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Abstract: Analysis of the spectral response of vegetation using optical sensors for non-destructive
remote monitoring represents a key element for crop monitoring. Considering the wide presence
on the market of unmanned aerial vehicle (UAVs) based commercial solutions, the need emerges
for clear information on the performance of these products to guide the end-user in their choice
and utilization for precision agriculture applications. This work aims to compare two UAV based
commercial products, represented by DJI P4M and SENOP HSC-2 for the acquisition of multispectral
and hyperspectral images, respectively, in vineyards. The accuracy of both cameras was evaluated on
6 different targets commonly found in vineyards, represented by bare soil, bare-stony soil, stony soil,
soil with dry grass, partially grass covered soil and canopy. Given the importance of the radiometric
calibration, four methods for multispectral images correction were evaluated, taking in account the
irradiance sensor equipped on the camera (M1–M2) and the use of an empirical line model (ELM)
based on reference reflectance panels (M3–M4). In addition, different DJI P4M exposure setups
were evaluated. The performance of the cameras was evaluated by means of the calculation of
three widely used vegetation indices (VIs), as percentage error (PE) with respect to ground truth
spectroradiometer measurements. The results highlighted the importance of reference panels for
the radiometric calibration of multispectral images (M1–M2 average PE = 21.8–100.0%; M3–M4
average PE = 11.9–29.5%). Generally, the hyperspectral camera provided the best accuracy with a PE
ranging between 1.0% and 13.6%. Both cameras showed higher performance on the pure canopy pixel
target, compared to mixed targets. However, this issue can be easily solved by applying widespread
segmentation techniques for the row extraction. This work provides insights to assist end-users in the
UAV spectral monitoring to obtain reliable information for the analysis of spatio-temporal variability
within vineyards.

Keywords: vegetation indices; precision agriculture; remote sensing; spectral signature; imaging
sensor; radiometric calibration

1. Introduction

The spectral canopy response to solar radiation analysed through calculation of a
wide range of vegetation indices (VIs) is the basis of remote sensing applications in agri-
culture. Both structural aspects, biochemical composition, physiological processes and
foliar symptoms influence the ways in which vegetation reflects light in different regions
of the electromagnetic spectrum [1–3]. Spectral analysis therefore provides important
information on the vegetative state and needs of crops, however optimal acquisition of
the spectral data must consider the peculiarities of each crop, since there are structure
and characteristics that influence the spectral response. Among different kinds of crops,
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discontinuous woody crops such as grapevine present high heterogeneity in light reflecting
behaviour due to row-based architecture, complex vertical trellis systems [4–7], in addition
to the vegetation including different soil conditions (bare, tilled and stony), interrow grass
cover and shadows and frequently in sloping conditions. In these cases, it is therefore es-
sential to recognize and separate the canopy from other elements. Considering the various
remote sensing platforms available, the best solution to optimally address these needs is
the use of unmanned aerial vehicles (UAVs), which in the last decade had an exponential
spread for a wide range of scientific researches and applications in viticulture [7–11]. Those
platforms allow an accurate in-field variability characterization, providing vine features
characterization at high temporal frequency and spatial resolution [12–15].

Since 2010, there has been a continuous technological advance in the integration
of drones with cost-effective sensing technologies, such as digital cameras able to ac-
quire images in the visible, near infrared (nir) and thermal spectral region, and accurate
Global Satellite Positioning (GPS) and Global Navigation Satellite System (GNSS) tech-
nologies [2,16]. At the same time, there has been an increasing availability on the market
of commercial products at low prices, ready and easy to use for users with very limited
technological know-how [9,17,18]. These factors have aided the widespread adoption of
UAVs in agriculture [19]. Among the different types of sensors, the consolidated and
wide use of VIs for crop vegetative monitoring, has raised attention on the development of
several commercial solutions of UAV based multispectral imaging systems. High resolution
RGB and CIR (modified RGB cameras able to acquire green, red and nir bands) cameras can
also be used to capture spectral data if they are spectrally and radiometrically characterized,
but as reported by Aasen et al. [17], the main limitations are low overlap between spectral
bands which generally do not comply with the bands originally used in standard Vis, low
radiometric resolution and stability.

The first available solutions that became a standard for agriculture applications were
the multispectral cameras developed by Tetracam company (Tetracam Inc., Chatsworth,
CA, USA). In particular, the ADC (Agriculture Digital Camera) family of imaging systems,
such as the wide diffused ADC Lite model released at the beginning of 2009 [20], based
on a single high-resolution image sensor divided into a mosaic of filters, each one allows
either red, green or nir radiation to pass through. At the end of 2009, Tetracam unveiled
the Mini MCA model [21], which is a miniaturization of a previous MCA model [22], with
4, 6 or 12 synchronized cameras, each one equipped with a customer-specified narrow-band
filter, requiring a multilayer image reconstruction processing step. This first generation
of cameras used a rolling shutter sensor, where not all parts of the image are recorded
at the same time, leading to distortions due to camera movement in flight [17]. To over-
come that issue, a second generation of UAV cameras used a global shutter technology,
which allows all the sensor’s pixels to start and stop exposing simultaneously (snapshot),
providing non-distorted images also for high-speed moving objects. New cameras with
snapshot sensors appeared on the market, such as the Tetracam Snap (single camera) or
the Tetracam Macaw (multi cameras). Meanwhile, other global shutter imaging solutions
were developed from different companies, such as the Parrot Sequoia (Parrot Drone SAS,
Paris, France), Micasense RedEdge (MicaSense Inc., Seattle, WA, USA) and recently the DJI
P4M (SZ DJI Technology Co., Ltd., Shenzhen, China). Those systems consist of cameras
able to capture reflected light with 10–40 nm bandwidth in the visible, red edge and nir
spectral channels, then co-registered to create a composite image with several spectral
bands [23]. The multispectral cameras are considered consolidated tools for the calculation
of the main vegetative indices, however the reduced number of spectral bands acquired
(generally five bands: blue, green, red, red edge and nir), and the discrete bandwidth
(average 10–40 nm), do not allow high detail analyses, by means investigating the spectral
response of the canopy in further specific wavelength indices. A new solution to overcome
these limitations is the development of specific hyperspectral cameras to be mounted on
UAV platforms [2,3,24–26]. These sensors provide a spectral signature per pixel of each
image creating a three-dimensional data cube or hypercube. In detail, a frame hypercube
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is composed by a sequence of images each corresponding to individual bands acquired
by the camera. The hyperspectral cameras can be classified according to the methodology
by which these sensors build the hypercube. A pushbroom sensor, such as the Headwall
micro-Hyperspec VNIR (Headwall Photonics Inc., Bolton, MA, USA), records images line
by line in motion, while snapshot sensors, such as the Senop HSC-2 (Senop Oy, Kangasala,
Finland) record single images for each band selected sequentially in time. Considering this
functionality aspect, it can be assessed that a snapshot hyperspectral camera is conceptually
more similar to the previously described commercial global shutter multispectral camera,
where each optic per channel acquires all pixels of the image simultaneously. Simplifying,
the main difference compared to those cameras, is that a hyperspectral snapshot camera
generates a multilayer cube from bands acquired sequentially over time, while in a global
shutter multispectral camera such as DJI P4M, the multilayer image is generated by bands
acquired simultaneously from five separate optics. As reported by Aasen et al. [17], mul-
tispectral and hyperspectral sensors based on different lens or tuneable filters produce
non-aligned spectral band images. This issue is critical in case of low altitude and high-
speed flight, and high number of acquired bands. Considering the last generation models
of multispectral cameras typically 4 or 5 lenses, the software implements very accurate
bands co-registration algorithms, which allows to generate good quality multilayer images
and orthomosaic. This aspect is more critical and still challenging with hyperspectral snap-
shot technologies where, for a huge number of spectral bands acquisition, a spatial shift
between each single band image is present. To overcome this issue, Honkavaara et al. [27]
suggested a co-registration methodology, based on the orientations of few selected bands
using photogrammetric approach, then used as references bands to perform the matching
of the other non-aligned bands.

There are numerous types of software on the market, such as Pix4D (Pix4D S.A.,
Prilly, Switzerland), DJI Terra (SZ DJI Technology Co., Ltd., Shenzhen, China) or Agisoft
Metashape (AgiSoft LLC, St. Petersburg, Russia), to automate the image post-processing
capable of recognizing the characteristics of the multispectral camera used and making
the necessary geometric corrections (lens distortion and de-vignetting). As next step, the
GPS metadata are used for unsupervised geo-positioning and photogrammetric recon-
struction [28,29], and finally these software generate the accurate orthomosaic and digital
surface model (DSM) of the monitored field. However, the most critical phase in the
processing flow is the radiometric correction, which is fundamental to guarantee correct
and comparable spectral data, normalized with respect to the different environmental light
conditions [30,31]. The radiometric calibration process allows the conversion of image
raw digital numbers (DN) to reflectance data related to canopy spectral response, which
is necessary to compute a wide range of VIs [1,32]. The most common approach to solve
this issue is the empirical line method (ELM) based on the acquisition during the flight
of at least one reference panel with known reflectance and Lambertian properties, which
means that surface reflectance is not affected by the illumination angle [29,33]. Following
this method, the relationship between reference panel DN extracted from the UAV image
and the known reflectance value of that panel are used to convert the DNs of all image
pixels into reflectance values [14,34,35].

On the other hand, some consumer-grade multispectral cameras could improve the
quality of spectral data by means the use of an irradiance sensor mounted on the top of
the UAV platform, capable of measuring the global incident irradiance in synchrony with
vegetation radiance captured by the camera. Higher accuracy can be obtained using other
cameras (such as Tetracam Mini MCA, MicaSense RedEdgeM or DJI P4M) equipped with
a band by band incident light sensor, which allows to measure irradiance for each band
acquired from the camera. This condition allows another radiometric calibration approach,
defined by Cao et al. [36] as measured incident radiation (MIR), using data collected by the
camera irradiance sensor during flights for image reflectance assessing. The authors report
that many types of image processing software are able to perform automatic correction
using the irradiance metadata of each image.
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Different sensors may use different conversion methods, but the process has a strong
impact on the reflectance value, which in turn would have an impact on the VIs calculation.
Without the need for an empirical calibration, many camera manufacturers have their
radiometric calibration methods. As reported by Fraser and Congalton [37], it is difficult
to thoroughly investigate those commercial solutions due to the “black box” processing
imposed at several steps in either software package. The DJI Phantom 4 Multispectral (P4M),
unlike many others, provides users with DN numbers, which can then be transformed into
reflectance to measure the VIs [38], using the software DJI Terra or applying an empirical
line method performed by the user. This aspect opened a research perspective, allowing
the performances of the commercial DJI software in providing an accurate radiometric
correction of the DN of the RAW images to be investigated. Considering the wide use
of VIs in precision agriculture, this study aims to evaluate and compare remote sensed
imagery provided by two well diffused commercial cameras with snapshot approach but
different spectral detection power, represented by P4M multispectral and SENOP HSC-2
hyperspectral sensors. As underlined by several authors [39–41], to correctly perform that
comparison, a portable field spectroradiometer was used for evaluating the accuracy and
performance of remote sensing data.

For all kinds of user in both the research and operating sector, knowledge of the pro
and cons of commercial sensors could be crucial in the choice of the correct sensor for a
specific requirement, and correctly invest money in hardware that is still expensive for
agriculture applications, especially a hyperspectral camera. However, there are few reports
that simultaneously compare the performance of different UAV-based cameras, in crop
monitoring under the same light condition.

von Bueren et al. [42] compared four optical UAV-based sensors with ground spectral
measurements to evaluate their suitability for agricultural applications, finding higher
performance with a non-imaging spectroradiometer (R2 = 0.98) and Tetracam Mini-MCA6
(R2 = 0.92), while lower with a Canon PowerShot SD780 RGN (red-green-nir) camera
(R2 = 0.65) and SONY Nex5n RGB camera (R2 = 0.63).

Bareth et al. [43] compared two hyperspectral cameras, the Cubert UHD185 (Cubert
GmbH, Ulm, Germany) and the Rikola (Rikola Ltd., Oulu, Finland), and showed that
both sensors matched very well with ground-based field spectrometer measurements.
Nebiker et al. [44] investigated the performance of two multispectral cameras mounted on
the light-weight fixed-wing eBee platform (SenseFly, Cheseaux-sur-Lausanne, Switzerland)
using a portable spectroradiometer HandySpec Field (tec5, Oberursel, Germany). The
comparison was performed using the low-cost single-lens camera Canon S110 NIR (Canon
U.S.A. Inc., Melville, NY, USA) with modified Bayer colour filters (green, red and nir)
and the high-end four-optics camera with band-pass interference filters (green, red, red
edge and nir) multiSPEC 4C (SenseFly, Cheseaux-sur-Lausanne, Switzerland). The results
showed that measurements with the high-end camera correlate very well with ground-
based field spectrometer measurements, with an average difference of 0.01–0.04 NDVI
values. As regards the low-cost camera, despite being able to provide a noticeably superior
spatial resolution (12MP vs. 1.2MP), it reveals a significant bias of −0.26 NDVI values,
primarily caused by the overlapping spectral channels.

A comparison between two models of multispectral cameras, the narrowband Mini-
MCA6 and broadband Parrot Sequoia, was conducted by Deng et al. [35]. The authors
acquired remote sensed data simultaneously with six standard diffuse reflectance panels
(4.5%, 20%, 30%, 40%, 60% and 65%), and collected ground vegetative chlorophyll mea-
surements. The results showed that the reflectance of the Mini-MCA6 camera had higher
accuracy in the nir band but required an accurate radiometric nonlinear calibration method,
while the reflectance accuracy of the Sequoia was higher in the red edge band.

Lu et al. [38] analysed the performance of the Parrot Sequoia and DJI P4M sensors using
different combinations of correlation coefficients and accuracy assessments. The results
showed that Sequoia and P4M are highly correlated with ASD portable spectroradiometer
(R2 > 0.90) and provide good accuracy (Sequoia RMSE < 0.07; P4M RMSE < 0.09).
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As reported by Crucil et al. [45], an aspect to consider is that the performances of a
multispectral camera can vary if used in the estimation of specific parameters related to the
state of crops or soil. In fact, the authors demonstrated how different resolution provided
by Parrot Sequoia and Tetracam Mini-MCA6 in some regions of the spectrum, can be more
functional to identify and model qualitative aspects of the observed target, represented
by soil organic content (SOC). In detail, authors reported that narrow bands used in the
Sequoia camera, centred at 660 and 790 nm, cover a spectral range more correlated to SOC
(RMSE = 2.7, R2 = 0.94) than the narrow bands available on a Mini-MCA6 in the same
regions (RMSE = 3.3, R2 = 0.93), however both of them reached a similar performance to
ASD spectra resampled on the cameras’ windows (RMSE = 2.6, R2 = 0.94).

Given the wide use of UAV both by researchers and consultant service companies
there is the need for further performance assessment. Moreover, VIs are often taken into
consideration, while little attention is paid to the evaluation of the entire spectral signatures.
There is also a lack of studies which consider not only the canopy, but also other targets that
may be present in the field, such as bare or stony soil, grass cover and mixed conditions,
which are integral elements of a spectral analysis in field monitoring activities. This work
aims to investigate all these aspects.

In detail, the purpose of this study is to analyse the accuracy of multispectral and
hyperspectral high-resolution images acquired in flight by a UAV platform equipped with
different commercial cameras, the DJI P4M and SENOP HSC-2. To achieve this objective,
firstly the accuracy of the SENOP HSC-2 hyperspectral camera was assessed using a GER
3700 (Spectra Vista Corporation, Poughkeepsie, NY, USA) reference spectroradiometer
taking into account 8 reflectance reference panels and 5 different targets that can commonly
be found in vineyards and acquired during field monitoring activities. To perform that
analysis, both scatter plots (sensors vs. reference panels) and visual comparison (sensors
vs. reference panels and sensors vs. field common targets) of each spectral signature were
considered. Secondly, the performance of hyperspectral and multispectral camera was
evaluated by means of the calculation of VIs, versus the ground truth values provided by
the spectroradiometer. The vegetation indices used in this study were selected with the
aim of testing each channel available on both spectral cameras, so considering the wide use
in remote sensing of nir based normalized indices. 3 vegetation indices (GNDVI, NDVI,
NDRE) were evaluated. In general, we want to provide insights to assist end users (drone
users, policy makers, researchers) in identifying appropriate calibration solutions to obtain
reliable information from different UAV sensors for the analysis of spatial and temporal
variability within vineyards.

2. Materials and Methods
2.1. Study Area

The research was undertaken during the 2020 growing season in a 1.4 ha vineyard (355
m above sea level) planted in 2008, owned by Castello di Fonterutoli farm (Marchesi Mazzei
Spa) and located in Castellina in Chianti (Siena, Italy) (43◦25′45.30′′ N, 11◦17′17.92′′ E)
(Figure 1). Sangiovese cultivar (Vitis vinifera) vines were trained with spur-pruned single
cordon and vertical shoot-positioned trellis system. The vine spacing was 2.20 × 0.75 m
(inter-row and intra-row distance) and the rows were NW-SE oriented on a southern sloping
vineyard.

2.2. Hardware Description

The dataset used in this work to perform a spectral comparison between different
imaging sensors, was acquired by means a series of flight campaigns using two distinct
UAV platforms equipped with multispectral and hyperspectral cameras. Different targets
were previously identified and then acquired during each flight to have representative
spectra of the different conditions that may occur in the field, such as soil, grass cover and
canopy and their combination. In addition, 8 reference panels with known reflectance were
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used for radiometric correction of the sensors. Proximal measurements acquired with a
reference spectrometer were used to assess the accuracy of the remote spectral data.
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Multispectral image acquisition was performed using the camera mounted on the DJI
Phantom 4 Multispectral (P4M) (SZ DJI Technology Co., Ltd., Shenzhen, China) (Figure 2c).
The P4M camera has six 1/2.9” CMOS sensors mounted, including one RGB sensor and
five monochrome sensors to measure spectral response in the blue, green, red, red edge
and nir bands. Each sensor provides global shutter 1600 × 1300 pixels image resolution
(2.08 MP effective pixels). The P4M camera is also equipped with an irradiance sensor, used
to normalize the DN of each band, providing an output identified by DJI as “reflectivity”,
which is not real reflectance data. The UAV platform has a take-off weight of 1487 g and
the average flight time is 27 min.

The imaging sensor used for the hyperspectral sensing is a SENOP HSC-2 camera
(Figure 2d), which acquires snapshot images of up to 1000 narrow bands in the 500–900 nm
spectral range. This camera provides true image pixels with a 1024 × 1024 resolution
without any interpolation. The Senop HSC-2 camera features a true global shutter snapshot
sensor based on Fabry-Pérot Interferometer (FPI) technology, which is made up of two
separate CMOS sensors (visible and nir) that use a beam splitting system and a beam
splitting part to redirect light rays. By grabbing successive frames, a set of different spectral
bands is created. In addition, the user can choose the spectral bands, range limits, and
spectral resolution of the hyperspectral cubes that the sensor will acquire. The main
limitation of this camera is a direct consequence of the management of the 2 separate
sensors in an acquisition step with high noise data near the gap of about 14 nm (636–650) at
the junction point of the 2 sensors. However, as reported by Tommaselli et al. [46], this
technical issue does not affect the rest of the spectrum.

For this reason, the graphs of the spectral signatures presented in the results section of
this paper show missing data in that area.
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Ground truth spectral validation was performed using the field portable spectrora-
diometer GER-3700 as reference, which acquires 704 bands in the 350–2500 nm in spectral
range (Figure 2e). This spectroradiometer measures single point data using a 1.5 m length
fibre optic with 25◦ FOV, and allows automatic dark current correction, auto integration
and selectable spectrum averaging. The GER-3700 needs to be connected to a Windows
laptop for real-time acquisition and display of spectra stored in ASCII format file.

The specifics of each sensor used in this research are reported in Table 1.

Table 1. Sensors technical specifications.

Manufacturer Sensor Spectral Range
(nm) No. Bands Spectral

Resolution (nm)
Spatial

Resolution
(px)

Acquisition
Mode Weight (kg) Optics FOV

Spectra Vista
Corporation GER 3700 350–2500 704

1.5 nm @ 700 nm
6.5 nm @ 1600 nm
9.5 nm @ 2100 nm

No-imaging Single point
data 6.3 kg 25.0◦

SENOP HSC-2 500–900 1000 6–18 nm 1024 × 1024 Snapshot 0.99 kg f/3.28 36.8◦

DJI P4M

450 nm ± 16 nm
560 nm ± 16 nm
650 nm ± 16 nm
730 nm ± 16 nm
840 nm ± 26 nm

1600 × 1300 Snapshot <0.1 kg f/2.20 62.7◦

2.3. Data Acquisition

The UAV flights were conducted in clear sky conditions from 11:30 to 12:30 on
15 September 2020, acquiring images of the study site, including 6 different ground targets
representing common surface types which can occur in a vineyard and 8 reference panels
for radiometric correction. Those targets and panels were also used as ground control
points (GCPs) for georeferencing process. During data collection, a total of 6 flights were
performed using the P4M mounted on the own DJI UAV platform (Figure 2a), and a Matrice
600 Pro UAV (SZ DJI Technology Co., Ltd., Shenzhen, China) carrying the SENOP HSC-2
(Figure 2b). Multispectral image acquisition was performed at 50 m above the ground,
yielding a ground resolution of 0.03 m/pixel and 70% of overlap in both directions. A series
of 6 surveys with identical flight planning were made with P4M camera to evaluate the
configuration parameters impact versus light condition, setting different combinations of
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exposure time (ET) and exposure value (EV) 1/10,000_0, 1/8000_0, 1/8000_-0.7, 1/8000_1,
AUTO_0, AUTO_-1. Regarding the hyperspectral sensing, the flight altitude was set at
32 m above the ground, providing a ground resolution of 0.02 m/pixel, while the flight
speed and flight line distance were set to obtain the same overlap as the multispectral flight
(70% of overlap in both directions). HSC-2 was configured with 200 spectral bands with a
Full Width at Half Maximum (FWHM) of 10 nm. The integration time was 1 ms to avoid
saturation effect, especially with white reference panels. During the UAV flight, a GER
3700 spectroradiometer was used to perform synchronous ground measurements of the
spectral signature of vine canopy, ground targets and reference panels to ensure a correct
remote data validation.

2.4. Target Characterization and Reference Reflectance Panels

The performance of the imaging sensors examined in this study on precision agri-
culture sensing activities was evaluated using a series of different targets identified on
the ground and marked with wooden frames built ad hoc by the authors to extract them
correctly from the remote images. The choice of the type and therefore positioning of the
targets was made to meet the need to analyse the spectral response of the most common
surfaces that may occur in vineyards (without grass cover practices in the interrow zones),
and which can therefore be included in the images acquired in flight by a drone during
crop monitoring. Figure 3a reports in detail the position on the ground of 6 targets chosen
in an area close to the study site. Specifically, the targets that were chosen concern 5 typical
soil conditions, represented by bare soil (Figure 3c), bare-stony soil (Figure 3d), stony soil
(Figure 3e), soil with dry grass (Figure 3f) and partially grass covered soil (Figure 3g), and
the vine canopy (Figure 3h).
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Figure 3. The ground targets position in the area close to the study vineyard (a). In detail the figure
reports the reference reflectance panels used for radiometric correction (b), and targets related to bare
soil (c), bare-stony soil (d), stony soil (e), soil with dry grass (f), partially grass covered soil (g) and
canopy (h).

The radiometric correction process was performed through a vicarious calibration
based on the absolute radiance method using eight homogeneous and Lambertian surfaces
panels placed on the ground close to the take-off location (Figure 3b). Reference panels
characteristics are detailed in Table 2.
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Table 2. Reflectance reference panels used in this research.

Manufacturer Link Target Dimension (cm) Reflectance

OptoPolymer https://www.optopolymer.de
(accessed on 1 January 2022)

White 100 × 50 97%
Grey 100 × 50 56%
Black 100 × 50 10%

Senop https://senop.fi
(accessed on 1 January 2022)

White 50 × 50 88%
Grey light 50 × 50 50%

Grey 50 × 50 25%
Grey dark 50 × 50 9%

Black 50 × 50 2%

2.5. Image Pre-Processing

The conceptual image processing workflow proposed is summarized in Figure 4.
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The first pre-processing step performed in this research was the radiometric correction.
This step allows the conversion of each pixel value, defined as Digital Number (DN),
into radiance, which is the amount of radiation coming from a surface affected by solar
radiation.

Since the relationship between DN and radiance is always linear [47], a gain and
offset derived from factory calibration must be applied to the pixel values to transform
an uncalibrated image into radiance. Radiance is then converted to reflectance to allow
spectral comparison between different sensors, as it reflects the proportion of the radiation
striking a surface to the radiation reflecting from it. In fact, reflectance is a property of
a surface that is expected to remain constant when determined by different radiometers
under identical geometric conditions.

Concerning the radiometric correction process, the multispectral camera under con-
sideration presents a complex situation. The orthomosaics generated by DJI Terra software
are not in reflectance, but in a specific format defined by the DJI company as “reflectivity”,
represented by DN normalized with the information provided by the irradiance sensor
placed on the top of the UAV. In the comparison between multispectral and hyperspectral
sensors vs. the ground truth represented by the reference spectroradiometer, this peculiarity
provided by P4M has been deepened. In that direction, the VIs used as comparison dataset
were calculated with input bands both as reflectivity and reflectance.

https://www.optopolymer.de
https://senop.fi
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The P4M multispectral camera dataset acquired with different exposure times and
values, was pre-processed with four different radiometric approaches, two of which not
calibrated in DN (M1 and M2) and the other two calibrated in reflectance (M3 and M4). In
detail the four methodologies are:

• M1, spectral comparison performed with DN values from the orthomosaic generated
using DJI Terra software v. 1.0 without any calibration step;

• M2, spectral comparison performed with DN values from the orthomosaic generated
using DJI Terra software v. 2.0 without any calibration step;

• M3, spectral comparison performed with reflectance values, obtained pre-processing
the DN values from the orthomosaic generated using DJI Terra software v. 1.0, apply-
ing an empirical line method on each band (blue, green, red, red edge and nir) based
on the eight reference reflectance panels;

• M4, spectral comparison performed with reflectance values, obtained pre-processing
the DN values of each image by means of the new radiometric calibration tool added
to the DJI Terra software v. 2.0, which allows calibration parameters to be extracted
uploading images with reference panels.

In regard to hyperspectral images pre-processing, four consecutive elaboration steps
were taken: (a) geometrical distortion correction using the Lens Tool in Agisoft Metashape
software; (b) dark current removal with Matlab (MathWorks, Natick, MA, USA), which
allows noise signals to be removed from each image; (c) radiometric correction of the
images of each single band applying an empirical line method using the eight reflectance
reference panels.

After these pre-processing steps, Agisoft Metashape was used for single bands mo-
saicking. Then, the 200 orthomosaics obtained were aligned by means of a supervised
procedure of georeferencing using GCPs performed in QGIS software (QGIS—http://www.
qgis.org/, accessed on 1 January 2022).

Data extraction for each target and panels was performed from the multispectral and
hyperspectral orthomosaics by means of average values contained in a ROI (Region Of
Interest) defined by a 0.4 m × 0.4 m polygon centred in each object. The polygon size was
chosen as effective solution to better distinguish each object from the adjacent ones and
remove boundary effects. The correct extraction of pure canopy pixel reflectance values
was ensured by a filtering process made on the orthomosaic using the Canopy Height
Model (CHM) as described by Di Gennaro and Matese [5], which allows soil, shadows and
grass cover to be removed.

2.6. Hyperspectral Comparison

The first analysis conducted in this study was the evaluation of the accuracy of the
spectral data provided by the images of the Senop HSC-2 camera acquired in flight at an
altitude of 32 m. The spectral signatures of the reference panels and of the targets identified
in the vineyard extracted with the ROIs from the hyperspectral mosaic were compared with
the data acquired on the ground with the reference spectroradiometer. Spectral data in both
radiance and reflectance were compared for each identified ROI. Then the performance
of Senop HSC-2 camera was assessed in terms of coefficient of determination (R2) and
root-mean-square error (RMSE), using as dataset the average radiance values for 10 nm
interval in the 500–900 nm spectral range, to compare data acquired with GER 3700 which
provided different spectral resolution.

2.7. Multispectral Comparison

Considering that the output of the multispectral camera are few discrete spectral
values per pixel, the comparison between different sensors taken into account in this
study, focused only on 4 spectral bands (green, red, red edge and nir). The blue band
(468–496 nm) was not taken into consideration since it is out of the spectral range of the
hyperspectral camera (500–900). The spectral bands for the hyperspectral data (Senop

http://www.qgis.org/
http://www.qgis.org/


Remote Sens. 2022, 14, 449 11 of 21

HSC-2 and GER 3700) were defined as the average of the spectral values measured within
the spectral ranges of each band provided by the DJI P4M camera.

Considering the higher robustness of VIs respect to the use reflectance of individual
bands in UAV based sensor comparison analyses, as reported by Olsson et al. [48], the
comparison was evaluated by means of the calculation of 3 VIs, based on the normalized
difference between the nir band and the other 3 bands provided by the multispectral camera
(green, red and red edge), using both the reflectivity (M1 and M2) and reflectance (M3 and
M4) values per pixel (Table 3). These VIs have shown good results for different purposes
such as to estimate biophysical crop parameters and in vegetation detection [1,38,49]. The
accuracy in VIs calculation using the dataset obtained from hyperspectral and multispectral
camera with 6 different exposure settings acquisition was then evaluated by means of the
percentage error (PE) (Equation (1)) with respect to the true value measured with the GER
3700 reference spectroradiometer.

percentage error =
|measurement− true value|

true value
× 100 (1)

Table 3. Computed VIs found in the literature and their respective equations. G, R, RE and N are the
reflectance (GER, SENOP HSC-2 and DJI P4M) and reflectivity (DJI P4M) pixel values of the green,
red, red edge and near infrared bands, respectively.

Name Equation Ref.

Green Normalized Difference Vegetation Index GNDVI = N−G
N+G [50]

Normalized Difference Vegetation Index NDVI = N−R
N+R [49]

Red edge Normalized Difference Vegetation Index NDRE = N−RE
N+RE [51]

3. Results
3.1. Hyperspectral Comparison

The first result presented in this paper aims at a comparison of the spectral signatures
acquired in flight by the UAV equipped with the hyperspectral camera SENOP HSC-2 and
the validation data acquired on the ground with the reference spectroradiometer GER 3700.
Figure 5a,b show the spectral signatures in radiance extracted from the 3 OptoPolymer
(black lines) and 5 Senop (red lines) reference panels measured respectively with the
spectroradiometer and the hyperspectral camera.

Through a visual evaluation of the spectral signatures of the 8 panels presented in
Figure 5 it can be observed that both the spectroradiometer (Figure 5a) and hyperspectral
camera (Figure 5b) show the same trends, with a slight overestimation by the hyperspectral
camera in the visible region (500–700 nm). The evaluation of the hyperspectral camera
performance was then deepened by aggregating the spectral data of the GER 3700 and
the SENOP HSC-2 by 10 nm clusters. The data acquired on the 3 OptoPolymer panels
(Figure 5c) and on the 5 Senop panels (Figure 5d) were separately analysed, and both
provided an excellent coefficient of determination (R2 = 0.99), also good results in terms
of absolute values with an RMSE of 12,905.34 and 10,082.95 × 10−10 W/cm2/nm/sr for
the OptoPolymer and Senop panels, respectively. Evaluation of the spectral data acquired
in flight by the SENOP HSC-2 showed that it can provide data in line with the ground
truth measurements obtained using the GER 3700. Regarding the absolute values in a full
reflectance range provided by the 8 panels (0.02–0.97%), a slight overestimation is observed
in the visible region with radiance values higher than 150,000 × 10−10 W/cm2/nm/sr.
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Figure 5. Spectral characterization of OptoPolymer (black lines) and Senop (red lines) reference
panels using GER 3700 (a) and SENOP HSC-2 (b). Scatter plots related to spectral comparison
between GER 3700 and SENOP HSC-2 using OptoPolymer (c) and Senop (d) reference panels legend:
0.97% reflectance (black solid line), 0.56% reflectance (black long-dashed line), 0.10% reflectance
(black dotted line), 0.88% reflectance (red solid line), 0.50% reflectance (red long-dashed line), 0.25%
reflectance (red dashed line), 0.09% reflectance (red dotted line), 0.02% reflectance (red dotted-
dashed line).

Once the accuracy of the hyperspectral camera equipped on the UAV moving at
32 m flight quote had been assessed, the spectral signatures of the main targets that can
commonly be found in a field were analysed in detail.

Figures 6 and 7 show graphs in which the spectral signatures extracted from the
hyperspectral mosaic are compared with the signatures acquired on the ground with a
spectroradiometer both in radiance and in reflectance. Specifically, Figure 6 examines
non-vegetated soil targets, i.e., bare soil (Figure 6a,b), mixed bare-stony soil (Figure 6c,d)
and stony soil (Figure 6e,f); while Figure 7 presents the spectral signatures extracted
from vegetated targets, represented by soil with dry grass (Figure 7a,b), soil with grass
(Figure 7c,d) and canopy (Figure 7e,f).

Firstly, the visual analysis of the spectral signatures extracted from the different
targets confirms the ability of the SENOP HSC-2 hyperspectral camera to provide the
same spectral trend provided by the GER 3700, in line with what was previously observed
by the comparison made on the reference panels. Taking into consideration the absolute
values of radiance, a slight overestimation is observed in the visible region (500–700 nm
approximately) on all the targets acquired on the ground (Figure 6). As for the signatures
containing vegetation (Figure 7), the absolute values are much more in line with the data
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provided by the GER 3700, and on the canopy Figure 7e shows spectral signatures with
highly overlapping values. Taking into consideration high values of radiance greater than
60,000× 10−10 W/cm2/nm/sr in the nir region (wavelengths > 800nm), an underestimation
was observed mainly on the vegetated targets, which is consequently also found in the
reflectance values.
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3.2. Multispectral Comparison

Table 4 shows the results of the evaluation of the accuracy of the hyperspectral SENOP
HSC-2 and multispectral DJI P4M cameras through calculation of the vegetation indices
commonly used in precision agriculture, based on the normalized difference between the
nir band and the green (GNDVI), red (NDVI) and red edge (NDRE) bands. The results
focus on the impact of different radiometric calibration approaches considered in the study
both without (M1, M2) and with ELM based on reference panels (M3, M4), to assess the
impact of this processing step on DJI P4M remote sensing. The results are reported in
percentage error (PE) (%) with respect to the reference spectroradiometer of the spectral
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signatures extracted from the vegetated targets taken into consideration, specifically soil
with dry grass, soil with green grass and canopy.

The HSC-2 camera showed optimal results with minimal error on GNDVI (PE = 2.7%)
on low signal values (soil with dry grass), while slightly lower accuracy with NDVI
and NDRE, PE = 13.6% and PE = 9.3% respectively (Table 4). The intermediate target
provided low PE in the GNDVI (13.0%) and NDVI (9.2%), but highest accuracy in the
NDRE (PE = 2.2%). Excellent results were found monitoring the pure canopy pixel target
both for GNDVI and NDVI (PE = 1.0% and PE = 1.6% respectively), while still low errors
with the NDRE (PE = 6.5%). Observing the overall performance of the HSC-2 camera,
the results show errors on average equal to 6.7% distributed following a trend linked to
vegetation cover and spectrum wavelength. In detail, discrete errors (PE = 9.2–13.6%) are
highlighted in the absence (Figure 3f) or low presence (Figure 3g) of active vegetation cover,
while on canopy target with full vegetation cover the HSC-2 provided results in line with
GER 3700.
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Table 4. Results of the comparison between 3 vegetation indices (GNDVI, NDVI, NDRE) calculated
for canopy, soil with grass and soil with dry grass targets using SENOP HSC-2 hyperspectral and
DJI P4M multispectral cameras with 6 different exposure settings and 4 radiometric calibration
approaches versus the VIs obtained using the GER 3700 reference spectroradiometer. The table
reports the results as percentage error (PE) (%).

GNDVI NDVI NDRE

Target Dataset M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

Soil with dry grass
(Figure 3f)

SENOP HSC-2 2.7% 13.6% 9.3%
DJI P4M 10000_0 100.0% 100.0% 10.2% 35.4% 100.0% 100.0% 19.3% 18.9% 100.0% 100.0% 33.3% 65.4%
DJI P4M 8000_0 100.0% 100.0% 6.5% 28.9% 100.0% 100.0% 14.3% 43.4% 100.0% 100.0% 20.5% 57.5%

DJI P4M 8000_-0.7 100.0% 100.0% 8.1% 10.2% 100.0% 100.0% 4.3% 13.7% 100.0% 100.0% 0.0% 2.0%
DJI P4M 8000_-1 100.0% 100.0% 6.5% 11.3% 100.0% 100.0% 10.4% 9.3% 100.0% 100.0% 29.6% 7.6%

DJI P4M AUTO_0 100.0% 100.0% 11.6% 8.3% 100.0% 100.0% 52.0% 10.1% 100.0% 100.0% 2.6% 6.1%
DJI P4M AUTO_-1 100.0% 100.0% 22.6% 29.5% 100.0% 100.0% 11.7% 31.2% 100.0% 100.0% 2.6% 18.5%

Soil with grass
(Figure 3g)

SENOP HSC-2 13.0% 9.2% 2.2%
DJI P4M 10000_0 100.0% 100.0% 27.6% 24.3% 82.8% 86.4% 36.9% 35.6% 27.0% 10.5% 31.2% 14.5%
DJI P4M 8000_0 100.0% 100.0% 21.8% 40.7% 79.0% 77.1% 32.7% 45.7% 27.8% 27.2% 14.1% 1.7%

DJI P4M 8000_-0.7 100.0% 100.0% 27.3% 26.9% 85.6% 87.3% 37.1% 35.3% 21.6% 21.6% 26.5% 27.9%
DJI P4M 8000_-1 100.0% 100.0% 27.7% 26.2% 85.6% 83.3% 39.1% 35.0% 13.7% 19.6% 38.1% 30.6%

DJI P4M AUTO_0 100.0% 100.0% 23.1% 33.0% 72.7% 73.6% 46.6% 37.3% 26.8% 25.2% 24.6% 25.5%
DJI P4M AUTO_-1 100.0% 100.0% 21.3% 20.9% 73.1% 76.9% 32.7% 30.4% 32.5% 20.7% 26.4% 36.5%

Canopy (Figure 3h)

SENOP HSC-2 1.0% 1.6% 6.5%
DJI P4M 10000_0 37.4% 37.0% 7.0% 7.0% 19.9% 19.0% 9.9% 9.8% 9.7% 9.3% 17.0% 1.8%
DJI P4M 8000_0 42.2% 43.1% 2.6% 18.7% 24.0% 24.4% 1.9% 17.7% 6.8% 0.1% 11.3% 13.6%

DJI P4M 8000_-0.7 38.3% 39.4% 8.9% 10.4% 19.8% 20.6% 10.4% 10.9% 5.6% 1.4% 13.4% 21.9%
DJI P4M 8000_-1 35.7% 35.7% 5.8% 8.0% 17.5% 17.8% 7.0% 9.2% 9.8% 11.1% 12.1% 11.8%

DJI P4M AUTO_0 35.6% 35.6% 6.5% 12.2% 18.4% 16.9% 17.1% 10.4% 7.4% 6.2% 14.0% 17.4%
DJI P4M AUTO_-1 37.2% 43.0% 9.2% 13.6% 18.1% 21.9% 9.9% 12.7% 5.2% 12.4% 19.4% 39.2%

4. Discussion

The first result provided in this work compares spectral signatures collected in flight
with a SENOP HSC-2 hyperspectral camera and on the ground using the GER 3700 reference
spectroradiometer. ByFrom a visual analysis of the spectral signatures extracted both from
the reference reflectance panels and the main targets that can commonly be found in a
field showed comparable trends. The absolute values in full reflectance range (0.02–0.97%)
(Figure 5c,d), showed a slight overestimation for the SENOP HSC-2 camera in the visible
region with elevate radiance (over 150,000 × 10−10 W/cm2/nm/sr). However, if we
evaluate the use of the camera for crop monitoring, this factor is of minimal influence given
that the vegetation radiance of the visible region is much lower. Moreover, the spectral
signatures collected from the 2 types of reference panels (Figure 5c,d) provide aligned
results, thus adding further robustness to this spectral comparison.

Regarding the ground targets, the full vegetated target (Figure 7e,d) presented spectral
signature more in line with data provided by the GER 3700, with highly overlapping
values in the visible region (500–700 nm). The underestimation observed in the nir region
(>800 nm) is also perceptible in the signatures acquired on the reference panels in Figure 5b,
it could therefore be due to a different sensitivity of the SENOP HSC-2 camera in the final
part of the spectral operating range. Regarding this issue, other authors [47,52,53] report
some discrepancy between ground truth measurements performed with spectroradiometer
and remote data acquired in flight, which could suggest that higher distance between target
and sensor could affect data quality. Moreover, Stow et al. [52] found a higher impact in
the red edge and nir bands respect to green and red. Our slight differences in few spectral
signatures behaviour (Figures 6 and 7), can be justified by the fact of being measured
with completely different sensors, probably with different sensitivity along the monitored
spectrum (500–900 nm), based on opposite acquisition approach (proximal vs. remote,
static vs. dynamic), potentially amplified by field condition respect to controlled laboratory
studies. A key factor is the monitored surface, in fact while the UAV data was extracted
with a square polygon covering the full target surface, the monitored surface within the
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circular FOV of optical fibre of the spectroradiometer is different and not easily verifiable
in field conditions. In this case, slight variations in angle with respect to the axis of the fibre
can lead to alterations of the monitored surface. This becomes particularly important in the
case of mixed targets with a higher heterogeneity.

About the comparison in terms of accuracy (PE) of the hyperspectral SENOP HSC-2
and multispectral DJI P4M cameras by means the calculation of some Vis (Table 4), the
hyperspectral camera generally provided mainly good results in the calculation of the VIs
with respect to the ground truth data provided by the GER 3700. Nevertheless, there are
some cases with a PE up to about 13.0%, probably due to poor quality signal or presence of
noise in some of the regions considered. These behaviours can be explained by examining
the spectral signatures of the targets shown in Figure 7. In detail, high noise can be
observed in the red and red edge region considered in the study for soil with dry grass
target (Figure 7a,b), while in the partially vegetated target (Figure 3g) higher noise can be
observed in the green and red bands used. The most plausible explanation could be due to
overlap error between the surface monitored with the circular FOV of the GER 3700 fibre
and the ROI sampled within the hyperspectral images. Even a minimal overlap error leads
to a strong impact in the case of heterogeneous target conditions such as the targets in the
absence or partial presence of active vegetation (Figure 3f,g), with bare soil, stones, dry and
green grass.

Regarding the P4M camera, all the indices calculated using M1 and M2 generally
provided lower performance, up to 100% error in all VIs for all P4M camera setups with
soil with dry grass target, and in the soil with grass target using the green based VI. This
behaviour highlights the presence of a background noise which is not corrected by the sun
sensor (M1 and M2) without a correction based on reference panels (M3 and M4). Therefore,
at lower signal values (soil with dry grass), that noise is more effective resulting in high
error on data quality. The results show that this noise decreases progressively with the
growth of the incoming signal, a consequence of the increase of the vegetated surface in the
target (soil with grass). Considering the results of the 3 VIs examined on this intermediate
target, it can be observed that this noise is greater in the first part of the spectrum (green)
and decreases at higher wavelengths. In fact, lower errors are observed in the red, with
excellent results in the red edge channel. This trend in error distribution along the spectrum,
is also found on the pure canopy target. High errors were observed on average equal to
38% on the GNDVI index, the NDVI gave lower errors (about 20%), while those methods
provided the most accurate values of the overall dataset with the NDRE index. Overall, the
two reflectivity-based methods without any calibration step provided similar performance
when used as input for the calculation of Vis. This confirms that the Terra DJI software v.
2.0 is not providing any improvement to the DN values extracted using the software v. 1.0.

Improved accuracy was generally provided by the VIs calculated using the two
reflectance-based methods obtained applying an ELM on each band based on the reference
panels to the DN values from DJI Terra software v. 1.0 (M3) and through the calibration
tool available in DJI Terra software v. 2.0 (M4). Both methods gave lower PE on the canopy
target and higher on the soil with grass, while the VIs calculated on soil with dry grass
showed intermediate values. All VIs calculated using M3 and M4 dataset provided low PE,
on average less than 20%, however considering only the canopy target, the NDRE index
showed a slightly lower accuracy.

In general, as expected the VIs calculated using the reflectivity values as inputs (M1
and M2) are much less accurate than the indices calculated with reflectance values (M3 and
M4). A single exception was identified on the canopy, where the NDRE index calculated
with reflectivity data shows 5–10% error lower than using reflectance data. The reason why
the red edge values show this trend appears to be a consequence of the normalization effect
of the radiometric calibration, but it is unclear and requires further investigation.

The accuracy of the VIs calculated with P4M camera on pure canopy target is in line
with findings of Mamaghani et al. [53], where a deep evaluation of the factory radiometric
calibration of a Micasense RedEdge camera was assessed. Considering the MicaSense
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provided method to convert digital counts to radiance images, the red edge band showed
the highest error in radiance respect to red band, while the lowest error was identified on
the green band. Those errors were propagated in reflectance, and the Micasense RedEdge
camera provided on vegetated target lower accuracy with the NDRE respect to NDVI.
Overall, [53] demonstrated the importance of the radiometric calibration step and showed
how any error can affect spectral accuracy in both the radiance and reflectance domain.

Olsson et al. [48] highlight another factor that could affect spectral data quality, rep-
resented by the irradiance sensor. They asses that since the sensor does not have a cosine
corrector, the data are influenced by sensor orientation and motions of the UAV, which
causes noise especially with multirotor respect to fixed wing platforms.

Recent works [48,52,54] report that the accuracy of normalized VIs is higher than
the accuracy of reflectance of the single bands, due to a more robustness against variable
light conditions. Those behaviour was identified also by Franzini et al. [55] with Parrot
Sequoia camera, finding significant differences among single reflectance maps and VI maps.
In detail, computing RMSE to evaluate differences between images in overlapping areas,
authors reported highest values for the nir (0.06 < RMSE < 0.12), intermediate values for
the red edge (0.02 < RMSE < 0.05), and lowest values for the green (0.04 < RMSE < 0.06)
and red (0.01 < RMSE < 0.03). A similar behaviour was then evident for the VIs, where
the differences calculated on NDVI reveals the lowest RMSE values (0.02 < RMSE < 0.04),
while higher values for GNDVI (0.03 < RMSE < 0.07) and NDRE (0.04 < RMSE < 0.09).

Considering the results provided by the 4 methods, we can confirm the importance
to use a set of reference panels that encompass most of the reflectance ranges: in this
way the quality of the data is ensured thanks to a correction for the entire spectrum of
the signal detectable during a UAV monitoring, from low (soil with dry grass) to high
signals (pure canopy). Our findings are in line with other works, such as the results
presented by Poncet et al. [29] on the performance evaluation of five radiometric calibration
methods using a Parrot Sequoia camera. The results showed that combination of the
irradiance sensor self-calibration with an ELM further improved data accuracy achieved
in all multispectral bands than just using the irradiance sensor. Opposite results were
identified by Cao et al. [36] evaluating different radiometric correction methods using the
hyperspectral camera Mjolnir-1240 (Hyspex Neo, Oslo, Norway), where the correction
based on the irradiance sensor provided higher accuracy in average spectral absolute error
(ASAE = ±2.5%), with respect to ELM (ASAE = ±7.0%). Those results could lead to the
consideration that different irradiance sensors could provide different results in terms of
spectral data correction to different light conditions.

No marked difference was identified between the performance of the VIs calculated by
applying different exposure settings of the multispectral camera, especially on the target of
greatest interest represented by the canopy. A lower accuracy in the characterization of the
soil spectral response could be acceptable, given that one of the main strengths of the use of
UAVs is the extremely high resolution which enable the application of filtering techniques
to perform pure canopy pixel analysis [5,12,14,15,56,57]. The results therefore show that
different exposure settings provide comparable results to those obtained with auto exposure
time setup (AUTO_0), in which, thanks to the sun sensor, the multispectral camera can
normalize the spectral data according to the light variations that may occur during the flight
activities. This demonstrates the high efficiency of the system, which makes it possible to
greatly simplify flight planning and sensor setup, by setting in automatic exposure mode
and thus limiting over- or under-exposure issues.

By evaluating the potential of the hyperspectral camera compared to the multispectral
one, using broadband indices such as the widely used indices examined (GNDVI, NDVI,
NDRE), a higher performance was obtained by the former. However, the true potential of
the hyperspectral camera is not exploited using these indices, especially on pure canopy
pixels target. In fact, it becomes possible to obtain good results even with a multispectral
camera applying common filtering techniques on the vineyard orthomosaic for rows ex-
traction. Regarding the mere application of traditional broadband VIs in viticulture, our
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findings cannot justify the purchase of a hyperspectral camera (40,000.00$) over a multi-
spectral one (lower than 11,000.00$) such as DJI P4M, which represents a good compromise
in terms of accuracy and cost. At the same time, the main limit of widely diffused multi-
spectral cameras is the exclusion of use of narrowband indices identified in the literature [3],
or the exploration of new ones, since this research area is still poorly explored given the
recent advances in UAV based hyperspectral imaging solutions at more affordable prices
for researchers. Moreover, the spectral characterization of specific plant traits such as
water stress conditions, pigments concentration, identification of leaf alterations linked to
deficiencies of micro or macro elements or to disease symptoms and qualitative analysis of
the fruits, can only be processed with a hyperspectral technology.

5. Conclusions

This paper proposes a comparison study in field conditions of two different UAV
based spectral imaging sensors by examining the main targets that can be commonly found
in vineyard monitoring. Specifically, the accuracy of SENOP HSC-2 hyperspectral and
DJI P4M multispectral cameras is compared using traditional broadband VIs respect to
ground truth measurements performed using a GER 3700 reference spectroradiometer, for
the characterization of homogeneous or mixed ground targets of soil, grass and canopy.
Considering the large community of UAV users frequently with low expertise in spectral
sensors and the critical issue represented by radiometric calibration, in this study we
wanted to analyse in detail different types of camera exposure settings and 4 methods of
radiometric calibration of the multispectral images.

A first step assessed the optimal performance of the SENOP HSC-2 in spectral charac-
terization of homogeneous Lambertian reference panels used in this study with respect to
GER 3700. Next, the accuracy was described of the hyperspectral camera in the spectral
signature analysis of the main targets commonly present in vineyards. Moving to camera
comparison, a thorough analysis was presented of spectral performance of both cameras
on main targets. In general, the VIs calculated on more homogeneous targets, such as soil
with dry grass and canopy conditions, are the most accurate, while those extracted from
the target with highest heterogeneity in terms of spatial ratio between soil and green grass
show worst accuracy. Probably, an incomplete overlapping of the ground area acquired by
the circular FOV of the GER 3700, compared to the polygon extraction done on the UAV
images, could explain why lowest accuracy is found on the more heterogeneous target
represented by soil with grass in which bare soil, stones and green grass are present at the
same time.

Considering the multispectral camera, results demonstrated the importance of radio-
metric calibration especially in mixed conditions (soil and vegetation), and highest accuracy
was obtained using both sun sensor equipped on the P4M and an ELM based on a set of
reference panels acquired at time of flight. No marked difference was identified between
the performance of different P4M exposure settings, especially with respect to manual or
auto setup. These results confirm a high efficiency of the DJI system, which allows good
accuracy also in auto-mode exposure, making the use of P4M also possible by users with
little optical knowledge.

In conclusion, the choice of the best camera depends on the objective of each monitor-
ing activity and on the VIs to be calculated. Applying filtering techniques multispectral
cameras are an excellent solution for vineyard monitoring, however radiometric correction
is fundamental. Furthermore, it emerged that the P4M camera also performed well with
the auto setup compared to the wide possibility of manually setting exposure parameters.
This confirms an excellent technological level achieved by DJI with this product, making
this type of multispectral solution extremely user-friendly and ready-to-use even for users
with limited expertise.
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