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Abstract: This study tested and evaluated a suite of nine individual base learners and seven model
averaging techniques for predicting the spatial distribution of soil properties in central Iran. Based
on the nested-cross validation approach, the results showed that the artificial neural network and
Random Forest base learners were the most effective in predicting soil organic matter and electrical
conductivity, respectively. However, all seven model averaging techniques performed better than the
base learners. For example, the Granger–Ramanathan averaging approach resulted in the highest
prediction accuracy for soil organic matter, while the Bayesian model averaging approach was most
effective in predicting sand content. These results indicate that the model averaging approaches could
improve the predictive accuracy for soil properties. The resulting maps, produced at a 30 m spatial
resolution, can be used as valuable baseline information for managing environmental resources
more effectively.

Keywords: spatial modeling; machine learning; remote sensing; model averaging

1. Introduction

In recent years, rapid population growth and the increasing demand for food have had
undesirable consequences on the environment. These consequences include, but are not
limited to, land degradation, desertification, water pollution, and soil pollution. Therefore,
there is a need to explore and recognize the factors related to sustainable agriculture and
soil and water resources management. Hence, one of the most basic pieces of information
related to land resource management includes maps of soil properties [1]. Soil properties
vary both temporally and spatially and from small- to large-scale, and are affected by
environmental characteristics, such as topography, and soil management practices, such as
fertilization and agronomic practices [2].

In Iran, where 85% of the country is arid or semiarid [3], the intrinsic properties of
soil, such as SOM, CCE, gypsum content, soil texture, electrical conductivity (EC), soil
pH, and soil reactivity have been shown to be related to soil quality and are commonly
considered the main factors in soil quality assessments [4]. However, these properties
are highly variable in space and time [5]—especially in agricultural systems, due to the
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processes related to soil redistribution and agriculture practices. Lastly, parts of the region
are challenged by data scarcity where soil information lacks detail or is not available.

Because soil information is essential, digital soil mapping (DSM) has been an area
of research over the past few decades [1]. Whereas traditional soil mapping methods
were time-consuming and expensive to carry out [6], DSM techniques can overcome
these limitations by integrating soil information and environmental variables obtained
from remote sensing and other geospatial datasets [1,7,8]. DSM approaches operate by
establishing correlations between a set of environmental covariates and soil properties of
georeferenced sample points in the study area. The resulting predictive models are then
applied to unsampled locations. Until recently, most DSM studies have been carried out in
easily accessible regions in Iran to predict a variety of soil properties; for instance, pH, EC,
soil organic matter (SOM), phosphorus, particle size distribution, and calcium carbonate
equivalent (CCE) [8–10]. However, few studies have investigated the spatial soil properties
in regions with limited soil data or in difficult-to-access areas.

Machine learning (ML) techniques have increasingly been compared for identifying
the best performing model for predicting soil variability [11]. Of the many ML algorithms
currently used in DSM, studies have included the use of multiple linear regression [12],
logistic regression [13], Random Forests [14–17], classification trees [18], support vector ma-
chines [17,19], and artificial neural networks [20]. However, with increasing computational
power, more sophisticated and complex algorithms, such as convolutional neural networks,
which are based on data-hungry, deep learning approaches, have been used to solve highly
complex soil-landscape problems and to improve the prediction accuracy and decrease the
uncertainty of digital soil maps [21–24].

An approach to improving the predictive capability and decreasing the variance of ML
models is through model averaging [25]. Model averaging is a technique where multiple
individual learners (i.e., base learners) are trained and combined to solve the same problem.
This technique assumes that each base learner will have its own strengths and weaknesses
and compile a final model with the strengths of the individual models. As a result, model
averaging techniques are expected to produce predictions with similar or better accuracy
when compared to their individual constituents. In addition to the increased accuracy,
model averaging has the potential to improve the reliability, stability, and robustness of
models [26]. These techniques have recently gained attention in environmental sciences,
atmospheric sciences, and statistics literature for predicting and solving highly complex
problems [21].

A few DSM studies have demonstrated the effectiveness of model averaging for
predicting various soil properties, such as available soil water, soil organic carbon, soil
texture, and soil pH [7]; hydrologic properties [25]; and soil classes [27]. However, to the
best of our knowledge, there are no DSM studies that have performed a comprehensive
comparison of model averaging techniques; hence, providing the impetus for this study.

Given the need for detailed soil information for the arid, remote, and data-scarce
regions of Iran, this study aimed to compare and evaluate methods for producing maps of
soil properties using ML and model averaging techniques. The specific objectives were as
follows: (1) to investigate and compare the use of different single-model learners, such as
support vector regression (SVR), k-nearest neighbor (kNN), artificial neural network (ANN),
deep neural network (DNN), Random Forest (RF), adaptive network-based fuzzy inference
system (ANFIS), and extreme gradient boosting (XGB); and (2) to compare the single-
model learners with several model averaging techniques, such as Bates–Granger averaging
(BGA), equal weights averaging (XBEWA), Bayesian information criterion (BIC), Akaike’s
information criterion (AIC), Bayesian model averaging (BMA), Granger–Ramanathan
averaging (GRA), and Mallows model averaging (MMA).
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2. Materials and Methods
2.1. Study Area and Soil Sampling

The research area is 110,000 km2 and is located in the central Iranian province of
Isfahan (Figure 1). The elevation varies from 700 to 2600 m above mean sea level. The mean
annual precipitation and temperature are 117 mm and 25 ◦C, respectively. According to the
geology map, quaternary sediments cover a considerable portion of the Isfahan province.
Sedimentary rocks, such as limestones, sandstones, conglomerate, and shale, are common
in the southern and western regions of the study area [28].
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Figure 1. The location of Iran and the Isfahan province (left) and the spatial distribution of sampling
points (right).

A total of 251 topsoil samples were collected at 0–20 cm depth increments, utilizing a
stratified random sampling with 20 × 20 km stratification blocks. Soil samples within the
blocks were selected based on parent material by taking one sample from the dominant
parent material within each grid cell. This ensured that sedimentary, volcanic, and meta-
morphic rocks were represented. Each sample consisted of five subsamples, which were
randomly collected from within a 20 × 20 m (400 m2) area in each grid. The geographical
distribution of sample locations within the study area is shown in Figure 1. Soil samples
were air-dried and sieved using a 2 mm sieve. Using a 2:1 water to soil ratio extract, the
soil pH [29] and electrical conductivity (EC) [30] were measured. In addition, the SOM
content (wet combustion method) [31], CCE (titration method) [32], particle size distri-
bution (hydrometer method) [33], the gypsum content (oven-drying method) were also
measured [34].

2.2. Environmental Covariates

A digital elevation model (DEM; Figure 2) with a 30 m spatial resolution was used
to calculate terrain attributes [35], such as elevation, catchment aspect, catchment slope,
catchment area, topographic openness, profile curvature, topographic wetness index, and
planform curvature (Table 1). Additionally, Landsat 8 Operational Land Imager (OLI)
data were taken during the summer of 2012. After performing geometric and radiometric
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corrections on the Landsat images, the median values of bands were used to derive a
suite of remote sensing covariates, such as brightness index, salinity index, gypsum index,
carbonate index, and clay index (Table 1). Lastly, the mean annual temperature and
mean annual precipitation (Figure 2) were calculated from the monthly precipitation and
temperature values.
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Table 1. List of environmental covariates used (*L is a canopy background adjustment factor).

Covariates Definition Code Source and Ref.

Elevation X01_Elev

DEM SRTM

Catchment Aspect X02_Catch.Asp
Catchment Slope X03_Catch.Slop
Catchments area X04_Catch.Area

Openness (PosOpen) X05_Openness
Profile curvature X06_Prf.Curv
Plan curvature X07_Pl.Curv
Wetness index X08_Wetness.In
Valley depth X09_Valley.Dep
Slope length X11_Slop.Leng

Total insolation X12_Total.Inso
Multi-resolution valley
bottom flatness index X10_MrVBF DEM SRTM, [36]
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Table 1. Cont.

Covariates Definition Code Source and Ref.

Blue B2: 0.45–0.51 µm X13_B1

Landsat 8, [37]

Green B3: 0.53–0.59 µm X14_B2
Red B4: 0.64–0.67 µm X15_B3

Near-infrared B5: 0.85–0.88 µm X16_B4
Short-wave infrared-1 B6: 1.57–1.65 µm X17_B5
Short-wave infrared-2 B7: 2.11–2.29 µm X18_B7

TASSELED CAP 1 The overall brightness of the image X19_TSC 1
Landsat 8, [38]TASSELED CAP 2 The overall greenness of the image X20_TSC 2

TASSELED CAP 3 The overall wetness of the image X21_TSC 3
Salinity index (B1 − B3)/(B1 + B3) X22_Salinity.In Landsat 8, [39]

Brightness index ((B3)2 + (B4)2)0.5 X23_Bright.In Landsat 8, [40]
Gypsum index (B5 − B4)/(B5 + B4) X24_Gypsum.In

Landsat 8, [41]Clay index B5/B7 X25_Clay.In
Carbonate index B3/B2 X26_Carbon.In

Ratio vegetation index (B4/B3)/(B2 + B3) X27_RVI

Landsat 8, [42]
Enhanced vegetation index (B4 − B3)/(B4 + C1 × B3 − C2 × B1 + L) X28_EVI

Infrared percentage
vegetation index B4/(B4 + B3) X29_IPVI

Normalized difference
vegetation index (B4 − B3)/(B4 + B3) X30_NDVI

Soil adjusted vegetation index *(1+ L) × (B4 − B3)/(B4 + B3 + L) X31_SAVI
Annual mean temperature It is derived from the monthly temperature values X32_Temp

WordClim, [43]Annual mean precipitation It is derived from the monthly rainfall values X33_Rainfall

2.3. Variable Importance Analysis Using a Genetic Algorithm

Many environmental covariates are often employed in DSM studies, thus making it
difficult to understand the correlations between soils and the environment due to a large
number of covariates. Brungard et al. [44] recommended that applying fewer covariates
could benefit and improve the efficiency of the model process. To overcome this issue,
genetic algorithms (GA) have been used to determine the optimal subsets of covariates to
create simpler models while maintaining model performance [9,45]. Genetic algorithms
are biologically inspired computational models based on evolutionary processes, such as
selection, crossover, and mutation, and are designed to search for functions that best fit the
experimental data set [45]. Here, a GA was applied to select the most important variables
for each soil property using the caret package (version 6.0–90) in R [46].

2.4. Base Learners

Nine base learners were tested in establishing the relationships between the environ-
mental covariates and target variables. These models included k-nearest neighbor (kNN),
genetic programming (GP), support vector regression (SVR), least absolute shrinkage and
selection operator (LASSO), artificial neural network (ANN), deep neural network (DNN),
Random Forest (RF), adaptive network-based fuzzy inference system (ANFIS), extreme
gradient boosting (XGB). Modeling was implemented using the caret package (version
6.0–90) [47] in R 3.2.5 [46] and RStudio (version 0.99.903) [48].

2.5. Model Averaging Techniques

Seven model averaging techniques were tested: Akaike’s information criterion, equal
weights averaging, Bates–Granger averaging, Bayes’ information criterion, Mallows model
averaging, Granger–Ramanathan averaging, and Bayesian model averaging. Here, we
summarize each approach and refer readers to the references for full descriptions of each
model averaging technique.

In the equal weights averaging (EWA) method, the final prediction is obtained by
assigning the same weight to each model. In effect, this would be the mean predicted value
amongst all base learners.
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Bates–Granger averaging (BGA) technique was proposed by Bates and Granger [49].
In the BGA technique, each model is weighed by 1/σi

2, where σi
2 is the prediction variance.

In the information criterion averaging techniques (AIC and BIC), weights are calcu-
lated using the following equations [50]:

β̂ =
exp
(

Ii
2

)
∑k

j=1 exp
(

Ii
2

) (1)

where Ii is an information criterion (the fit of the model), where

Ii= −2log(Li) + q(pi) (2)

and Li is the (maximized) likelihood of model i, and q(pi) is a penalty for increasing the
number of parameters, pi, which needs to be estimated for model i. In the AIC averaging
technique, the penalty, q(p), is 2p, while the penalty for the BIC averaging technique is
q(p) = plog(n), where n is the training sample size.

Hoeting et al. [51] first proposed the Bayesian model averaging (BMA) technique,
which assigns a conditional probability density function to each model prediction.
Raftery et al. [52] provide an excellent overview of the theoretical background behind
the different BMA techniques.

Claeskens and Hjort [53] and Hjort and Claeskens [54] proposed the Mallows model
averaging (MMA) technique and concluded that there is no best model; instead, an appro-
priate model should depend on the objective. In the following equation:

Cn(β) =
n

∑
t=1

(
Yt − β′Xt

)2
+ 2

k

∑
j=1

β j pjS2 (3)

pj is the number of parameters of model j, and S2 is an estimate of the variance, σ2, of εt.
In this study, S2 was taken to be the smallest observed RMSE for any individual model
among the set of models.

Granger and Ramanathan [55] first proposed the Granger–Ramanathan (GR) approach.
It assumes that the final prediction is calculated from a combination of different model
predictions using an ordinary least squares method.

2.6. Accuracy Assessment and Uncertainty Analysis

The dataset was randomly split into 70% (n = 170) and 30% (n = 81) for model training
and testing, respectively. Leave-one-out cross-validation was also used to tune the hyper-
parameters of models using the 70% training dataset. The coefficient of determination (R2),
mean absolute error (MAE), the root mean squared error (RMSE), and the normalized root
mean squared error (nRMSE) were used to assess model performance:

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (4)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (5)

MAE =
∑n

i=1|ŷi − yi|
n

(6)

nRMSE =
RMSE

X
(7)

where in Equations (4)–(7), y is the measured value, ŷ is the predicted value, n is the number
of observations, and X is the average of observed values.
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To assess the uncertainty of the models, a leave-one-out cross-validation method was
used. This method resulted in 170 predicted soil property maps. Based on the predicted
maps, the mean and standard deviation (SD) of soil properties for each pixel were calcu-
lated. Given a confidence level of 90%, the upper and lower boundary of the predictions
(i.e., prediction interval) were calculated (mean ± 1.64 SD). Finally, the proportion of
measured soil values that fell within the 90% prediction interval (i.e., prediction interval
coverage probability; PICP) and mean prediction interval (MPI: upper prediction limit
minus the lower prediction limit) were calculated as two measures of the quality of the
uncertainty estimates.

3. Results and Discussion
3.1. Descriptive Statistics of Soil Properties

Descriptive statistics of soil properties are presented in Table 2. The SOM, CCE,
gypsum, silt, sand, and EC values varied widely in the study area; for example, the CCE
ranged from 0.2% to 80.0%, with a mean value of 27.8%. Due to the limestone-enriched
parent materials, most soils are highly calcareous throughout the region [28], and because of
the low precipitation in arid and semiarid regions, calcium carbonates tend to accumulate
in the surficial soils [56]. SOM was low with a mean value of 0.4 %, which was also
attributed to the arid and semiarid climate of the study area. Gypsum, sand, and EC values
ranged substantially; however, the mean gypsum and EC remained low. Regions with high
gypsum, sand, and EC values were located in the arid parts of the study area with low
precipitation and high temperatures. The SOM, gypsum, and EC values were positively
skewed, whereas the lime, clay silt, sand, and pH values followed a normal distribution
(Table 2).

Table 2. Summary statistics of soil properties.

Parameter Number Unit Minimum Maximum Mean SD Skewness Kurtosis

SOM 251 % 0.0 2.5 0.4 0.5 1.9 3.6
CCE 251 % 0.2 80.0 27.8 17.7 0.5 −0.6

Gypsum 251 % 0.0 61.7 5.4 7.7 3.4 16.0
Clay 251 % 2.0 38.8 12.9 7.5 0.7 −0.1
Silt 251 % 2.0 85.0 31.4 16.9 0.7 0.3

Sand 251 % 0.2 94.7 55.6 20.2 −0.3 −0.7
EC 251 dS/m 0.1 78.7 3.3 9.0 4.8 28.1
pH 251 −log(H+) 7.1 8.7 7.9 0.2 0.2 1.1

3.2. Variable Importance Analysis

As illustrated in Figure 3, temperature, elevation, rainfall, NDVI, and SAVI indices
were the most important covariates in predicting SOM content. Compared to other studies,
Zeraatpisheh et al. [8] indicated that RVI, elevation, and SAVI were the most important
covariates for SOM prediction in Iran. In contrast, Wang et al. [57] and Ayoubi et al. [58]
concluded that topographic attributes significantly influenced SOM due to its effects on
runoff, drainage, and soil erosion. Additionally, several studies in Iran demonstrated
a strong relationship between vegetation cover and soil properties whereby vegetation
indices were effective in capturing the variability in soil properties, especially SOM [59].

The most important predictors of silt content were the MRVBF, clay, and brightness
indices. In comparison, the prediction of sand contents relied on rainfall, clay index, and
elevation, whereas clay predictions were more reliant on rainfall, temperature, and elevation
were the most important covariates (Figure 3). Thus, in the study area, climatic factors
such as rainfall and temperature, along with topography attributes, could reflect the soil
redistribution process due to water and wind [60]. For example, Brierley et al. [61] reported
that in inter-rill soil erosion, the selective removal process led to the redistribution of silt
and clay particles. Mosleh et al. [62] indicated that effective predictors of silt variability in
Iran included diffuse radiation and wetness index, while the most important predictors of
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clay content were aspect, duration of solar radiation, and stream power index (SPI). They
believed that this was possibly related to the covariates being able to better represent the
effects of vertical and lateral movements of soil particles through erosion and deposition
processes in their study area. The importance of topographic predictors in mapping particle
size fractions in Iran has also been demonstrated in studies, such as Zeraatpisheh et al. [8],
which reported that curvature and profile curvature were important controls on water flow
in the landscape and thereby explained most of the spatial distribution of clay content.
Elsewhere, Adhikari et al. [63] showed that land use, soil, and landscape types were more
important in predicting silt and also indicated that the distribution of fine and coarse
sand fractions was effectively predicted by slope, elevation, and geology in Denmark.
Nath [64] reported that the stream power index and topographic wetness index were the
key predictors of sand content in the Northwest Iowa plain. In Nigeria, Akpa et al. [65]
demonstrated that topographic variables (e.g., SPI, elevation, and slope), vegetative indices,
and climatic variables were the most important predictors of soil particle size.
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The prediction of gypsum was controlled mainly by rainfall, temperature, and ele-
vation, while CCE predictions were controlled by salinity index as well as Bands 5 and
7 from the Landsat 8 data (Figure 3). Perhaps, this was due to the effect of climate and the
different solubility rates of gypsum and calcium carbonates, where the lower solubility rate
of calcium carbonates resulted in its presence on the soil surface, thus making it more visible
in satellite imagery [66]. When predicting EC, the most influential predictors were tempera-
ture, Band 2, and salinity index (Figure 3), which was in contrast to Mosleh et al. [62], where
they reported that elevation, curvature, planform curvature, and profile curvature were the
key predictors of EC. For pH predictions, the Tasseled Cap Bands 1, 2, and NDVI were the
most important predictor, which was in contrast to Mosleh et al. [62] and Nath [64], which
reported the importance of planform curvature.

Overall, climatic parameters (e.g., rainfall and temperature), elevation, and RS data
were the most important covariates for predicting the soil properties of the region. For CCE,
EC, and pH, remote sensing data was particularly effective due to the accumulation of
salts at the surface of the soil, which was easily detected by RS imagery. Meier et al. [67]
selected 10 covariates for soil mapping, including four topographic covariates, three images
from Landsat, two climatic maps, and the map of Euclidean distance from the drainage
network. This study showed that MRVBF, temperature, rainfall, and TWI were the most
important covariates for soil mapping (Figure 3). Mosleh et al. [62] concluded that terrain
attributes were the main predictors for predicting soil properties, while other studies
demonstrated the importance of remotely sensed vegetation parameters in the semiarid
regions of Iran [9,17].
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3.3. Comparison of Base Learners

Among the eight soil properties, the ANN model performed the best in predicting
SOM, CCE, and gypsum content, while the RF model performed the best in predicting EC
and pH. The best performing model for particle size classes varied, where ANFIS, XGB, and
DNN were the most effective in predicting the sand, silt, and clay fractions, respectively
(Table 3). Khaledian and Miller [68] concluded that the ANN model would likely produce
the best results for large datasets, although the computational time could drastically increase
compared to the other models, such as RF and SVR. However, in this study, the efficiency
of the computational process was not a serious issue due to the limited size of our dataset.
Mosleh et al. [62] and Were et al. [69] also found that the ANN model showed superior
performance in predicting SOM compared to others. For predicting sand contents, similar
results were reported in Taghizadeh-Mehrjardi et al. [70], where it was found that the
ANFIS model had better performance when compared to multiple linear regression and
ANN. Although kNN learner was ineffective in predicting soil properties (Table 3), other
studies have demonstrated its effectiveness, such as Khaledian and Miller [68]. It is difficult
to explain the reasons for these differences; however, the differences could be related to the
different extents of the study areas, topography, sampling densities, or the quantity and
quality of the environmental covariates used. Furthermore, this suggests that there is no
single ‘best’ ML algorithm and that multiple models should be compared to identify the
most appropriate model.

Table 3. Summary of accuracy metrics for base learners and model averaging techniques.

Soil
Property Validation

Base Learner Model Averaging Technique

kNN SVR GP Lasso ANN DNN ANFIS RF XGB EWA BGA AIC BIC BMA MMA GRA

SOM

RMSE 0.32 0.29 0.28 0.27 0.24 0.26 0.26 0.26 0.26 0.25 0.25 0.25 0.25 0.25 0.25 0.23
R2 0.69 0.74 0.73 0.76 0.77 0.75 0.77 0.77 0.75 0.77 0.76 0.77 0.82 0.75 0.81 0.84

MAE 0.22 0.18 0.17 0.17 0.16 0.18 0.17 0.17 0.18 0.16 0.18 0.17 0.17 0.18 0.17 0.15
nRMSE 0.68 0.62 0.59 0.58 0.52 0.56 0.56 0.55 0.56 0.54 0.54 0.54 0.54 0.54 0.53 0.51

CCE

RMSE 12.19 12.14 14.77 11.82 11.48 12.14 11.91 11.84 11.98 11.80 12.00 11.49 11.79 11.45 11.46 11.42
R2 0.55 0.55 0.34 0.56 0.59 0.56 0.55 0.57 0.58 0.57 0.58 0.63 0.59 0.62 0.63 0.65

MAE 9.42 9.24 11.27 8.96 8.64 9.63 9.20 9.21 9.42 8.88 9.37 8.98 9.48 8.85 9.33 8.24
nRMSE 0.44 0.44 0.53 0.42 0.41 0.44 0.43 0.43 0.43 0.42 0.43 0.41 0.42 0.41 0.41 0.41

Gypsum
RMSE 6.14 6.27 7.14 6.48 6.10 6.16 6.33 6.47 5.95 5.68 5.67 5.73 5.42 5.63 5.44 5.63

R2 0.37 0.34 0.19 0.37 0.43 0.40 0.37 0.39 0.44 0.44 0.47 0.46 0.54 0.50 0.52 0.45
MAE 3.76 3.57 4.19 3.61 3.50 3.77 3.86 3.88 3.92 3.41 3.72 3.56 3.78 3.42 3.50 3.69

nRMSE 1.11 1.13 1.29 1.17 1.10 1.11 1.14 1.17 1.08 1.03 1.02 1.03 0.98 1.02 0.98 1.02

Sand

RMSE 15.24 15.09 16.34 15.50 14.86 14.98 14.66 14.97 15.00 14.83 15.00 15.18 14.84 14.38 14.73 14.87
R2 0.46 0.45 0.39 0.44 0.48 0.46 0.47 0.39 0.48 0.46 0.48 0.47 0.51 0.56 0.55 0.54

MAE 12.04 11.72 12.95 12.41 11.65 12.11 12.04 12.70 12.28 11.91 12.21 12.30 12.31 11.93 12.08 12.02
nRMSE 0.27 0.27 0.29 0.28 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.26 0.27 0.27

Clay
RMSE 6.08 6.17 6.18 5.99 5.98 5.94 5.98 5.96 5.92 5.87 5.92 5.80 5.93 5.68 5.83 5.96

R2 0.38 0.34 0.39 0.40 0.42 0.40 0.46 0.48 0.43 0.46 0.46 0.47 0.49 0.54 0.51 0.50
MAE 4.79 4.82 4.81 4.65 4.70 4.65 4.61 4.64 4.65 4.64 4.67 4.64 4.78 4.63 4.71 4.83

nRMSE 0.47 0.48 0.48 0.46 0.46 0.46 0.46 0.46 0.46 0.45 0.46 0.45 0.46 0.44 0.45 0.46

Silt

RMSE 14.68 14.32 16.19 14.03 13.95 13.66 13.88 13.95 13.62 14.04 13.36 13.84 13.63 13.67 13.65 13.59
R2 0.30 0.34 0.16 0.36 0.36 0.39 0.36 0.39 0.42 0.37 0.45 0.42 0.41 0.41 0.44 0.50

MAE 11.08 10.81 12.31 10.84 10.51 10.49 10.62 10.81 10.69 10.89 10.68 10.85 10.80 10.98 10.94 10.83
nRMSE 0.47 0.45 0.51 0.44 0.44 0.43 0.44 0.44 0.43 0.44 0.42 0.44 0.43 0.43 0.43 0.43

EC

RMSE 9.22 9.12 11.13 8.54 8.45 8.25 8.46 7.57 7.87 8.05 7.16 7.28 7.53 7.77 7.42 8.04
R2 0.39 0.41 0.17 0.40 0.42 0.34 0.48 0.47 0.46 0.53 0.64 0.50 0.54 0.59 0.59 0.47

MAE 3.72 4.49 4.98 4.26 3.87 4.44 3.75 4.16 4.47 3.90 4.08 3.66 4.32 4.01 4.43 4.55
nRMSE 2.34 2.31 2.82 2.17 2.16 2.09 2.15 1.92 2.00 2.04 1.82 1.85 1.91 1.97 1.88 2.04

pH
RMSE 0.21 0.21 0.22 0.21 0.21 0.21 0.21 0.22 0.21 0.21 0.21 0.21 0.20 0.21 0.20 0.20

R2 0.12 0.11 0.06 0.10 0.18 0.13 0.13 0.20 0.18 0.20 0.21 0.23 0.30 0.25 0.31 0.38
MAE 0.16 0.15 0.17 0.16 0.16 0.16 0.16 0.17 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.14

nRMSE 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

The results showed that among the best individual models to predict soil properties,
the highest and the lowest prediction accuracies were obtained for pH (nRMSE = 0.03) and
gypsum (nRMSE = 1.10) using RF and ANN models, respectively (Table 3). Several studies
concluded that RF and ANN were also effective in predicting soil properties in the arid
and semiarid regions of Iran [8–10].
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3.4. Comparison of Model Averaging Techniques

This study compared seven model averaging approaches to the individual base learn-
ers (Table 3). Among these techniques, GRA showed the highest prediction accuracy for
SOM, CCE, Silt, and pH; BMA was most effective at predicting sand and clay contents;
and BIC and BGA were most effective in predicting gypsum and EC, respectively (Table 3).
BGA and GRA resulted in the least and the most accurate prediction for EC (nRMSE = 1.82)
and pH (nRMSE = 0.03), respectively (Table 3). Diks and Vrugt [25] found that the BGA
method produced the highest accuracy for hydrologic systems compared with the other
model averaging methods (e.g., EWA, BGA, BMA, and MMA).

The results of this study confirmed our original expectations that, compared to the
individual base learners, all model averaging techniques resulted in similar or more accu-
rately predicted soil properties [25]. Notably, the success of the model averaging techniques
highly depended on having a diverse set of base learners when making a final predic-
tion. This might be one reason for why model averaging techniques were consistently
more effective than the base learners regardless of the predicted soil property. Similarly,
Malone et al. [71] compared four techniques for model averaging and recommended the
GRA approach for DSM applications; furthermore, their study also showed that model
averaging could increase the accuracy and robustness of the individual base learners. The
effectiveness of model averaging in DSM has subsequently been demonstrated in multiple
other studies [72]. Although it was not tested here, the application of stacked generalization
techniques using the SuperLearner algorithm has shown that combining the predictions of
multiple base learners into an ensemble learner often resulted in similar or better predic-
tions [73]. In Taghizadeh-Merhjardi et al. [73], the SuperLearner and the EWA techniques
consistently outperformed 12 base learners when predicting 12 soil properties for the Urmia
Lake region of Iran.

3.5. Uncertainty Analysis

To assess the uncertainty of the models, the proportion of measured soil values of the
validation data that fell within the 90% prediction interval (i.e., prediction interval coverage
probability; PICP) and mean prediction interval (MPI: upper prediction limit minus the
lower prediction limit) were calculated. Theoretically, 90% of the observations should fall
within the defined prediction interval with a confidence level of 90% and MPI should be
as narrow as possible. Among the eight soil properties and nine base learners, the ANN
model achieved the highest PICP in predicting SOM, CCE, and gypsum content, while
the RF model achieved the highest PICP in predicting EC and pH. The best performing
model with the lowest uncertainty for particle size classes varied where ANFIS, XGB,
and DNN were most effective in predicting the sand, silt, and clay fractions, respectively
(Table 4). Furthermore, the uncertainty analysis showed the trend that the model averaging
techniques generally produced higher PICP values and that were closer to the nominal 90%
for all soil properties in comparison to the base learners. For example, the PICP values of the
GRA model were 91% and 86%, respectively, for SOM and CCE. In terms of MPI (Table 5),
for eight soil properties and for all ML models, the estimated mean prediction interval for
the model averaging techniques were always smaller than those for the base learners. For
example, MPI obtained for SOM ranged from 1.0 to 1.4% for the base learners, while it
ranged from 0.7 to 0.9% for the model averaging techniques. This further indicated that the
model averaging techniques decreased the uncertainty of the models for predicting soil
properties. Notably, there was some uncertainty in the predicted values that may have been
related to the high variability in soil properties; low precision of predictions; the inherently
poor relationships between soil properties and covariates; and errors in modeling.
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Table 4. Uncertainty of the models for predicting soil properties (prediction interval coverage
probability; PICP).

Soil
Property

Base Learner (%) Model Averaging Technique (%)

kNN SVR GP Lasso ANN DNN ANFIS RF XGB EWA BGA AIC BIC BMA MMA GRA

SOM 26 32 33 36 57 40 42 45 43 66 67 67 72 77 87 91
CCE 38 38 35 61 63 40 44 51 57 75 71 77 81 78 81 86

Gypsum 35 29 23 28 59 50 28 54 55 63 82 65 90 84 82 85
Sand 50 43 35 42 56 55 52 67 62 73 70 68 86 80 87 83
Clay 31 29 26 36 49 47 56 53 56 71 77 68 68 88 86 87
Silt 26 39 23 45 52 66 68 62 69 74 90 84 84 87 85 90
EC 24 26 20 28 29 35 32 42 39 46 65 62 62 51 63 64
pH 50 52 45 53 53 55 55 71 70 89 89 84 82 81 82 91

Table 5. Uncertainty of the models for predicting soil properties (mean prediction interval; MPI).

Soil
Property

Base Learner Model Averaging Technique

kNN SVR GP Lasso ANN DNN ANFIS RF XGB EWA BGA AIC BIC BMA MMA GRA

SOM 1.4 1.3 1.2 1.2 0.9 1.2 1.3 1.0 1.2 0.8 0.9 0.9 0.8 0.7 0.8 0.8
CCE 87.4 77.1 80.5 80.9 65.2 67.0 84.9 68.1 72.7 55.8 50.1 57.9 53.7 57.7 45.7 46.5

Gypsum 36.5 38.5 34.4 39.2 32.9 31.7 37.9 33.2 34.6 31.2 30.6 30.0 28.8 31.5 29.4 29.9
Sand 92.9 76.1 78.4 83.0 87.3 79.4 88.9 76.2 87.8 61.9 69.9 71.1 74.4 69.8 61.7 72.4
Clay 32.4 33.1 31.3 33.0 27.9 30.0 29.8 29.0 33.2 26.7 26.6 25.7 24.2 23.0 24.9 22.1
Silt 73.8 66.2 70.7 78.5 74.8 77.7 67.3 70.6 66.8 59.3 55.1 53.0 63.8 53.0 56.5 52.7
EC 37.5 25.0 34.3 31.2 37.0 31.4 29.2 22.2 25.7 21.3 15.3 18.3 14.0 16.9 16.0 18.4
pH 0.8 0.8 0.7 0.8 0.7 0.7 0.7 0.7 0.8 0.7 0.5 0.6 0.7 0.7 0.5 0.5

3.6. Spatial Prediction of Soil Properties

The spatial predictions of the target soil properties are illustrated in Figure 4. Based
on a visual assessment, the soil maps were consistent with our expert knowledge of the soil
patterns for the region and our understanding of the relationships between soil properties,
geology, and climate. As expected, the spatial patterns of the SOM predictions were similar
to the mean annual precipitation patterns, where the highest amounts of rainfall occur in
the western, northwestern, southwestern, and southern parts of the Isfahan province and
at higher elevations and lower temperatures, hence facilitating SOM accumulation.

The spatial variability of lime in the soils of the Isfahan province did not match the
climatic patterns and instead followed the geological patterns of the study area. Lower
amounts of lime were observed along with a northwestern to southwestern corridor within
the study area, where the parent material of soils was derived mainly from volcanic
rocks [28]. Similarly, low amounts of lime were also predicted within the western region of
the Isfahan province, where the parent materials are derived from metamorphic rocks [28].

Soil salinity and gypsum levels increased along an eastern gradient within the Isfahan
province. Due to the higher elevation, the western and southern regions of the study
area experience greater humidity; hence, gypsum and other soluble minerals are easily
leached from the soil profile. In contrast, the regions that were predicted with the highest
amounts of gypsum and other soluble salts (Figure 4) corresponded to the regions with
lower precipitation and higher temperature, which provide climatic conditions that are
conducive for evaporation and, as a result, the formation of gypsum and other soluble
salts. Gypsum is often found in soils with calcite and other soluble salts [28]. The parent
material types and evaporation were the main factors for the accumulation of gypsum,
calcite, and other soluble salts in the arid and semiarid regions [74]. However, it should be
highlighted that the mechanism of salinization is quite complicated and may be affected by
other factors [75,76]; for example, the accumulation of salt on the soil surface and soil profile
may be significantly affected by the spatiotemporal dynamics of soil water content [77,78].

The variability in soil pH was limited, with predicted values ranging between 7.35 and
8.33 and with soil pH being the lowest in the western and southern regions of the province.
Similar to the soil salinity and gypsum predictions, we believe that the spatial pattern of
soil pH was partially controlled by the climate, where the higher precipitation levels led to
the leaching of soluble minerals, thereby decreasing the pH (Figure 4).
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Clay and silt contents were highest in the western, southwestern, and southern parts of
the Isfahan province, while the opposite trends were observed for sand contents (Figure 4).
It appears that both parent material and climate were effective predictors of particle size
fractions. In the central, southeastern, northern, and eastern parts of the province, sand
dunes, Quaternary sediments, andesite, granite, and diorite were the dominant parent
materials from which the resulting soils formed from these parent materials would have a
correspondingly high sand content. Furthermore, wind erosion in the eastern region of the
province causes an increased loss of finer soil particles and increased sand contents. In the
western, southwestern, and southern regions of the Isfahan province, the dominant parent
materials consist of sedimentary rocks, such as marls, limestone, shale, and sandstones,
thus resulting in soils with higher clay and silt contents. Furthermore, the higher moisture
in these regions facilitates higher weathering rates on the soil parent materials, contributing
to clay and silt particle production.

4. Conclusions

This study evaluated multiple base learners and model averaging approaches for
predicting the spatial distribution of soil properties in central Iran. We concluded that
among the base learners, the ANN and RF models were the most consistent in predicting
soil properties and had a higher accuracy than the other base learners. Furthermore, when
comparing the model averaging techniques against the individual base learners, model
averaging consistently performed better than the best performing base learner regardless
of model averaging techniques and soil property. This might be related to the fact that
the model averaging techniques combined the strengths of the base learners in order to
obtain a better predictive performance and make the ensemble models more robust than
their constituents. Specifically, the GRA and BMA approaches performed the best for
all soil properties. The uncertainty analysis showed similar trends in the ML models
for predicting soil properties where the model averaging methods had higher PICP and
lower MPI values than the base learners. The resulting maps, produced at a 30 m spatial
resolution, can be used as valuable baseline information for the effective management of
environmental resources. These maps will support the sustainable management of the
region’s soil resources and facilitate land evaluation activities.
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