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Abstract: For farmers, policymakers, and government agencies, it is critical to accurately define
agricultural crop phenology and its spatial-temporal variability. At the moment, two approaches
are utilized to report crop phenology. On one hand, land surface phenology provides information
about the overall trend, whereas weekly reports from USDA-NASS provide information about the
development of particular crops at the regional level. High-cadence earth observations might help
to improve the accuracy of these estimations and bring more precise crop phenology classifications
closer to what farmers demand. The second component of the proposed solution requires the use
of robust classifiers (e.g., random forest, RF) capable of successfully managing large data sets. To
evaluate this solution, this study compared the output of a RF classifier model using weather, two
different satellite sources (Planet Fusion; PF and Sentinel-2; S-2), and ground truth data to improve
maize (Zea mays L.) crop phenology classification using two regions of Kansas (Southwest and
Central) as a testbed during the 2017 growing season. Our findings suggests that high temporal
resolution (PF) data can significantly improve crop classification metrics (f1-score = 0.94) relative
to S-2 (f1-score = 0.86). Additionally, a decline in the f1-score between 0.74 and 0.60 was obtained
when we assessed the ability of S-2 to extend the temporal forecast for crop phenology. This research
highlights the critical nature of very high temporal resolution (daily) earth observation data for crop
monitoring and decision making in agriculture.

Keywords: agriculture; Planet Fusion; Sentinel-2; random forest classifier

1. Introduction

Crop phenology is the study of biological processes such as emergence, flowering,
and senescence that are linked to and in response to environmental growing conditions [1].
Understanding changes in crop phenology and their response to climatic conditions is
critical for production-beneficial management practices [2]. While the literature describes
several initiatives to address crop phenology via earth observations (remote sensing) [3–6],
or mathematical models supported on weather information [7,8], the metrics reported from
those studies are not easily translated into effective agronomic management strategies.
For instance, Land Surface Phenology (LSP) determines the change in green vegetation
condition by identifying changes in the vegetation seasonal pattern using remote sensing
technologies [3], but these changes do not directly reflect the true phenological stage of a
distinctive crop [9]. Crop phenology shows more relevant stages from an agronomic per-
spective, which are closely connected to the critical stages when management approaches
may and should be handled.
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In the United States, official phenology crop progress estimates are based on weekly
survey data obtained from a network of regional extension agricultural agents [9]. These
reports summarize crop development by agricultural district in percentage terms, com-
bining some growth stages into broader categories. While this is a valuable source of
knowledge, the data gathering procedure is time-consuming and labor-intensive, and may
not adequately represent a county or district, or the reality of a single farm, with a high
degree of fidelity [10]. Additionally, a marked decrease in the reporting of certain crops
such as soybean (Glycine max L.), sorghum (Sorghum bicolor L.), or sunflower (Helianthus
annus L.), has been documented in recent years [11,12], based on the information from the
weekly reports, creating an information gap for critical crops.

Whereas remote sensing technologies have historically assisted in the execution of
a variety of Earth observation activities [13–15] current sensors and future missions are
aiding in addressing tasks that need high cadence observation [16–18]. These features are
one of the most crucial factors to address crop phenology progress and monitor changes
in vegetation dynamics over space and time domains [9]. Sensors with daily or near-
daily coverage have not traditionally been available at the spatial resolution needed for
field analysis, while those sensors with high spatial resolution have been characterized
by a comparatively low revisit period. Several fusion efforts are underway to merge
those characteristics, scattered through different spaceborne and airborne sensors, into
one product to retrieve higher temporal, spatial, and spectral resolutions [10,19–21]. Data
fusion, leaning on the use of deep learning and multimodality, is currently the best path to
achieve within season analysis capable of thoroughly characterizing crop growth in both
large- and small-scale environments or landscapes [10,21,22].

Along with high-cadence data, robust classifiers capable of managing large data sets
with acceptable trade-offs and stability while staying computationally feasible are required
for classifying the numerous phenological phases successfully [23]. For decades, Random
Forest (RF) [24] has proved to be useful for remote sensing applications [25–27]. In a
study comparing more than 170 classifiers, Fernandez-Delgado et al., 2014 [28] reported
a superior performance for RF mainly when dealing with large and unbalanced data
sets. These characteristics, along with their simplicity and processing speed, make RF the
classifier of choice in a wide variety of scenarios, where data sets are not large enough to
test more complex machine learning methodologies such as neural networks [29].

A significant question addressed in this publication is whether high-cadence satellite
data influence crop phenology classification for agronomic applications. The focus of this
research is to compare the output of an RF classifier model, testing two different sources of
satellite data varying in their temporal and spatial resolution in combination with weather
data. The specific objectives for this study were: (i) to utilize surface reflectance data from
Planet’s data fusion product (PF-SR) and ESA’s Sentinel-2 sensors to quantify performance
for crop phenology classification; and (ii) to evaluate the spatial transferability of the
generated model by testing its performance in two distinct maize production regions,
Southwest: mainly irrigated with average yields above 11 Mg ha−1; and Central: rainfed,
yields below 9 Mg ha−1, within the state of Kansas, in the Great Plains region of the United
States (US) during the 2017 growing season.

2. Materials and Methods
2.1. Study Area

The present study was conducted in the state of Kansas (US) within the Southwest
(SW) region comprising the counties of Morton, Stanton, Grant, and Stevens and the Central
(CK) region constituted by the counties of Stafford and Pratt (Figure 1a).
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Figure 1. (a) Area of study (a.1) state of Kansas (US), (a.2) Southwest (SW) region; the large orange
rectangle represents the Sentinel-2 tile covering the area; the green rectangle corresponds with the
Planet Fusion (PF) tiles over the area; pink dots represent ground truth field data collection sites,
(a.3) Central KS (CK) region; green rectangle corresponds with the PF tile over the area; yellow dots
represent ground truth field data collection sites. (b) Maize phenology stages, with the phenology
scale used during ground truth data collection, following Ciampitti et al. (2016). (c) Sentinel-2 and PF
data imagery and GRIDMET data from the Google Earth Engine (GEE) repository, data availability
differs temporally with 8 images collected for Sentinel-2, and daily data for both PF and weather data
during the 2017 growing season, varying with the day of the year (DOY).

The precipitation pattern in Kansas is highly uneven in both quantity and distribution,
ranging from over 1000 mm from the southeast to less than 300 mm in the west region of
the state. For the two regions selected in this study, these levels ranged from 500 to 800 mm
for the CK (rainfed region) and from 300 to 500 mm for the SW region [30]. The size of the
fields, as well as standard management practices such as ground water irrigation, differ
in these two regions. The SW region is mostly dominated by larger fields relative to the
CK, and a higher number of irrigation pivots (fed from the Ogallala Aquifer), resulting in
higher maize yields averaging 11 Mg ha−1 for year 2019 [12]. In contrast, the CK region
is characterized by smaller fields and mainly dominated by rainfed agriculture with an
average maize yield of 9 Mg ha−1 for the year 2019 [12].

2.2. Data Characteristics
2.2.1. Reference Ground Field Data

Acquiring quality environmental data may be challenging and expensive, even more
when dealing with extensive geographic areas [31,32]. This requires not just data collec-
tion and subsequent storage, but also the training of a person capable of delivering the
information with minimal to no bias or errors. Despite these substantial obstacles, ground-
truth field data continue to be the most reliable and closest to the true condition of the
system [33,34]. For this study, we were able to acquire a valuable source of ground-truth
data from Crop Quest Inc., which included geolocated fields spanning many states in the
Central region of the United States. This data set was developed during a five-year period,
from 2013 to 2017, by conducting repeated trips to each farmer field to document maize
crop phenology changes during the growing season. Only the growing season 2017 was
analyzed in the present manuscript due to a conjunction of events, related to the sources
of information.

On average, each field was visited 5 times during the season; although, this varied
within all field observation collected and summarized in this large database. The crop
phenology stages present in the data set followed the scale described on Figure 1b, based
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on [35]. The final database included geolocated fields for both regions, crop phenology
measurements per field, and the date of data collection (time stamp).

2.2.2. Remote Sensing Data and Weather Variables

Google Earth Engine (GEE) was used to retrieve and analyze spectral remote sensing
data, as well as for the weather information (Figure 1c). This cloud-based platform enabled
the processing of large data sets and provided access to a wide library of pre-processed
satellite images, climate, and land cover data, as well as built-in algorithms and vector
data [36,37].

Planet Fusion Product

For the 2017 season, our industry partner provided daily, 3 m resolution, Planet Fusion
(PF) Surface Reflectance (SR) data [38]. Planet Fusion constitutes a comprehensive fusion
methodology based on the CESTEM algorithm [39,40] to inter-calibrate, harmonize, en-
hance, and fuse multi-sensor data streams leveraging rigorously calibrated public mission
(i.e., Sentinel-2, Landsat 8, MODIS, and VIIRS) products in concert with the higher spatial
and temporal resolution CubeSat images from the PlanetScope constellations. PF uses
the Framework for Operational Radiometric Correction for Environmental Monitoring
(FORCE) [41] to generate a harmonized Sentinel-2 and Landsat 8 BRDF adjusted SR prod-
uct to be used as the calibration target during the CESTEM-based harmonization step.
Additional PF features include: (1) sub-pixel fine geometric alignment of source imagery;
(2) rigorous, temporally driven, cloud and cloud shadow detection; (3) fusion of Sentinel-2
and Landsat 8 data to help fill gaps in PlanetScope coverage; and (4) advanced gap-filling.
PF delivers daily, gap-filled, 4-band (0.45–0.51, 0.53–0.59, 0.64–0.67, and 0.85–0.88 µm)
sensor agnostic SR data characterized by enhanced radiometric stability and consistency
across space and time to support advanced analytics. The PF data were provided with a
3 m pixel size as regularly gridded raster tiles (24 by 24 km) in UTM projection.

Due to the high temporal frequency, spatial resolution, and quality of data, this product
could prove to be an excellent resource for dealing with detailed crop phenology and its
temporal variation. For the SW region, tiles 11E-172 N and 11E-173 N were utilized, as well
as tile 21E-174 N for the CK region. Both spectral and associated metadata from each tile
were uploaded to GEE via the Google Cloud Repository and organized into a collection for
convenient access during feature extraction.

Sentinel-2

Sentinel-2 (S-2) is an optical satellite constellation developed by the European Space
Agency (ESA) that is composed of two complementary spacecraft (S-2A and S-2B). This
constellation was chosen to compare the PF product to a publicly available, well-studied,
and widely reported satellite with a high temporal resolution (median average revisit
intervals of 3.7 days, [42]) and spatial resolution (10, 20, and 60 m, [43]).

Tile T14SKG covering southwest Kansas, was used to generate level-2A surface re-
flectance data using the Sen2Cor processor [44]. This operation was carried out manually
using the Sentinel Application Platform (SNAP) and the Sen2Cor plugin (version 2.8), as
not all tiles for level-2A are available from the GEE archives for the year 2017 over the state
of Kansas. Once the images were converted to bottom of atmosphere reflectance, they were
uploaded to GEE for the purpose of calculating the various vegetation indices.

Even though 12 images were produced for the 2017 growing season, only eight of
them showed less than 20% cloud cover, and only five of them were time corresponding
with observations made during the ground truth field data gathering.

Spectral Bands and Vegetation Indices

A suite of Vegetation indices (VI) including the Normalized Difference Vegetation
Index (NDVI), Enhanced Vegetation Index (EVI), Green Chlorophyll Vegetation Index
(GCVI), Chlorophyll Vegetation Index (CVI), and Normalized Green Index (NGI) were
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calculated based on the spectral bands from both products (PF and S-2). Extensive literature
is associated with these indices and their capability to monitor vegetation dynamics [45–49].

NDVI is supported by the fact that green/healthy vegetation will have a higher
reflectance in the near infrared (NIR) while absorbing in the red band due to the chlorophyll
content in the leaf [46]. While extensively utilized, it is well established that this indicator
saturates at intermediate biomass levels, owing mostly to its limited sensitivity to elevated
chlorophyll concentrations, especially problematic in maize fields. The EVI integrates the
blue band to limit the impact of certain atmospheric phenomena and more precisely capture
changes in plant canopy, particularly under high productivity areas [50,51], making this
vegetation index as an effective alternative to the problem from using NDVI. GCVI has
been proven to present a greater linear connection with the leaf area index of maize than
other indices and, unlike NDVI, does not saturate as quickly at high biomass levels [48].
Lastly, both CVI and NGI have been widely used due to their responsiveness to changes in
the chlorophyll content of the crop [52,53].

Weather Variables

Weather variables were derived from the GEE archives based on gridded surface
meteorological data (GRIDMET), [54]. This data set integrates high-resolution spatial
data from PRISM (2.5 arc minute, 4 km) with regular temporal resolution data from the
North American Land Data Assimilation System (NLDAS) [55]. The main meteorological
variables retrieved for the analysis were mean, minimum, and maximum temperatures,
precipitation, and vapor pressure deficit (VPD), all on a daily temporal scale.

2.3. Data Preparation

To extract circular fields linked to irrigated pivot operations, the Canny edge detec-
tor [56] method was implemented on the GEE platform. Using this mask, in conjunction
with the fields under study, we were able to construct a layer that included information
about the geolocation and phenology of each irrigation field in the data set. As a result, the
mean values of the spectral bands (red, green, blue, and NIR), VIs (NDVI, EVI, GCVI, CVI,
and NGI), and the weather parameters (precipitation, minimum temperature, maximum
temperature, and VPD) associated with each field for each given date were all gathered to
construct the main database with both sensors.

Despite PF daily availability, only images day-coincident with the ground-based
phenology collections (a total of 91 dates) were utilized (Figure 2). These dates were
distributed between 1 May and 30 October. The same method was applied to S-2 data after
filtering based on a cloud mask with a cloud threshold less or equal to 20%. During that
process, S-2 images with less than 20% cloud cover were retained for the analyses. With
this filtering protocol, only five S-2 images (dates: 15 June, 30 June, 5 July, 25 July, and
14 August) were available on the same date as the phenology collections (Figure 2). Due
to this temporal limitation, additional studies were conducted to also consider phenology
data acquired within 3 and 10 days of the image collection. As a result, this stage of the
study analyzed three data sets: (i) containing the spectral band values, VIs, and weather
parameters for the exact phenology date; (ii) same parameters as in (i) spanning three days
before and after the crop phenology collection date (7 days total); and (iii) same parameters
as in (i) ranging ten days before and after the crop phenology collection date (21 days total).
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Figure 2. EVI temporal series for the 2017 maize growing season for SW fields using Sentinel-2
(solid green line) and PF (dash blue line). The shaded area around both lines represent the standard
deviation of the EVI values for the fields under study (pink dots Figure 1(a.2)). Maize phenology
progress and development stages is depicted on the x-axis.

2.4. Random Forest

The Random Forest (RF) classifier was implemented with the Scikit-Learn library [57],
in a Python 3.8 environment. RF represents a supervised classifier, learning from training
samples; thus, the quality of training instances is a key component in the classification
process. The RF classifier, in addition, is an ensemble classifier, in which multiple decision
trees are utilized to improve generalizability and, therefore, resilience by using a randomly
selected subset of training samples and variables [58]. All these aspects contribute to the
creation of accurate classifications, as well as the processing of large amounts of data. It
has been utilized in remote sensing for more than two decades, proving valuable in the
handling of high-dimensional data, unbalanced data sets, and multi-target problems, while
remaining simple and adaptable using multiple hyperparameters. [25–27,59–61].

To produce a more robust model in this study, the hyperparameters were derived
based on an exhaustive grid search checking for various values at each hyperparameter
and retaining the ones that resulted in the best performance. The data set for this test was
created by combining the variables in their final configuration (further details presented in
the section below). This resulted in the following hyperparameter values: bootstrap: True;
maximum tree depth: 10; maximum number of features required to do the best split: ‘auto’;
minimum sample size per leaf: 2; minimum sample size required to execute the split: 2;
number of trees: 1000. To evaluate performance, the data sets (PF and S-2) were split into
training, validation, and test sections for each experiment. From the total of the data, 70%
was used for training purposes and validation (fraction A) and 30% for model assessment
(fraction B). Fraction A was further divided into 70% for training (fraction Aa) and 30% for
validation (fraction Ab).

2.4.1. Performance Metrics

When evaluating the performance of RF, the most commonly used metrics are overall
accuracy, precision, recall, and F1-score [62]. Considering the examples in the literature
we can obtain these metrics following the Equations (1)–(4) [63]. Most of the literature
studying the performance of these metrics is centered on balanced binary classifications.
In this paper, the ground-truth data set presents more than 18 classes, where each class
does not contain the same number of samples. According to [64], F1-score, defined as
the harmonic mean of precision and recall, can be a useful metric to use with respect to
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unbalanced data sets. In contrast, the use of overall accuracy, the total of correctly identified
elements divided by total number of elements to be classified, can be misleading since
it will favor the most represented class [65]. Precision represents the fraction of samples
assigned to the class that are in fact part of the class, and recall represents how well the
class was predicted.

accuracy =
True positives + True negatives

All samples
(1)

precision =
True positives

True positives + False positives
(2)

recall =
True positives

True positives + False negatives
(3)

F1 score =
Precision x Recall
Precision + Recall

(4)

2.4.2. Feature Importance

In classification tasks, feature selection is commonly used to reduce the dimensionality
of the data set [26,66] and to inform on the relative influence of each variable in the model.
To narrow down the possible combinations of variables to produce the best classifier, a
feature importance analysis was conducted based on the PF data set, for both the SW
and CK regions. For this purpose, all the variables (VIs, spectral bands, weather data,
geolocation of the fields, and day of the year of field collections) were utilized.

3. Results
3.1. Best Combination of Variables

The analysis of the feature importance from the SW region data set revealed that NIR
band (B4) and EVI, as well as the minimum and maximum temperatures (Tmin and Tmax),
VPD, and DOY, were associated with the highest scores. When all the variables were
combined, we found that the best f1-scores were 0.94 for the SW region and 0.93 for the
CK region. Additionally, and to investigate other model possibilities, several combinations
were attempted (only spectral data; only weather parameters; EVI and weather; B4 and
weather, etc.). The lowest f1-scores were derived when the model was only driven by
weather variables, with 0.79 for SW and 0.76 for CK regions.

3.2. Model Performance Using PF Data in Both Regions

The model including NIR, EVI, Tmin, Tmax, VPD, and DOY was utilized to classify
regions, yielding f1 values of 0.94 for the SW and 0.93 for the CK regions (Figure 3a,b). The
classification results for each crop phenological stage are presented as a confusion matrix,
where all the components that were correctly identified are along the main diagonal, as
well as the resulting precision and recall along the X and Y axes. When examining the SW
area in detail, most of stages produced values between 1.0 and 0.75 (recall) and 1.0 to 0.80
(precision), whereas certain stages, such as R1, R3, and V15, showed poor metrics ranging
from 0 to 0.66. Similarly, the findings for the CK region showed that most stages had recall
values ranging from 1.0 to 0.87, but some (R2, V10, V11, V12, and V13) exhibited recall
values below 0.67. When the precision is considered, all stages ranged from 0.76 to 1.0.

3.3. Model Performance Using Sentinel-2 Data

When the same model was applied to S-2 data, the findings were inferior to those
previously discussed in this paper. The first data set included just three crop phenological
stages, due to the season timeframe captured by the images. The classification resulted in
an overall high f1-score (0.86), but inconsistent metrics for each stage, for example, for VT
stage both recall and precision were zero (Figure 4a). As a second step, the performance of
the extended data set, including data from 3 days before and after the time of field data
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collection, was tested. In this experiment, the overall f1-score was reduced to 0.74 but more
phenological stages were part of the data set. Lastly, the test was repeated by expanding
the search from 3 to 10 days before and after the field data collection time. This resulted
in an f1-score of 0.58 with several crop phenology stages still not classified (null metrics).
When the S-2 data set was employed, the overall performance was consistently inferior to
when the PF product was utilized (Figure 4).
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4. Discussion

This study demonstrates the benefits of having access to high-cadence earth observa-
tion at both spatio-temporal dimensions. This analysis employs a simple model trained
on spectral characteristics, meteorological variables, and high-quality ground truth labels
to achieve optimal crop phenology classification, using maize crop in this US region as
testbed for this case study. The findings presented in this study are in accordance with
those observed when tracking crop phenology [1,13,66–68], most notably the importance
of enhanced temporal resolution [9,10,69].

This combination of variables resulted in overall classification metrics higher than 0.90,
with each phenological stage identified accurately as described in sections above. Despite
the disparities in the characterization of both regions under analysis (SW and CK) in terms
of climate, field size, and average yield, the model performance was similar for both areas
using the same combination of variables. Previous studies have highlighted the importance
of VIs when monitoring changes in crop phenology, and particularly EVI has been found to
outperform a broad variety of VIs in maize fields [61,70–72]. In addition, promising results
were achieved by [73] relying on the NIR band. On the other hand, inclusion of relevant
weather variables is crucial to describing changes in crop phenology and development, as
demonstrated in modeling scenarios [74,75], with air temperature among the most relevant
variables [76]. In addition, VPD has been strongly associated with water stress and the
consequent impact on crop development [77,78].

This study also highlights the relevancy of high-cadence satellite data for classifying
crop phenology more accurately. Due to cloud cover only a few S-2 images were available
during the 2017 growing season. This significantly reduced the likelihood of finding an
image acquired on the same day as the field data collection, which affected the ability to
classify the crop phenology stages. In order to emphasize the importance of temporal reso-
lution for this purpose, a sensitivity analysis using PF data only was conducted evaluating
the performance implications of excluding data from within 1, 2, and 3 days of the date of
the field data collection, respectively. The ability of the classifier to achieve high prediction
metrics was substantially reduced by 12% with the 2-day, and by roughly more than 40%,
with the 3-day departure, especially during crop developmental phases around the time
of flowering (e.g., V12, V13, and V19). These results emphasize the importance of having
access to low-latency spectral data, particularly during periods of rapid crop growth.

Potential caveats and uncertainties from the analysis are related to problems asso-
ciated with multiclass classification and imbalanced data sets. Most of the methods to
treat imbalanced data sets rely on binary problems [79] and solutions are not extensively
proven. Having access to daily spectral data as well as increasing the number of ground
truth samples represent key factors in the attempt to build more reliable predictions. In
this study, this was partially overcome using the daily PF product that resulted in very
robust and consistent classification results. More efforts are being conducted towards the
development and availability of fusion products, such as the Harmonized Landsat-Sentinel
(HLS); although, it was not implemented on this analysis since, at the time, it was suggested
to not be yet used for scientific purposes [80].

Further research should focus on verifying the existing model on smaller scales (e.g.,
smallholder farms) to determine its transferability to more complex farming systems
and management approaches, as well as its contribution to precision agriculture initia-
tives [81,82]. Additionally, since this study focused only on maize, a crop with well-defined
stages, further research incorporating soybeans, sorghum, and sunflower, among others,
should be explored. Extending the research period to include seasonal weather scenarios
representative of current and future climatic conditions (e.g., heat, drought, and changes in
rain patterns) in the context of climate change is another critical avenue to pursue, as is
examining the influence of hyperspectral data from DECIS, HISUI, PRISMA, and future
CHIME, and SBG missions [83].
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5. Conclusions

A proposed random forest model combining satellite-based (NIR band surface re-
flectance, and EVI), weather data (maximum and minimum temperatures, and VPD), and
day of the year enabled a high-quality crop phenology classification for maize crops under
two contrasting production regions. The study highlights the critical importance of having
access to high-cadence earth observation, as well as high-quality ground truth data. Classifi-
cation accuracy was shown to decrease significantly when comparing performance metrics
from a scenario with limited temporal availability (S-2 clear-sky images) with a daily data
scenario (Planet Fusion product), particularly when the same image was used to make
inferences about the future or the past. In summary, this study successfully portrayed the
spatial transferability of this satellite- and weather-based crop phenology model applied to
contrasting maize producing regions while preserving performance. Therefore, this simple
crop phenology model can become a promising tool that still needs to be globally tested.

Most of the existing crop phenology solutions rely on broad metrics as well as large
geographic regions. While these are important tools for policymakers and governments
to use when making global or regional decisions, there is still room for development in
terms of farmer solutions. Additionally, these measurements do not reflect the crop’s
real status but rather the vegetation’s spectral information. This discrepancy between
what is reported and what occurs in the field might result in misconceptions and incorrect
conclusions. Improving crop phenology classification and reporting has a substantial
influence on every step of the food production chain, enabling accurate, proactive, rather
than reactive, strategies at the regional and field level.
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