detection-based, i.e., to localize each individual object of interest first and
then get the total number. So far this is the mainstream of the published tree counting
methods [12–18]. Another approach is to regress the density of objects in the image using
DNNs and then calculate object counts. This approach has been successful for crowd
(people) counting [19–23]. However, the effectiveness of density-based methods for tree
counting are not sufficiently explored as they are reported in much fewer published works
with limited comparative evaluation [24,25].

In this work, we propose a new method for tree counting called density transformer
or DENT, which consists of a multi-receptive field (Multi-RF) convolutional neural network
(CNN), a transformer, and two heads: Density Map Generator (DMG) and tree counter.
The Multi-RF CNN extracts visual features from images with multiple receptive fields
of different sizes simultaneously, perceiving the patterns of both the local patch and the
concentric context. The transformer models the pair-wise relations between the visual
features and filters the contextual visual information sharing across different positions
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using an attention mechanism. The two heads, the DMG, and the tree counter, parallelly
decode the hidden states of the transformer to generate the tree density map at different
granularity levels. If a relatively coarse treemap already meets the demand, the DMG
can be detached after training to save the inference time. The whole model of DENT is
end-to-end trainable.

Currently, very few benchmark datasets are publicly available for tree counting tasks.
Previous works reported their performances tested on either private data or a small sub-
set (<10k trees) of public datasets made for other tasks [16,26]. The lack of a common
benchmark makes fair comparison across different methods difficult. Hence, we created
a new labeled dataset called Yosemite Tree Dataset, which contains aerial images for a
∼10 km2 rectangular area with ∼100k trees whose coordinates are annotated. It is suitable
for evaluating not only the performance of tree counting methods but also the counting
error versus the area of interest. We have released this dataset to the public.

To demonstrate the effectiveness of DENT, we compare DENT with many existing
state-of-art methods of different types, including fully convolutional networks regressors
and detectors. The methods are evaluated on the Yosemite Tree Dataset and the cross-site
NeonTreeEvaluation [16] Dataset. On both of them, DENT achieves competitive results
with the best existing methods and significantly outperforms most of the other methods.

The main contributions of this work include two parts. The first part is the novel end-
to-end approach for tree counting, using an efficient multi-receptive field CNN architecture
for visual feature representation, a transformer for modeling the pair-wise interaction
between the visual features, and two heads for outputs at different granularity and time
costs. The second part is the new Yosemite Tree Dataset as a common benchmark for
tree counting.

2. Related Works
2.1. Transformers

Transformers [27] are attention-based deep learning models. They are initially pro-
posed in the area of natural language processing (NLP). The input of a transformer is an
embedding sequence. Pair-wise interaction between any two elements of the sequence is
formulated by the transformers. The output corresponding to an element is aggregated
from all the elements of the sequence with different weights depending on their relation-
ship. In this paper, we adopt a transformer to enhance the CNN features, by selectively
transferring contextual information among different elements.

Transformer-based methods have also been proposed for computer vision tasks such
as object detection [11], image classification [28] in recent years. These methods are also
applied on remote sensing images such as in [29,30]. However, to the best of our knowledge,
this work is the first work applying a transformer as a density regressor to count objects in
aerial images.

2.2. Density Estimation

Learning density maps using deep CNNs is a trend of crowd counting. On this trend,
the counting task is formulated as a regression program. The CNNs are trained to predict
the density distribution over the input image. However, the location of each individual
object is not explicitly predicted. When the object is crowded, the representation of the
density map is relatively robust. In the existing works, different network architectures
are tried. MCNN [19] uses a multi-column network with different filter sizes for objects
at different scales. The features from all the columns are fused to predict the crowd
density map. SwitchCNN [20] has an additional classifier to predict and switch to the
best column for the given image. CSRNet [21] generates a high-resolution density map.
It is composed of a front-end CNN for feature extraction and a back-end CNN for map
generation. It uses dilated convolution instead of pooling or transposed convolution to
reduce the computational complexity. CANNet [23] encodes contextual information at
different scales by subtracting the local average from the feature maps.
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For tree counting tasks, an AlexNet [1] regressor is applied in [24]. In the work of [25],
AlexNet [1], VGGNet [2], and a UNet [31] are evaluated and compared; the UNet achieves
the best performance. In this paper, we follow the paradigm of the density estimation
problem and formulate tree counting as a regression problem.

2.3. Object Detection

The purpose of object detection is to localize each object of interest in the image.
Traditional detectors explicitly use a sliding window of predefined size to scan each position
of the image [32–36]. These early works usually extract hand-crafted features such as
HOG [34] and SIFT [37]. These features are finally fed to a classifier such as a support
vector machine (SVM) or a neural network. Modern detectors make use of the powerful
features from deep convolutional neural networks (CNNs) pre-trained on large-scale
classification datasets [1]. These detectors adopt different strategies to generate bounding
boxes for objects using CNNs. Faster-RCNN [6], RetinaNet [8], and YOLO [9] predefine
a set of anchors and formulate the detection into two sub-problems: classification of the
subimage in each anchor and regression of the offset between the ground truth box and
the anchor. CenterNet [10] treats the center of an object as a keypoint and regresses the
width and height. RetinaNet, YOLO, and CenterNet infer the results in one shot. In
contrast, Faster-RCNN recomputes the features for classification after the generation of
region proposals.

So far, most of the published works of tree counting methods are based on detection.
These methods can be categorized into tree groups:

(1) Explicitly using sliding windows. The very early works in [38–41] synthesize the
expected appearance of trees and generate a template based on the prior knowledge. The
likelihood of the existence of a tree in a sliding window is estimated by the correlation
between the tree template and the image patch in the window. However, the templates
oversimplify the diverse appearance of trees in real world. Later works use hand-crafted
features plus classifiers. For example, a feature descriptor using circular autocorrelation is
designed to detect the shape of palm tree in [42]. The goal in [43] is also to detect palm tree,
but the descriptor used is HOG [34]. While [13,44] using CNNs to recognize palm trees in
the sliding window to learn features automatically. TS-CNNs [45] has two sliding windows
of different sizes, each has an AlexNet classifier. One is to recognize the pattern of trees,
the other one is to suppress the false positives according to the spatial distribution of the
surrounding objects.

(2) Fully convolutional classifiers are equivalent to sliding window CNN classifiers
but with better computational efficiency. U-Net [31] and DenseNet [46] are used to predict
the confidence maps of tree in [47,48]. The peaks on the confidence maps are considered as
the final prediction.

(3) Modern CNN detectors like Faster RCNN [6], SSD [7], RetinaNet [8], and YOLOv3 [9]
have state-of-art localization performance in general object detection tasks. These ap-
proaches are also applied for tree detection in [14–18].

Counting trees in aerial images using detectors is straightforward but with some
disadvantages, especially when the trees are dense and crowded. Firstly the representation
of overlapping trees may be ambiguous for detectors at test time. A typical detector usually
outputs an excessive number of initial boxes and applies Non-Maximum Suppression
(NMS) to select the best ones. The basic idea of NMS is to pair-wisely check the Intersection
over Union (IoU) of every two proposal boxes, and remove the one with a lower detection
score when their IoU is higher than a preset threshold (typically 0.45 or 0.50). For tree
counting, it is often the case that two correct boxes have high IoU. An example case is
shown in Figure 1b. In this case, the NMS procedure will likely remove either the blue box
or the yellow box and cause an underestimation of the tree count. Secondly, the threshold
for the detection score directly affects the predicted tree count. Deliberately tuning the
threshold requires extra effort. Thirdly, bounding boxes are relatively expensive to label.
The labelers need to determine the width and the height of the boxes. It is often difficult
when the trees are overlapping.
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R2_33_01.jpg

(a) (b) (d)

Tree D

Tree C

Tree B
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original image bounding boxes tree density map

(c)

keypoints

Figure 1. Comparison among different types of annotations for tree counting methods. (a) The
original image. (b) Bounding boxes. (c) Keypoints. (d) Tree density map.

3. A New Density Transformer, DENT

The architecture of the DENT model is illustrated in Figure 2. It contains four main
components: a Multi-Receptive Field convolutional network (Multi-RF CNN) to compute a
feature map over an input image, a transformer encoder to model the interaction of features
extracted from different positions, a Density Map Generator (DMG) to predict the density
of the trees and a counter to regress the number of trees in the image.

Multi-RF
CNN

Flatten

...

feed forward FF.

reshape

predicted density map

Transformer Encoder

predicted count

input image

positional
encoding

CNN
features

token type 
embedding

[DEN] [CNT]

token type 
embedding

...

...

concat

Density Map Generator Tree Counter

visual feature sequence

...

(a) (b) (c) (d)

count query
...

Figure 2. The architecture of the proposed DENT Network. (a) Visual features are extracted using a
Multi-Receptive Field convolutional network (Multi-RF CNN). (b) Positional encoding and token
type embedding are applied to the visual features. The visual features are flattened as a sequence
[ f0, f1, ..., fL]. (c) fcnt, the embedding of CNT token, works as a count query. (d) The visual feature
sequence and the count query are concatenated as the input of the transformer encoder. On top of the
transformer encoder, there are two heads: A Density Map Generator (DMG) predicts the density of
objects at different positions. A counter predicts the count of the objects in the whole input image.

Starting from a RGB aerial image I ∈ R3×H0×W0 , the Multi-RF CNN generates a low-
resolution feature map fCNN ∈ RC×H×W , where C is the number of output channels, and
in this paper H = H0

32 and W = W0
32 . The feature map is projected using a trainable linear

transform to generate fvisual ∈ Rdmodel×H×W , where dmodel is the dimension of the hidden
states of the transformer encoder. For convenient, it can also be reshaped and represented
in a sequence form: fvisual = [ f0, f1, ..., fL] where L = HW and fi ∈ Rdmodel . Since each
fi is corresponding to a certain position pi in the image, we use it to estimate the tree
density at pi. We also use a special embedding fcnt ∈ Rdmodel to query the number of trees
in the image. The transformer encoder selectively transfers the information across f0 ∼ fL
and fcnt. The final hidden state of the transformer are decoded by the DMG and the tree
counter. Then the DMG generates a density map D ∈ RH×W . Meanwhile, the tree counter
outputs the number of trees ẑ ∈ R. The details of the components are discussed in the
following sections.
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3.1. Multi-Receptive Field Network

Inspired by the macula of the human retina, we extract feature presentation of each
position of the image using multiple receptive fields, based on the intuitive assumptions:
A wide receptive field of CNN covers a large area of the image containing rich contextual
information. On the other hand, a narrow one focuses on the details in a small region of
interest without being distracted by the surrounding objects.

Early works in MCNN [19] and SwitchCNN [20] control the receptive fields by design-
ing multi-column networks with different convolutional kernel sizes. We argue that such a
strategy has limitations: Firstly, using these methods it is not easy to implement a small
receptive field on much deeper networks because generally the receptive field is enlarged
quickly with the depth of the network increased. Modern deep networks usually have
large receptive fields. For example, a VGG16 [2] has a receptive field of 212 × 212 while a
ResNet50 [3] has a receptive field of 483 × 483 [49]. Secondly, the widely used pretrained
off-the-shelf models cannot be reused. Searching for the optimal architecture and pretrain-
ing takes extra effort. To avoid these limitations, We use an off-the-shelf network as a
backbone and add jump connections to its early layers to implement small receptive fields.

We proposed Multi-Receptive Field convolutional network (Multi-RF CNN) as de-
picted in Figure 3. Specifically, the network contains a vanilla ResNet18 and two extra
paths added on the convolutional Block 2. We refer to the original path of ResNet18 from
Block 2 (i.e., Block 3∼5) as Path A. Path B consists of two 1 × 1 convolutional layers. Path
C is simply an average pooling layer. The strides of the three paths are all the same as 32 on
the original input image. The receptive fields of the three paths are naturally different, as
466 × 466, 43 × 43 and 47 × 47, respectively. Offsets are also applied on the input of Path B
and C to ensure that the output feature maps from the three paths are center-aligned. These
feature maps are concatenated along the channel axis as the final output. Although the
architecture of Multi-RF CNN is surprisingly simple, we observe that it outperforms the
vanilla ResNet18 in our experiments.

7x7 conv, s2

pool 2x2, s2

Block 3

Block 2

Block 4

Block 5

pool 2x2, s8

concat (channel-w
ise)

dim: 512dim: 256dim: 128dim: 64dim: 64

dim: 64

dim: 64

dim: 640

1x1 conv, s8

1x1 conv

Path A

Path B

Path C

dim: 3

Receptive field of Path A

Receptive field of Path C 

(a)

(d)

(c)

output features

input image

Convolutional Block

(b)

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

Receptive field of Path B

Figure 3. Architecture of the proposed Multi-Receptive Field network. This CNN has three different
paths to output feature maps, each has its own receptive field. (a) The receptive fields of Path A and C
are visualized as boxes. (b) The backbone is built using a residual convolutional block. (c) The three
paths diverge from Block 2. Path B contains two 1× 1 conv. layers. Path C contains only an average
pooling layer. (d) The output feature maps are concatenated along the channel axis to compose the
final output.

3.2. Transformer Encoder

We exploit the self-attention mechanism of transformer [27] to model two types of
interactions: those between the visual features extracted at different positions, and those
between the visual features and the counting query. In this section, we introduce the
transformer encoder and discuss the two types of interactions.
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Architecture. We use only the encoder part of a standard transformer. The encoder
contains a group of stacked encoder layers. By default, number of encoder layers is 2 in
this paper. Each encoder layer (Figure 4a) has identical structure containing a multi-head
attention sublayer and a feed forward sublayer. Each sublayer has a residual connection
and the output is processed by layer normalization [50]. The attention mechanism takes
effect in the multi-head attention sublayer (Figure 4b), where the core function is scaled
dot-product attention. Given a query matrix Q ∈ RLq×dk , a key matrix K ∈ RLk×dk and a
value matrix V ∈ RLk×dv , the scaled dot-product attention is defined as follows:

Attention(Q, K, V) = softmax

(
QK>√

dk

)
V (1)

The multi-head attention can be defined as:

MultiHead(Q, K, V) = concat(head1, ..., headh)WO (2)

where h is the total number of heads, and

headi = Attention(QWQ
i , KWK

i , VWV
i ) (3)

where the projection matrices WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv and

WO ∈ Rhdv×dmodel are learnable at training stage. We will omit the other details about
transformer, since the encoder we used is almost the same with the original. We refer the
readers to [27] for the details.

Interaction between visual features. Contextual information is essential for density
estimation. It can be extracted by convolutional networks in their receptive fields as
discussed in Section 3.1. The interaction in a convolutional network occurs only between
the convolutional kernels and the previous-layer feature maps. As a supplement, we
exploit the self-attention mechanism to realize the pair-wise interaction between features
at different positions. The attention score for feature vector fi on another feature fi can be
roughly defined as

aij = fiWQ( f jWK)>/
√

dk (4)

The contextual information collected by fi can be defined as

oi = softmax(ai·)( fvisualWV)> (5)

Equations (4) and (5) are equivalent with an individual head in the multi-head atten-
tion mechanism when Q = K = V = fvisual.

However, Equations (4) and (5) is permutation-invariant and any positional informa-
tion is ignored. Hence we add a 2D version of positional encodings [11,27,51] to the visual
features before feeding the transformer encoder:

PE(x, y)4i+0 = sin(x/100004i/dmodel)

PE(x, y)4i+1 = cos(x/100004i/dmodel)

PE(x, y)4i+2 = sin(y/100004i/dmodel)

PE(x, y)4i+3 = cos(y/100004i/dmodel)

(6)

where (x, y) is the 2D position on the feature maps and i is the dimension.
Interaction between visual features and counting query. Inspired by the [CLS] token

used in BERT [52], we also introduce a token [CNT] appended to the end of the input
sequence of transformer encoder (Figure 2c). The corresponding token type embedding is
fcnt. Hence the input of the transformer encoder is [ f0, f1, f2, ... fL, fcnt]. The hidden state
of the transformer corresponding to the [CNT] token represents the aggregate embedding
of the sequence and serves as a global context for tree counting. In contrast, each visual
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feature vector is corresponding to a patch of the image and used to estimate the local
tree density. For convenience sake, these visual feature vectors are also refered as [DEN]
tokens in this paper. To differentiate these two types of tokens, we also apply an token type
embedding fden for the DEN tokens (Figure 2b). The application of fden can be seen as a
in-place self-add operation: fi += fden. Specifically, fcnt, fden ∈ Rdmodel . Both fcnt and fden
are learnable parameters at training time. The usage of the two token type embeddings
are inspired by [52], where segment embeddings are used for different sentences, and [53],
where token type embeddings are used for visual features versus textual features.

Scaled Dot-Product Attention

Linear Linear Linear

linear

Q K V

Scaled Dot-Product Attention

Linear Linear Linear

Scaled Dot-Product Attention

linear linear linear

concat

Multi-Head Attention

Add & Norm

feed forward

Add & Norm

(a) Transformer Encoder Layer (b) Multi-Head Attention

Figure 4. (a) The architecture of an transformer encoder layer. (b) The architecture of the multi-head
attention sublayer.

3.3. Density Map Generator (DMG)

The Density Map Generator is a fully connected feed-forward network followed by a
reshape operation. The feed-forward network takes the final hidden state of the transformer
corresponding to each [DEN] token to predict the tree density. The output sequence for all
[DEN] tokens is reshaped into a 2D map, which is the predicted tree density map.

Tree density map. A tree density map (Figure 1d) represents the spatial distribution of
trees in the image. The ground truth tree density map can be generated from the keypoint
annotations of the trees (Figure 1c). Given an image I, denote pi = (xi, yi) is the location of
the ith tree and z is the tree count. The original annotation map is generated as

A(p) =
z

∑
i=1

δ(p− pi) (7)

where δ is the delta function. Following the works for crowd counting [19–21,23], the
ground truth tree density map Dgt is generated from the annotation map convolved by
a Gaussian kernel: (In practice, the model learns an H ×W tree density map, which is a
sum-pooled version of the H0 ×W0 density map).

Dgt = A ∗ Gσ (8)

where Gσ(x) is a 2D Gaussian kernel with standard deviation σ:

Gσ(p) =
1

2πσ2 exp

(
−‖p‖2

2σ2

)
(9)

Denote the predicted density map is D(p; I, θ), where θ stands for the parameters of
DENT. The loss of DMG is Mean Squared Error (MSE):

LDMG =
1

BHW

B

∑
i=1

∑
p

(
D(p; Ii, θ)− Dgt

i

)2
(10)

where B is the batch size; H, W are the height and width of the density map.
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Density-based counting. At the test stage, the estimated counts of the trees ẑR in a
region of interest R is given by the integral of the tree density map:

ẑR = ∑
p∈R

D(p; I, θ) (11)

because when R2 � σ2, we have

zR = ∑
p∈R

A(p) ≈ ∑
x∈R

Dgt(p) (12)

3.4. Tree Counter

The tree counter of DENT is a feed-forward network that decodes the transformer
output corresponding to the [CLS] token. The target of the network is the tree count
normalized by the number of the [DEN] tokens, i.e., the average of the density map:

z
L
=

z
HW

(13)

This network is also trained using MSE loss. We found the normalization helps the
imbalance of losses for the tree counter and DMG. Denoting c(I, θ) as the output of the tree
counter, the loss of the tree counter is

LCNT =
1
B

B

∑
i=1

(
c(Ii, θ)− zi

L

)2
(14)

The predicted tree number is
ẑ = c(Ii, θ)L (15)

The tree counter is a relatively lightweight head of DENT compared with DMG. Since
the tree counter gives a predicted tree count for each H ×W area in the study area, the
predictions over the whole study area can also be seen as a coarse density map. If a more
refined density map is not demanded, the DMG can be pruned after training. And then the
computational complexity of the Dot-Product Attention in the top encoder layer is reduced
from O(L2 · dmodel) to O(L · dmodel), because the interaction between [DEN] tokens in that
layer is no longer needed. Examples of the density maps generated by a DMG and a tree
counter are shown for comparison in Figure 5.

(a) Image (b) Results of DMG (c) Results of tree counter

Figure 5. A comparison between the granularities of the DMG and the tree counter. (a) An example
image from a 4800 × 4800 region, which is 566 m × 566 m in real world. (b) The corresponding
150 × 150 desity map generated by DMG. (c) The corresponding 15 × 15 coarser density map
generated using the tree counter.
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4. Datasets
4.1. Yosemite Tree Dataset

We choose a rectangular study area, centered at Latitude 37.854, Longitude −119.548,
in the Yosemite National Park and build a benchmark dataset for tree counting based on
RGB aerial images. (Figure 6) The images are collected via Google Maps at 11.8 cm ground
sampling distance (GSD) and stitched together. The study area is 2262.5 m × 4525.1 m
in the real world and 19,200 × 38,400 pixels in the image. Inside the study area, the
position of each individual tree is manually labeled. The total number of labeled trees
is 98,949. To illustrate the variance of the land covers, the directions of light, and the
sizes and the shapes of the trees, some 960 × 960 example images cropped from the
study area are shown in Figure 6b. The dataset is publicly available for download at
https://github.com/nightonion/yosemite-tree-dataset, (accessed on 31 December 2021).

Region A

Region B

Region C

Region D

North500 m

1 2 3 4

5 6 7 8

1
2

3 4

5 6

7
8

(a) (b)

Figure 6. (a) The study area of the Yosemite Tree Dataset. (b) Example images cropped from different
locations of the dataset.

We split the study area into four regions A, B, C, and D of the same size (Figure 6a).
Region B and D are used as a training set and Region A and C as a test set. To evaluate the
accuracy of different tree counting methods, we further divide the study area into small
non-overlapping square blocks. The counting errors in different blocks are supposed to
be calculated separately. And the statistics of the errors are used as the metrics. Different
block sizes can be used to analyze the accuracy versus the size of the region of interest, for
example, 960 × 960 and 4800 × 4800.

To better demonstrate the ground truth distribution of the tree counts versus the block
size, histograms are shown in Figure 7.
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Figure 7. Histograms of tree counts of Yosemite Tree Dataset.

4.2. NeonTreeEvaluation Dataset

We also evaluate the models using NeonTreeEvaluation Dataset [16], which is collected
from 22 sites across the United States by multiple types of sensors. The forest types vary
in different sites. (Examples are shown in Figure 8). In this work, we only use the fully
labeled RGB data, as follows: (1) A test set of 194 images containing 6634 annotated trees.

https://github.com/nightonion/yosemite-tree-dataset
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The size of each image is 400 × 400 pixels and corresponds to a 40 m × 40 m region in the
real world. (2) A training set including 15 much larger images, containing 17,790 annotated
trees. We crop them into 3395 400 × 400 training images as consistent with the test images.

SJER TEAK ABBY BART BLAN BONA

DELA

DSNY

NIWO UNDE SOAP OSBS MLBS JERC

Figure 8. Examples of the test images in NeonTreeEvaluation Dataset [16]. The four-letter captions
under the images are abbreviations of the site names. The forest types vary across different sites.

5. Experiments
5.1. Evaluation Metric

By following the works for crowd density estimation, we evaluate different methods
for tree counting using Mean absolute error (MAE) and Root Mean Squared Error (RMSE),
which are defined as follows:

MAE =
1
N

N

∑
i=1
|zi − ẑi|, RMSE =

√√√√ 1
N

N

∑
i=1

(zi − ẑi)
2 (16)

where N is the total number of blocks of in the test set, zi denotes the true number of trees in
the ith block, and ẑi is the predicted number of trees in the ith block inferred by algorithms.
For the NeonTreeEvaluation Dataset, a block is simply a test image. For the Yosemite Tree
Dataset, we set the block size to 960 × 960 and 4800 × 4800 and report the results.

5.2. Comparison to State-of-Art Methods

We compare DENT with the state-of-the-art methods of different fashions, including
density-based methods and detection-based methods. The tested density-based methods
include fully convolutional networks originally designed for segmentation and crowd
counting. The tested detection-based methods include one-stage and two-stage, anchor-
based and anchor-free detectors. For the methods of Faster-RCNN, RetinaNet, YOLOv3,
CenterNet, CSRNet, SANet, and CANNet we use their official implementations. For the
other methods, we use their third-party open-source implementations.

The results are shown in Tables 1 and 2. The two heads of DENT, i.e., the DMG and
the tree counter, achieve a closed performance. On the Yosemite Dataset, they are nearly on
par with CANNet and outperform the other state-of-the-art methods in terms of MAE and
RMSE for every test region and block size setting. On the cross-site NeonTreeEvaluation
Dataset, they significantly outperform all the other methods.
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Table 1. Counting errors of different approaches on Yosemite Tree Dataset. The bold numbers are the
lowest values in each column.

Block Size: 960 × 960 Block Size: 4800 × 4800
113 m × 113 m in Real World 566 m × 566 m in Real World

Region A Region C Region A Region C
Method MAE RMSE MAE RMSE MAE RMSE MAE RMSE

UNet [31] 16.3 20.7 12.9 17.7 318.5 367.0 203.8 228.0
MCNN [19] 19.7 25.3 16.8 21.0 311.0 371.1 283.3 378.0
MCNN (End-to-end) [19] 21.8 27.6 18.4 22.7 388.2 453.6 239.4 286.5
SwitchCNN [20] 17.2 22.2 14.8 18.5 271.1 317.9 175.7 212.2
SegNet [54] 12.7 17.0 15.9 19.4 270.6 299.7 209.8 228.5
CSRNet [21] 20.9 26.3 19.1 24.6 287.0 364.7 295.3 301.3
SANet [22] 18.4 23.5 17.6 22.1 272.1 344.6 285.6 297.9
CANNet [23] 10.8 13.8 12.0 16.2 122.6 161.1 130.2 159.5

Faster-RCNN-ResNet50 [6] 13.9 18.1 15.0 20.0 260.2 269.7 237.0 278.0
Faster-RCNN-ResNet101 [6] 13.4 17.4 15.9 20.9 235.9 256.6 240.6 285.2
RetinaNet-ResNet50 [8] 14.3 18.1 15.0 18.6 224.1 248.7 187.5 240.0
RetinaNet-ResNet101 [8] 16.0 20.2 16.2 21.1 290.7 317.2 233.2 301.8
YOLOv3 [9] 17.3 22.6 15.6 20.1 353.2 383.6 256.9 286.9
CenterNet-DLA34 [10] 14.9 20.7 14.6 19.0 344.9 398.0 250.0 299.9
CenterNet-ResNet50 [10] 13.7 17.5 13.7 17.4 311.1 335.3 237.9 257.8
CenterNet-ResNet101 [10] 12.1 16.2 13.4 17.2 237.6 271.4 212.0 241.4

DENT-DMG 10.7 13.7 11.9 16.5 148.7 163.9 123.9 158.3
DENT-CNT 10.7 13.7 12.0 16.6 140.6 154.4 133.7 169.3

Table 2. Counting errors of different approaches on NeonTreeEvaluation Dataset. The bold numbers
are the lowest values in each column.

Method MAE RMSE

UNet [31] 34.7 56.4
MCNN [19] 14.7 24.7
MCNN End-to-end [19] 15.5 25.7
SwitchCNN [20] 15.2 25.1
SegNet [54] 28.9 47.5
CSRNet [21] 33.9 52.2
SANet [22] 18.4 30.1
CANNet [23] 14.6 23.1

Faster-RCNN-ResNet50 [6] 11.1 15.7
Faster-RCNN-ResNet101 [6] 11.9 18.2
RetinaNet-ResNet50 [8] 10.9 15.9
RetinaNet-ResNet101 [8] 12.0 16.8
YOLOv3 [9] 15.2 31.8
CenterNet-DLA34 [10] 10.2 17.2
CenterNet-ResNet50 [10] 13.0 23.5
CenterNet-ResNet101 [10] 12.5 20.4

DENT-DMG 7.5 12.3
DENT-CNT 7.6 12.2

5.3. Technical Details

We implement DENT using PyTorch [55]. The DMG is based on the ResNet18 released
in the PyTorch model zoo. The bert encoder is based on the BERT model released in the
Hugging Face (https://huggingface.co/) (accessed on 31 December 2021) model zoo. We
set dmodel = 512 and h = 8 for the multi-head attention. The dimension of the intermediate
layer in the feed-forward networks is 2048. Under this setting, the DENT model has 17.82 M
parameters. The standard deviation of the Gaussian kernel for density map generation is
σ = 15.

On the Yosemite Tree Dataset, we crop 320 × 320 subimages from the study areas for
training and testing. While on the NeonTreeEvaluation Dataset, as the test set are officially

https://huggingface.co/
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provided as 400 × 400 images, we crop 400 × 400 subimages for training from the large
training images. As the downsampling rate of the whole DENT is 32, we pad the input
images with zero values to 416 × 416 in both the training phase and test phase. The batch
sizes we used to train DENT on Yosemite Tree Dataset and NeonTreeEvaluation Dataset
are 48 and 32 respectively. Except for those mentioned above, we use the same setting to
train DENT on the two datasets.

Pretraining and initialization. The ResNet in the Multi-RF network is pre-trained
on the ImageNet dataset [56,57]. All the other components of DENT are learned from
scratch. All the parameters of the transformer are initialized with Xavier [58]. The token
type embeddings are initialized using a normal distribution.

Loss. The total loss during training is the weighted sum of the losses of the DMG and
tree counter:

L = LDMG + λLCNT (17)

where λ is a weighting factor to balance the losses of the two heads. In our experiments,
we use λ = 1 by default.

Optimizer. We use Adam [59] to minimize the loss for a total of 300 epochs without
weight decay. The initial learning rate is 10−5 for the first 100 epochs. And then we apply a
learning rate decay by a factor of 0.5 for every 50 epochs. We also apply gradient clipping
to stabilize the training. The max norm of the gradients is set to 0.1.

Regularization and Data Augmentation. For reducing overfitting, dropout and
random-flip are applied. Specifically, a dropout of 0.1 is added before each Add&Norm
layer in the transformer encoder. The training images along with the target tree density
map are randomly flipped horizontally and/or vertically.

5.4. Ablation Study

To evaluate the effects of the Multi-RF CNN and the transformer layers, ablation
experiments are done on the test set (union of Region A and Region C) of Yosemite Tree
Dataset for 960 × 960 blocks. The results are provided in Table 3. We start from a ResNet18
without a transformer. The output is projected to a single-channel linearly using a 1 × 1
convolutional layer. Interestingly this baseline already achieves lower errors compared
with some existing methods (Table 1). After Adding two extra paths to the ResNet18 to get
a Multi-RF network, the counting errors are lowered (The third row in Table 1). Adding
two transformer layers as encoder make performance gain on both ResNet18 and Multi-RF
network. We also try different numbers of transformer layers. Two layers work best in our
experiments. More layers worsen the results and take a longer training time to converge.

Table 3. Comparison of models with different CNNs and number of transformer layers on Yosemite
Tree Dataset for block size 960 × 960. The models are tested on the union of Region A and Region
C. When #transformer layers = 0, the CNN features are linearly projected to the predicted density
map, otherwise, the density map is generated by DMG. The bold numbers are the lowest values in
each column.

Visual Feature Extractor #Transformer Layers MAE RMSE

ResNet18 0 13.4 17.7
ResNet18 2 12.8 16.9
Multi-RF 0 13.0 17.0
Multi-RF 1 12.0 16.5
Multi-RF 2 11.3 15.2
Multi-RF 3 11.8 16.7

5.5. Inference Time

To demonstrate the computational efficiency of DENT we test it on the whole
19,200 × 38,400 study area and report the inference time. The tests are done with a single
NVIDIA Tesla V100 SXM2 GPU with CUDA 11.3. Every neural layer runs in native PyTorch
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with batch size = 1 in the default FP32 precision. We run 10 times for each case and report
the average. The inference time of our basic implementation is 47.8 s.

Faster version. Due to the shift-invariance of convolution, when a study area is
scanned by the Multi-RF CNN, the size of the scan window (input size) does not affect
the final feature map. (This is true only when every layer in the backbone has padding
size = 0. And beware that if padding size = 0 is used at test time, it should be used at
training time as well to avoid accuracy drop.) We adopt a two-stage inference mode to
improve the GPU utilization and lower the time cost: At the first stage, the backbone takes
in a larger input image (The resolution is still 11.8 cm GSD. But each input image covers
a larger area in the real world.) and generates a larger feature map. At the second stage,
the transformer along with the DMG and the tree counter scans the feature map using its
original input size. We test this strategy with a 4800 × 4800 input size for the Multi-RF
CNN, the inference time is shortened to 16.0 s. When the DMG is pruned as discussed in
Section 3.4, the inference time can be further shortened to 11.5 s. Even further improvement
is possible with tricks like batch processing and low precision inference but beyond the
scope of this paper. A comparison of these different implementations of DENT and the
state-of-art object detectors in terms of inference time is shown in Table 4.

Table 4. Inference time comparison on the Yosemite Tree Counting Dataset. The bold numbers are
the lowest values in each column.

Method Backbone Inference Time (Seconds)

Faster-RCNN [6] ResNet50 290.9
RetinaNet [8] ResNet50 270.3
YOLOv3 [9] Darknet53 163.2
CenterNet [10] DLA34 61.5

DENT ResNet18 47.8
DENT-faster ResNet18 16.0
DENT-faster without DMG ResNet18 11.5

6. Conclusions and Future Work

We presented a deep neural regressor, DENT, based on CNN and transformer for tree
counting in aerial images. We built a large benchmark dataset, Yosemite Tree Dataset, to
evaluate different tree counting algorithms. We also used an existing cross-site dataset to
test the robustness of the methods. Our approach achieved competitive results and outper-
formed the state-of-art methods. The ablation study further supported the effectiveness of
the design.

With the advancement of drones, aerial imagery is becoming more and more affordable.
However, due to the limited visual field, the captured photos need to be stitched to create
the whole picture of a large study field. This procedure can be laborious. For this reason,
an accurate video-based tree counting algorithm would be more automatic and appealing.
The emerging applications of video-based density estimation methods for crowd counting
inspired us. We will explore video-based tree counting algorithms in future work.
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