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Abstract: Ship detection based on synthetic aperture radar (SAR) images has made a breakthrough
in recent years. However, small ships, which may be regarded as speckle noise, pose enormous
challenges to the accurate detection of SAR images. In order to enhance the detection performance of
small ships in SAR images, a novel detection method named a spatial information integration network
(SII-Net) is proposed in this paper. First, a channel-location attention mechanism (CLAM) module
which extracts position information along with two spatial directions is proposed to enhance the
detection ability of the backbone network. Second, a high-level features enhancement module (HLEM)
is customized to reduce the loss of small target location information in high-level features via using
multiple pooling layers. Third, in the feature fusion stage, a refined branch is presented to distinguish
the location information between the target and the surrounding region by highlighting the feature
representation of the target. The public datasets LS-SSDD-v1.0, SSDD and SAR-Ship-Dataset are
used to conduct ship detection tests. Extensive experiments show that the SII-Net outperforms
state-of-the-art small target detectors and achieves the highest detection accuracy, especially when
the target size is less than 30 pixels by 30 pixels.

Keywords: synthetic aperture radar (SAR); ship detection; small target; spatial features; spatial
information integration network (SII-Net)

1. Introduction

Synthetic aperture radar (SAR), with the characteristics of all-day and all-weather
work, has broad application prospects in both the military and civilian fields. Among the
SAR applications, ship detection plays an important role in maritime management and
monitoring. However, compared with optical images, the process of SAR images is more
difficult due to their lower resolution. Therefore, the accurate location of SAR ships with
relatively small pixels remains a significant challenge.

In the early detection of SAR images, Leng et al. [1] proposed the constant false alarm
rate (CFAR) algorithm, which could adaptively determine the detection threshold. In
addition, Liu et al. [2] proposed a method to separate the sea and land to opt for the
detection area automatically. Nevertheless, these traditional methods have cumbersome
calculation processes and poor migration capabilities. In recent years, a series of SAR ship
detection methods based on deep learning (DL) [3–6] have achieved good performance.
DL-based methods of object detection are mainly divided into two patterns, i.e., one-stage
detector and two-stage detector. To ensure the real-time effect of recognition, some one-
stage [7–12] methods are chosen to detect SAR ships. However, studies [13] have shown
that one-stage methods are more likely to produce more localization errors in small target
detection.
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For the two-stage methods [14–16], although they can obtain high detection accuracy
in the offshore area, they are prone to plenty of missing detections and false alarms in the
inshore area. Therefore, some scholars choose the attention mechanism as the starting point
for research, aiming to reinforce the feature extraction ability of the backbone network.
For example, the squeeze-and-excitation (SE) [17] mechanism utilized by Lin et al. [18]
was adopted to improve the feature extraction capability of the network. However, the SE
module only considered the correlation between channels and ignored the importance of
location information. The ARPN [19] network combined a convolutional block attention
module (CBAM) [20] proposed by Zhao et al. to suppress the adverse effects of the
surrounding environment. However, CBAM modules could only capture local correlations
and could not build long-range dependence of the feature. In addition, Fu et al. [21]
proposed the feature balancing and refinement network (FBR-Net), which used an attention-
guided balanced pyramid to effectively improve the detection performance of small ships
in complex scenes. However, the FBR-Net was designed to semantically balance multiple
features at different levels, without considering location information. The inconsistency
across different levels makes the networks pay more attention to the objects with sufficient
obvious semantic features, it also causes the detection problem of small targets. Aiming
to solve this problem, many scholars use multiscale feature extraction methods [22–24] to
address this imbalance issue. For instance, the Lite Faster R-CNN proposed by Li et al. [25]
was adopted to extract feature information by a parallel multi-scale convolution operation.
A lightweight SAR ship detector proposed by Zhang et al. [26] was applied to share the
features of different detection scales through up-sampling and down-sampling methods. A
multi-domain fusion network proposed by Li et al. [27] was used to attain excellent results
in multi-scale target detection under complex backgrounds. A dense connection module
presented by Deng et al. [28] was adopted to obtain the feature information of each layer
in the network and to predict multiscale ship proposals from several intermediate layers.
These improved methods based on feature imbalance effectively improve the detection
accuracy of small ship targets in SAR images. However, on the one hand, these methods
did not notice the location information loss of high-level small targets. Therefore, the
small object has little information for location refinement when it is mapped to the final
feature map. On the other hand, these methods did not focus on reducing the similarity
between the target and the surrounding background. However, some local areas of the ship
targets in the SAR image have a similar scattering mechanism to the surrounding areas,
and lots of false alarms may be generated in the inshore area. Some scholars [29,30] choose
multi-modal detection methods to improve the detection accuracy of ships in SAR images.
Although the multi-modal methods can improve the stability of the prediction results, the
design of these methods is too complicated, and there is not much improvement in small
target detection. This still causes a huge obstacle to the precise positioning of the small ship
target.

To tackle the above-mentioned phenomenon, a small ship detection method based on a
spatial information integration network (SII-Net) is proposed in this paper. At present, the
improvement of small target detection based on SAR images is mostly from two directions,
the use of attention mechanism in the backbone network or enhancement in the feature
fusion stage. The SII-Net is also designed from these two perspectives while noting the
high-level feature loss during feature extraction. SII-Net includes three key components: the
channel-location attention mechanism (CLAM), high-level features enhancement module
(HLEM), and a refined branch. Taking into account the fusion of location and channel
information, the CLAM module is designed to extract feature information from two spatial
directions. At the same time, we put forward the HLEM module to remedy the location
information loss of small targets at a high level. Additionally, we design a feature refinement
path to enhance the difference between the target and the background, aiming to better
reduce the interference of background noise. The detection results illustrate the superiority
of SII-Net in comparison with other state-of-the-art CNN-based methods on the small
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target dataset LS-SSDD-v1.0 [31] and other large public datasets (i.e., SSDD [32], SAR-Ship-
Dataset [33]). The main contributions of this paper are as follows:

(1) We propose a channel-location attention mechanism (CLAM) that embeds positional
information into channel information along with two spatial directions. By mod-
eling inter-channel similarity and spatial correlation, the CLAM yields impressive
performance in enhancing the feature extraction ability of the backbone.

(2) To address the location information loss of small targets at the high level, a well-
designed module called the high-level features enhancement module (HLEM) is
customized to upgrade the performance of the high feature layer of the backbone
network by multiscale pooling operation.

(3) Considering the fact that inshore ship targets are susceptible to interference from
surrounding objects, a new refined branch of feature is proposed to optimize the
features after fusing each feature layer. The refined branch can make the network
enhance the difference between target and background to effectively distinguish the
target from the background.

The rest of this paper is organized as follows. In Section 2, we describe the overall
architecture of SII-Net and its improvements in detail. In Section 3, the experiment results
are introduced. Ablation experiments are presented in Section 4. Finally, some conclusions
are drawn in Section 5.

2. Methods
2.1. The Motivation of the Proposed Method

Nowadays, ship detection in SAR images is prone to several problems due to noise
interference. As shown in Figure 1, ground truths are marked by green boxes, and detection
results are marked by red boxes. Figure 1a shows the problem of inaccurate localization,
the pink circles represent the ships with the inaccurate bounding box. Figure 1b shows the
problem of the missing ships which are represented by the yellow circles. Figure 1c shows
the problem of false detections which are represented by the purple circles. To solve these
problems, the current algorithms are usually improved in the backbone network or feature
fusion stage.

To highlight significant information, attention mechanism modules are usually in-
serted into the backbone network [34–36]. For example, the once-popular channel-based
attention module, SE, was applied to integrate the channel information by the global pool-
ing [37] method. However, the SE module only paid attention to the channel information,
ignoring the importance of the location information in detection. After that, the improved
CBAM module calculated the channel attention while calculating the spatial attention,
but the CBAM module used large-scale convolution kernels to extract spatial information
locally. The CBAM module did not provide a good improvement on the long-distance
dependence which is required for small ship detection.

In addition, although high-level features contain a great deal of semantic information,
the location information of small targets is easily lost at a high level due to the continuous
down-sampling operation.

In addition, a series of [7,38–40] improving networks based on FPN [41] were put
forward to strengthen the detection ability of ship targets, but these improvements usually
used fine-grained feature pyramids to consider multiscale features. These improved meth-
ods based on multiscale features can enhance the detection performance for offshore ships,
but for targets whose characteristics are not particularly obvious in complex backgrounds,
the effect of improvement is not particularly prominent.

Inspired by these algorithms, we propose the SII-Net which contains three innovative
modules, i.e., CALM, HLEM, and a refined branch. The SII-Net is mainly designed to
improve the detection ability of small targets. The detailed implementation of the entire
method is introduced in the next section.
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Figure 1. Some detection results of the general detector. (a) The problem of inaccurate localization;
(b) the problem of the missing ships; (c) the problem of false detections.

2.2. Overview of the Processing Scheme

As shown in Figure 2, the SII-Net consists of four parts, i.e., the preprocessing part, the
backbone network, the feature fusion module, and the detection head. Our innovative work
is reflected in three parts, the CLAM module, the HLEM module and a refined branch. To
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effectively use the location information of the target, we design a new attention mechanism,
CLAM, which can encode spatial information in horizontal and vertical directions. After the
extraction of spatial features, a carefully designed HLEM module is proposed to mitigate
the loss of high-level location information and improve the ability to detect small targets
by parallel multiscale pooling layers. To avoid the interference of inshore targets by the
scattering mechanism of surrounding objects, we propose a refined path branch to highlight
the target characteristics and enhance the difference between the target and the background.
The SII-Net has a good reference significance for other scholars who research small target
detection. Next, the flowchart of the SII-Net will be introduced in detail. At first, the input
SAR images are preprocessed by adding false samples and using the Scale Match [42]
method. By using preprocessing methods, the effect of the pre-train network and the
quality of feature extraction can be improved. After preprocessing, the SAR images are
input to the backbone network, and the CLAM module is applied to enhance feature
extraction capability for the backbone network by collecting location information from two
spatial directions. After this, the HLEM module is used to enhance high-level features of
the backbone network. The features are then input into PANet [43] for processing, and
the refined path is adopted to optimize the output of the PANet to distinguish the target
from the background. Later, the information collected by the above operations is sent to
the classification sub-network and the anchor regression sub-network for discrimination
and localization tasks respectively. Finally, the results of SII-Net are output through non-
maximum suppression (NMS) [44] operation.
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Figure 2. Overall framework of SII-Net.

2.3. Pre-Processing Method
2.3.1. Scale Match

The pre-training model of the current algorithm is usually obtained from the ImageNet
dataset [45] or COCO dataset [46], ignoring the scale difference between the pre-training
dataset and the training dataset. This situation leads to the effect of the pre-training model
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being extremely weak. Noting this shortcoming, we choose to use the scale match method.
Before training, the scale match method is performed on the pre-training dataset and the
training dataset by changing the image size of the pre-training dataset. The scale match
method is used to make the scales of all targets in the pre-training dataset align with the
scale distributions of all targets in the training dataset.

2.3.2. Add False Samples

Several pure background pictures may lead to false alarms during the detection in the
LS-SSDD-v1.0 dataset. To allow pure background pictures to participate in the training, we
adopt the strategy of adding a false sample with 1 pixel in each SAR image to enhance the
robustness of the network model.

2.4. Channel-Location Attention Mechanism (CLAM)

We use ResNet-50 as the backbone, as it mainly includes four residual modules. By
using the residual modules, the flow of information is increased. In addition, the gradient
vanishing problem and the degradation problem caused by networks that are too deep can
be effectively avoided. The attention mechanism module CLAM is designed to improve the
target location capability of the backbone network. The overall structure of CLAM is shown
in Figure 3. It can be seen from the figure that the CLAM module extracts features from the
X direction and the Y direction, respectively, and then summarizes features. Specifically,
in the first stage, the two spatial extents of pooled kernels (H, 1) and (1, W) are used to
integrate each channel information of the feature along the horizontal direction and the
vertical direction respectively, and the feature is then decomposed into two parallel one-
dimensional codes. Extracting features along two spatial directions can effectively extract
location information and enhance the expressional ability of location features. Since there
is a large amount of background information on the SAR ship images, an average pooling
operation is used to retain the background information. In addition, the adaptive maximum
pooling operation is also performed to highlight the main information of the target and
enhance the texture information of the feature. The two pooling methods can realize the
full use of the feature information. After the average pooling and maximum pooling is
operated in each direction, the feature maps turn into Pavg_h ∈ RC∗H∗1,Pmax_h ∈ RC∗H∗1,
Pavg_w ∈ RC∗1∗W and Pmax_w ∈ RC∗1∗W . Here C, H, and W, respectively, denotes the number
of input feature channels, the height of the input plane in pixels, and the width of the input
plane in pixels, Pavg_h denotes the result of the average pooling operation of features along
the vertical direction, Pmax_h denotes the result of the maximum pooling operation of the
features along the vertical direction, Pavg_w represents the result of averaging pooling of
features along the horizontal direction, and Pmax_w represents the result of the maximum
pooling operation of the features along the horizontal direction. The output features of two
directions can be expressed as:

Fx1 =
w
∑

i=1

1

1 + exp
{
−
{

b1 +
C−1
∑

s=0
A1

{[
Pavg_h(F(h, i))

]}
∗ F
}
−
{

b2 +
C−1
∑

s=0
A2
{[

Pmax−h(F(h, i))
]}
∗ F
}} (1)

Fy1 =
h
∑

j=1

1

1 + exp
{
−
{

b3 +
C−1
∑

s=0
A3
{[

Pavg_w(F(j, w))
]}
∗ F
}
−
{

b2 +
C−1
∑

s=0
A2
{[

Pmax−h(F(h, i))
]}∗F}} (2)

where A1, A2, A3, and A4 represent the weight of the current step, b1, b2, b3, and b4 represent
the bias of the current step and represent the output feature maps in the horizontal and
vertical directions respectively, and F denotes the input feature map. Based on this method,
accurate position information can be used to effectively capture spatial structures.

After the pooling operations, a convolution layer combination module is used to
encode local spatial information. In the second stage, to make better use of representations
with global receptive fields and accurate location information generated in the first stage, the
processed feature maps of the two directions are cascaded to perform the global integration
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of features. Later, a convolution layer with kernel size 1 × 1 is used to transform and
generate intermediate feature maps. The horizontal tensor and the vertical tensor are then
segmented along the spatial dimension, respectively. The convolution operation is then
used again, so that the number of output channels in the two directions is resumed the same
as the input F. Finally, the two coefficients are multiplied with the previous input F. Now,
the channel information processing and spatial information embedding are completed.
Moreover, the CLAM module has a strong robustness and generalization ability, and it is
easy to plug CLAM into any location of the network for feature enhancement. The final
output of the CLAM module can be expressed as:

Fx2 =
1

1 + exp
(
−Conv_h

[
w
∑

i=1
Conv

(
Concat

(
Fx1, Fy1

))]) (3)

Fy2 =
1

1 + exp

(
−Conv_w

[
h
∑

j=1
Conv

(
Concat

(
Fx1, Fy1

))]) (4)

Foutput = F ∗ Fx2 ∗ Fy2 (5)

where Fx2 and Fy2 denote the final calculation results in the x-direction and y-direction
respectively.
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2.5. High-Level Features Enhancement Module (HLEM)

Inspired by the SPP-Net [47], we designed the HLEM module to improve the ability
to detect small targets by compensating for the loss of location information at a high-level
feature map of the backbone. The SPP-Net is used to realize the extraction of multi-scale
features. Based on the scale features of small targets, smaller pooling kernels are adopted
by the HLEM module to capture the location information of small targets more accurately.

In the HLEM module, the method of lateral splicing features in SII-Net is not selected,
instead, the features processed by multiple pooling layers are spliced with the original
features along with the channel level, making up for the missing position features more
fully. Its specific operation process is shown in Figure 4. Firstly, a convolution layer with
kernel size 3 × 3 is used for down-sampling. Secondly, the processed feature maps are
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sent to pooling layers of different scales for pooling operations, the multiscale pooling
layers can not only help our network extract location information but also extract different
fine-grained features. To avoid destroying global features, the HLEM module then directly
splices the parallel multi-level pooling layer and uses a 3 × 3 convolution to integrate the
channel dimension. Lastly, the HLEM module is fused with the highest-level output feature
of the backbone network. The characteristics output of HLEM can be represented as:

y1 =

[
Conv

(
∑

i=3.5.9.7
Pmax_i

((
Conv

(
finput

)))+)]+ (6)

where Pmax_i denotes the result of the maximum pooling operation, i denotes kernel size of
the pooling, and ‘+’ represents the activation function.
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2.6. A Refined Branch

At present, the network mainly relies on the feature pyramid to improve the recogni-
tion ability of small targets. SAR ships show different characteristics at different levels of the
pyramid. The PANet is improved based on the FPN, which adds a bottom-up pyramid after
the FPN to deliver effective positioning information for the underlying features. However,
for the SAR images, if PANet is used alone in the detection process, the small targets are
still easily submerged by surrounding noise. To further refine the characteristics output of
the PANet and effectively enhance the ability of the network to distinguish targets from the
background, we design a new refined branch. The specific operation of the refine branch is
shown in Figure 5. Its main process of feature refinement is as follows. The PANet network
has five layers of output, i.e., C1, C2, C3, C4 and C5. At first, any feature layer of the output
is selected (the middle layer C3 is recommended), and the maximum pooling operation is
used for up-sampling of the low-level features (C1 and C2) which are under the selected
layer, and the interpolation method is used for processing the high-level features (C4 and
C5) which are above the selected layer. In this way, the scale of each feature layer can be
converted to the same scale as our selected feature layer. Next, the processed features are
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accumulated to achieve feature fusion, and the fused feature has rich location information
and detailed information. The fused feature can be represented as:

f i =

{
Pmax( finput_i) i < r
Inear( finput_i) i ≥ r

(7)

Ff used =

5
∑

i=1
fi

C
(8)

where finput_i denotes the input feature, i represents the number of the current feature layer,
r represents the number of the feature layer that we appoint, Inear denotes the interpolation
operation in the near mode, and Pmax represents the maximum pooling operation. C
denotes the total number of feature layers. The non-local [48] method, which can realize
the weighting of all position features when calculating the feature response of a certain
position, is then used to further refine the fused feature. After this, the adaptive maximum
pooling operation is employed to enhance the texture information of the targets. In the end,
features processed by pooling are merged with the PANet to highlight target features and
reduce ambient background noise infection. After the refinement of the features, as shown
in Figure 6, the network will make the features of the target more visible, focusing on the
target area and greatly reducing the focus on the background. The final output is expressed
as:

Foutput = FPANet + Pmax

(
N
(

Ff used

))
(9)

where FPANet denotes the output feature of the PANet, and N represents the non-local
operations.

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 20 
 

 

acteristics output of the PANet and effectively enhance the ability of the network to dis-
tinguish targets from the background, we design a new refined branch. The specific oper-
ation of the refine branch is shown in Figure 5. Its main process of feature refinement is as 
follows. The PANet network has five layers of output, i.e., 𝐶 , 𝐶 , 𝐶 , 𝐶  and 𝐶 . At first, 
any feature layer of the output is selected (the middle layer 𝐶  is recommended), and the 
maximum pooling operation is used for up-sampling of the low-level features (𝐶  and 𝐶 ) 
which are under the selected layer, and the interpolation method is used for processing 
the high-level features (𝐶  and 𝐶 ) which are above the selected layer. In this way, the 
scale of each feature layer can be converted to the same scale as our selected feature layer. 
Next, the processed features are accumulated to achieve feature fusion, and the fused fea-
ture has rich location information and detailed information. The fused feature can be rep-
resented as: 

_

_

( )
( )

max input i
i

near input i

P f i r
f

I f i r
<

=  ≥  

(7) 

5

1
i

i
fused

f
F

C
==


 
(8) 

where 𝑓 _  denotes the input feature, i represents the number of the current feature 
layer, r represents the number of the feature layer that we appoint, 𝐼  denotes the in-
terpolation operation in the near mode, and 𝑃  represents the maximum pooling oper-
ation. C denotes the total number of feature layers. The non-local [48] method, which can 
realize the weighting of all position features when calculating the feature response of a 
certain position, is then used to further refine the fused feature. After this, the adaptive 
maximum pooling operation is employed to enhance the texture information of the tar-
gets. In the end, features processed by pooling are merged with the PANet to highlight 
target features and reduce ambient background noise infection. After the refinement of 
the features, as shown in Figure 6, the network will make the features of the target more 
visible, focusing on the target area and greatly reducing the focus on the background. The 
final output is expressed as: 

( )( )PANet maxoutput fusedF F P N F= +  (9) 

where 𝐹  denotes the output feature of the PANet, and N represents the non-local 
operations. 

 
Figure 5. Architecture of the refined branch. 

PANetInput

Max Pool

Interpolate

Integrate

Refine

Max Pool

Figure 5. Architecture of the refined branch.

Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 6. Comparison of thermal diagrams before and after refinement. 

3. Experiments 
3.1. Introduction of the Datasets 
(1) LS-SSDD-v1.0: LS-SSDD-v1.0 is a large-scale background SAR ship detection dataset. 

There are 15 large-scale images with 24,000 × 16,000 pixels in LS-SSDD-v1.0 from Sen-
tinel-1 (the first 10 images are selected as a training set, and the remaining are selected 
as a test set). The 15 large-scale images are cut into 9000 sub-images with 800 × 800 
pixels by the publisher of the dataset. At the same time, it contains a wealth of pure 
background images. SAR ships in LS-SSDD-v1.0 are provided with various resolu-
tions around 5m, and VV and VH polarizations. According to the setting of the origi-
nal reports in [31], the training set has 6000 images, and the test set has 3000 images. 
We set the ratio of the training set and test set to 6:3. This is mainly used for small ship 
detection.  

(2) SSDD: SSDD is the first public SAR ship detection dataset proposed by Li et al. in 
2017. It consists of 1160 images of approximately 500 × 500 pixels, acquired by Radar-
Sat-2, TerraSAR-X, and Sentinel-1. The dataset contains 2540 ships, with resolutions 
ranging from 1 m to 15 m, and HH, HV, VV, and VH polarizations. We set the ratio 
of the training set and test set to 8:2, the last number of the picture name is 1 or 9 is set 
as the test set, and the rest is set as the training set. 

(3) SAR-Ship-Dataset: The SAR-Ship-Dataset is a SAR ship detection dataset published 
by Wang et al. in 2019. There are 43,819 images with 256 × 256 pixels from Sentinel-1 
and Gaofen-3. It contains 59,535 ships with a resolution of 3 m, 5 m, and 8 m, etc., and 
HH, HV, VV, and VH polarizations. In the same way as the original reports in [33], 
we randomly set the ratio of the training set, validation set, and the test set to 7:2:1. 
The proportion of targets in different scales is shown in Figure 7. It can be seen that 

the targets with a pixel value of less than 30 pixels by 30 pixels account for a large propor-
tion of the overall targets in LS-SSDD-v1.0. However, in SSDD and SAR-Ship-Dataset, 
small-size targets do not occupy the main part. 

 
Figure 7. Scale distribution of targets. 

0

0.1

0.2

0.3

0.4

0.5

0~100 100~400 400~900 900~1600 1600~2500 >2500

The proportion of targets in different scales

LS-SSDD-v1.0 SSDD SAR-Ship-Dataset

Figure 6. Comparison of thermal diagrams before and after refinement.



Remote Sens. 2022, 14, 442 10 of 20

3. Experiments
3.1. Introduction of the Datasets

(1) LS-SSDD-v1.0: LS-SSDD-v1.0 is a large-scale background SAR ship detection dataset.
There are 15 large-scale images with 24,000 × 16,000 pixels in LS-SSDD-v1.0 from
Sentinel-1 (the first 10 images are selected as a training set, and the remaining are
selected as a test set). The 15 large-scale images are cut into 9000 sub-images with
800 × 800 pixels by the publisher of the dataset. At the same time, it contains a wealth
of pure background images. SAR ships in LS-SSDD-v1.0 are provided with various
resolutions around 5 m, and VV and VH polarizations. According to the setting
of the original reports in [31], the training set has 6000 images, and the test set has
3000 images. We set the ratio of the training set and test set to 6:3. This is mainly used
for small ship detection.

(2) SSDD: SSDD is the first public SAR ship detection dataset proposed by Li et al. in 2017.
It consists of 1160 images of approximately 500 × 500 pixels, acquired by RadarSat-2,
TerraSAR-X, and Sentinel-1. The dataset contains 2540 ships, with resolutions ranging
from 1 m to 15 m, and HH, HV, VV, and VH polarizations. We set the ratio of the
training set and test set to 8:2, the last number of the picture name is 1 or 9 is set as
the test set, and the rest is set as the training set.

(3) SAR-Ship-Dataset: The SAR-Ship-Dataset is a SAR ship detection dataset published
by Wang et al. in 2019. There are 43,819 images with 256 × 256 pixels from Sentinel-1
and Gaofen-3. It contains 59,535 ships with a resolution of 3 m, 5 m, and 8 m, etc., and
HH, HV, VV, and VH polarizations. In the same way as the original reports in [33],
we randomly set the ratio of the training set, validation set, and the test set to 7:2:1.

The proportion of targets in different scales is shown in Figure 7. It can be seen that the
targets with a pixel value of less than 30 pixels by 30 pixels account for a large proportion of
the overall targets in LS-SSDD-v1.0. However, in SSDD and SAR-Ship-Dataset, small-size
targets do not occupy the main part.
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3.2. Evaluation Criterions

We adopted evaluation indices, including precision (p), recall (r), and mean average
precision (mAP), to evaluate the detection performance of different detection methods, i.e.,

p =
TP

TP + FP
(10)

r =
TP

TP + FN
(11)
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where TP represents the number of true positives, FP represents the number of false
positives, and FN denotes the number of positive negatives. Because the mAP considers
both precision and recall, it is used to measure the final detection accuracy:

mAP =
∫ 1

0
p(r)dr (12)

The p(r) denotes the precision-recall curve.

3.3. Implement Details

For the experimental platform, we used lntel®Xeon(R) Gold 5118, 2.3 GHz twelve-core
processor, 17.6 GiB memory, NVIDIA GeForce GTX 1080ti 12 g graphics card. The software
environment that we used was the ubuntu 16.04 64-bit operating system. The programming
language used was python 3.7. The GPU computing platform is PyTorch 1.2.0. CUDA
10.1 and cuDNN 7.6. SII-Net uses the stochastic gradient descent (SGD) optimizer with an
initial learning rate of 1 × 10−2, optimizer momentum of 0.9, and weight decay of 1 × 10−4.
Moreover, the learning rate is reduced by 10 times per epoch from 8-epoch to 11-epoch
to ensure an adequate loss reduction. Images in LS-SSDD-v1.0, SSDD, SAR-Ship-Dataset
are resized as the 1000 × 1000, 700 × 700, and 400 × 400 image sizes for training. SII-Net
and the other SAR ship detectors are implemented under the MMDetection [49] toolbox to
ensure fairness of the result. When performing our detection method in the test stage, we
set the score threshold as 0.5.

3.4. Results on Small Target Dataset LS-SSDD-v1.0

Since the SII-Net network is aimed at improving the detection effect of small-size
targets, we first conducted experiments on the small target dataset LS-SSDD-v1.0 to prove
the effectiveness of our algorithm. Table 1 shows the quantitative comparison with the
other 14 competitive SAR ship detectors on LS-SSDD-v1.0. Whether it is for algorithms
with the attention mechanism modules or the algorithm that uses LS-SSDD-v1.0 publicly,
SII-Net achieves the best 76.1% mAP on the entire scene. The second-best detector is SA
Faster R-CNN+PBHT, which is the best performing method among the public results at
this stage, but SA Faster R-CNN+PBHT is still lower than SII-Net by ~1.0% mAP.

Table 1. Evaluation indices comparison with the other methods on LS-SSDD-v1.0 of the entire scenes.

No. Method r p mAP

1 Faster R-CNN [50] 0.720 0.766 0.694
2 PANET [43] 0.719 0.746 0.693
3 Cascade R-CNN [51] 0.711 0.794 0.689
4 Double-Head R-CNN [52] 0.719 0.743 0.695
5 Grid R-CNN [53] 0.711 0.664 0.683
6 DCN [54] 0.717 0.762 0.691
7 Guided Anchoring [55] 0.638 0.801 0.598
8 Free-Anchor [56] 0.721 0.232 0.628
9 FCOS [57] 0.667 0.505 0.632

10 ATSS [58] 0.715 0.742 0.681
11 FoveaBox [59] 0.599 0.775 0.522
12 SA Faster R-CNN+PBHT [49] 0.778 0.748 0.751
13 SE Faster R-CNN+PBHT [49] 0.772 0.747 0.743
14 MTL-Det [60] - - 0.717
15 SII-Net 0.793 0.682 0.761

To further verify the superiority of our algorithm on small target detection, we used
the detector Double-Head R-CNN (achieved the best performance among all approaches
opened source codes) and the SII-Net network to evaluate the object in the LS-SSDD-v1.0
dataset at four scales. It defines the targets with a scale between (0,900) as small targets and
targets with a scale between (0,100) as extremely small targets. The evaluation results are
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shown in Tables 2 and 3. Compared with the Double-Head R-CNN, SII-Net has improved
the detection effect of targets the scale of which is in the range of (0,100), (100,400), and
(400,900) by 9.6% mAP, 11.9% mAP, and 2.4% mAP, respectively. It can be concluded that
the improvement effect of SII-Net on small target detection is more prominent, highlighting
the best detection performance of our detector on small target detection. This shows that
SII-Net is efficient in integrating spatial feature information and improving the detection
result of small targets.

Table 2. Evaluation results of targets in different scales in LS-SSDD-v1.0 using Double-Head R-CNN.

Size r p mAP

(0,100) 0.005 1 0.005
(100,400) 0.630 0.576 0.568
(400,900) 0.911 0.886 0.894

(900,1600) 0.980 0.944 0.976

Table 3. Evaluation results of targets in different scales in LS-SSDD-v1.0 using SII-Net.

Size r p mAP

(0,100) 0.120 0.764 0.101
(100,400) 0.766 0.513 0.687
(400,900) 0.933 0.875 0.918

(900,1600) 0.987 0.931 0.976

In addition, we also used the SII-Net algorithm to test the objects in inshore scenes
and offshore scenes on the LS-SSDD-v1.0 dataset. As shown in Tables 4 and 5, SII-Net all
achieves the best detection performance. The inshore detection environment is much more
complex than the offshore, and the improvement in inshore target detection confirms that
the SII-Net owns strong robustness in complex scenarios and can successfully suppress the
surrounding noise of the target.

Table 4. Evaluation indices comparison with the other methods on LS-SSDD-v1.0 of the inshore
scenes.

No. Method r p mAP

1 Faster R-CNN [50] 0.401 0.601 0.353
2 PANET [43] 0.393 0.566 0.342
3 Cascade R-CNN [51] 0.376 0.645 0.337
4 Double-Head R-CNN [52] 0.385 0.556 0.337
5 Grid R-CNN [53] 0.414 0.425 0.367
6 DCN [54] 0.393 0.601 0.346
7 Guided Anchoring [55] 0.353 0.649 0.308
8 Free-Anchor [56] 0.456 0.700 0.273
9 FCOS [57] 0.291 0.534 0.245

10 ATSS [58] 0.376 0.543 0.327
11 FoveaBox [59] 0.272 0.527 0.230
12 SA Faster R-CNN+PBHT [49] 0.526 0.579 0.466
13 SE Faster R-CNN+PBHT [49] 0.517 0.579 0.455
14 MTL-Det [60] - - 0.387
15 SII-Net 0.554 0.461 0.469
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Table 5. Evaluation indices comparison with the other methods on LS-SSDD-v1.0 of the offshore
scenes.

No. Method r p mAP

1 Faster R-CNN [50] 0.908 0.824 0.887
2 PANET [43] 0.911 0.812 0.890
3 Cascade R-CNN [51] 0.909 0.840 0.890
4 Double-Head R-CNN [52] 0.916 0.811 0.897
5 Grid R-CNN [53] 0.886 0.785 0.800
6 DCN [54] 0.909 0.818 0.886
7 Guided Anchoring [55] 0.807 0.852 0.768
8 Free-Anchor [56] 0.877 0.665 0.778
9 FCOS [57] 0.895 0.792 0.823

10 ATSS [58] 0.887 0.803 0.865
11 FoveaBox [59] 0.793 0.858 0.704
12 SA Faster R-CNN+PBHT [49] 0.927 0.829 0.908
13 SE Faster R-CNN+PBHT [49] 0.922 0.827 0.902
14 MTL-Det [60] - - 0.887
15 SII-Net 0.934 0.819 0.916

Figure 8 shows the qualitative results on LS-SSDD-v1.0. In Figure 8, SII-Net is com-
pared with Faster R-CNN, DCN, and Double-Head R-CNN in inshore scenes. Ground
truths are marked by green boxes and detection results are marked by red boxes. Compared
with other methods, the new correct detection results of SII-Net are marked by a blue circle.
Figure 8a,e,I,m,q represent the results of Faster R-CNN. Figure 8b,f,j,n,r represent the results
of DCN. Figure 8c,g,k,o,s represent the results of Double-Head R-CNN. Figure 8d,h,l,p,t
represent the results of SII-Net. There are many noise interferences in the figures, and it
is very difficult to accurately locate small targets. However, it can be seen that while the
SII-Net achieves the best detection results, no false alarms are generated significantly. This
is mainly because the refine path branch we designed can effectively highlight the target
features and reduce the similarity between the target and the background.

3.5. Results on Other Datasets

To verify the generalization of SII-Net on other mainstream SAR image ship datasets,
we also performed SII-Net on the other two datasets. On SSDD, as shown in Table 6,
our algorithm has achieved the best 95.5% mAP (on the entire scenes), and the second-
best one is 95.2% mAP from Quad-FPN. On SAR-Ship-Dataset, as shown in Table 7, our
algorithm achieved the third-best 93.2% mAP (on the entire scenes), and the best detector
is 94.3% mAP from Quad-FPN. For these two datasets, the superiority of the SII-Net is
not particularly outstanding. This is because the proportion of small targets in these two
datasets is not large (as shown in Figure 7). However, SII-Net is mainly aimed at small
targets. Especially for SAR-Ship-Dataset, due to it being relatively simple, the detection
results of each method at this stage are close. For the most studied dataset SSDD in the
field of SAR image detection, SII-Net achieves the best detection results, which shows that
SII-Net has excellent robustness and generalization ability.
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Figure 8. SAR ship detection results on LS-SSDD-v1.0. (a,e,i,m,q) represent the results of Faster
R-CNN; (b,f,j,n,r) represent the results of DCN; (c,g,k,o,s) represent the results of Double-Head
R-CNN; (d,h,l,p,t) represent the results of SII-Net.
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Table 6. Evaluation indices comparison with the other detectors on SSDD.

No. Method r p mAP

1 Faster R-CNN [50] 0.904 0.870 0.897
2 PANET [43] 0.919 0.868 0.911
3 Cascade R-CNN [51] 0.908 0.941 0.905
4 Double-Head R-CNN [52] 0.919 0.869 0.911
5 Grid R-CNN [53] 0.897 0.877 0.889
6 DCN [54] 0.930 0.862 0.922
7 Guided Anchoring [55] 0.904 0.946 0.900
8 Free-Anchor [56] 0.926 0.723 0.910
9 HR-SDNet [7] 0.909 0.964 0.908

10 DAPN [38] 0.913 0.855 0.905
11 SER Faster R-CNN [18] 0.922 0.861 0.915
12 ARPN [19] 0.906 0.854 0.898
13 Quad-FPN [39] 0.957 0.895 0.952
14 SII-Net 0.968 0.861 0.955

Table 7. Evaluation indices comparison with the other detectors on SAR-Ship-Dataset.

No. Method r p mAP

1 Faster R-CNN [50] 0.932 0.868 0.917
2 PANET [43] 0.934 0.868 0.920
3 Cascade R-CNN [51] 0.934 0.905 0.922
4 Double-Head R-CNN [52] 0.941 0.884 0.929
5 Grid R-CNN [53] 0.930 0.851 0.914
6 DCN [54] 0.932 0.862 0.918
7 Guided Anchoring [55] 0.938 0.925 0.927
8 Free-Anchor [56] 0.949 0.839 0.937
9 HR-SDNet [7] 0.932 0.921 0.922

10 DAPN [38] 0.933 0.872 0.919
11 SER Faster R-CNN [18] 0.935 0.867 0.921
12 ARPN [19] 0.920 0.881 0.913
13 Quad-FPN [39] 0.961 0.775 0.943
14 SII-Net 0.955 0.765 0.932

4. Ablation Experiment

In this section, we take LS-SSDD-v1.0 as an example, where ‘O’ means that the mod-
ule is not added, and ‘P’ means that the module is added. We first discuss the overall
effectiveness of the algorithm. It can be seen from Table 8 that in the process of module
accumulation, the detection accuracy of the algorithm gradually changes from 71.9% to
76.1%. This shows the validity of our overall structural design.

Table 8. Overall effectiveness of the modules.

CLAM HLEM R-Branch r p mAP

O O O 0.760 0.651 0.719
P O O 0.767 0.724 0.740
P P O 0.772 0.744 0.748
P P P 0.793 0.682 0.761

To visually assess the effectiveness of the three innovation modules, we visualize their
intermediate heatmaps. Figure 9a,f represent the original image. Figure 9b,g represent
the heatmaps of the basic algorithm. Figure 9c,h represent the heatmaps of the CLAM
module. Figure 9d,i represent the heatmaps of the HLEM module. Figure 9e,j represent
the heatmaps of the refined branch. As shown in Figure 9, the brighter color in heatmaps
represents the target area predicted by the network. It can be seen that, compared with the
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base algorithm, the three innovation modules can not only reduce the noise background in
the image but also accurately locate the target.
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4.1. Effectiveness of CLAM

Tables 9 and 10 show the results of the CLAM module ablation experiment, when the
other two modules are added and not added together, the CLAM module has improved the
overall test results. This proves that the CLAM module effectively enhances the extraction
of location information and improves the detection ability of the backbone network.

Table 9. Effectiveness of CLAM when the other two modules are added.

CLAM HLEM R-Branch r p mAP

O P P 0.764 0.756 0.737
P P P 0.793 0.682 0.761

Table 10. Effectiveness of CLAM when the other two modules are not added.

CLAM HLEM R-Branch r p mAP

O O O 0.760 0.651 0.719
P O O 0.767 0.724 0.740

4.2. Effectiveness of HLEM

Tables 11 and 12 shows the results of the ablation experiment of the HLEM module,
when the other two modules are added and not added together, the HLEM module has
improved the overall effect of the algorithm to a certain extent. This shows that the HLEM
module can explicitly compensate for the loss of high-level location information in the
detection process and improve the detection ability of the high feature layer for small
targets.

Table 11. Effectiveness of HLEM when the other two modules are added.

CLAM HLEM R-Branch r p mAP

P O P 0.763 0.664 0.728
P P P 0.793 0.682 0.761
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Table 12. Effectiveness of HLEM when the other two modules are not added.

CLAM HLEM R-Branch r p mAP

O O O 0.760 0.651 0.719
O P O 0.776 0.741 0.751

4.3. Effectiveness of R-Branch

Tables 13 and 14 shows the results of the ablation experiment of the R-branch, when
the other two modules are added and not added together, the R-branch has improved
the ability to detect small targets in the network. The results show that the anti-noise
performance of the R-branch and its effectiveness in enhancing the difference between
target and background.

Table 13. Effectiveness of R-branch when the other two modules are added.

CLAM HLEM R-Branch r p mAP

P P O 0.772 0.744 0.748
P P P 0.793 0.682 0.761

Table 14. Effectiveness of R-branch when the other two modules are not added.

CLAM HLEM R-Branch r p mAP

O O O 0.760 0.651 0.719
O O P 0.765 0.716 0.734

5. Conclusions

Aiming at the problems of inaccurate target location and the interference of complex
backgrounds in synthetic aperture radar (SAR) image detection, a novel target detector
SII-Net based on spatial information integration is proposed in this paper. Specifically, the
channel-location attention mechanism (CLAM) module is proposed to help the backbone
network achieve more accurate positioning of the target. Furthermore, the high-level
features enhancement module (HLEM) is customized to compensate for the loss of location
features of high-level small targets. The ablation experiments present that the addition of
the CLAM module and the HLEM module achieve 2.4% mAP and 3.3% mAP improvements
compared with the baseline model, respectively. Moreover, a new feature refinement branch
is presented to distinguish the feature information of the target and the background by
enhancing the difference between them, so that the false alarms and missed detections can
be effectively reduced. The heatmaps show that the target and the background are greatly
distinguished by the feature refinement branch. Quantitative experiments demonstrate
that the SII-Net surpasses all SOTA algorithms by a large margin when performing small
target detection, as it breaks through the problem with a low detection accuracy of the small
target. Qualitative comparisons show that the SII-Net achieves more visually pleasant
detection results.
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